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ABSTRACT Entropy Sampling Monte Carlo (ESMC) simulations were carried out to study the thermodynamics of the folding
transition in the GCN4 leucine zipper (GCN4-lz) in the context of a reduced model. Using the calculated partition functions
for the monomer and dimer, and taking into account the equilibrium between the monomer and dimer, the average helix
content of the GCN4-lz was computed over a range of temperatures and chain concentrations. The predicted helix contents
for the native and denatured states of GCN4-lz agree with the experimental values. Similar to experimental results, our helix
content versus temperature curves show a small linear decline in helix content with an increase in temperature in the native
region. This is followed by a sharp transition to the denatured state. van’t Hoff analysis of the helix content versus temperature
curves indicates that the folding transition can be described using a two-state model. This indicates that knowledge-based
potentials can be used to describe the properties of the folded and unfolded states of proteins.

INTRODUCTION

Leucine zippers belong to the general class of protein struc-
tural motifs known as coiled coils (Crick, 1953; Cohen and
Pary, 1990; O’Shea et al., 1991). Coiled coils occur in a
diverse class of proteins ranging from fibrous proteins such
as myosin, tropomyosin, and keratin (Johnson and Smillie,
1975; Phillips et al., 1986; Fraser and MacRae, 1971) to
transcriptional activators (Landshultz et al., 1988; Harrison,
1991; Smeal et al., 1989) such as GCN4, Fos, and Jun. They
are also present in many kinases (DiDonato et al., 1997).
The coiled coil motif consists of amphipathic right-handed
alpha helices wrapped around each other with a small left-
handed superhelical twist (Crick, 1953).

The amino acid sequences of coiled coils consist of a
characteristic heptad repeat (abcdefg)n (Cohen and Pary,
1990; Hodges et al., 1981; McLachlan and Stewart, 1975).
Residues a and d are mostly hydrophobic and form a tightly
packed core at the interhelical interface. Residues b, c, and
f are mostly hydrophilic, while residues e and g are typically
charged. It is believed that the identities of residues in the e
and g position dictate the relative orientation of the helices
in the coiled coil.

Coiled coil motifs having leucines in the d position in the
heptad repeat are known as leucine zippers (Landshultz et
al., 1988). They are quite short, typically 14 to 45 residues
in length, unlike the long coiled coils in tropomyosin (Bai-
roch, 1990). Leucine zippers can form homo (O’Shea et al.,
1991) or heterodimeric (O’Shea et al., 1991; Smeal et al.,
1989) coiled coil structures and play an important role in
subunit dimerization and subsequent DNA binding of tran-

scription activators, such as GCN4 (Talanian et al., 1990).
Apart from their biological importance, leucine zippers are
also ideal systems for exploring questions related to protein
folding (Alber, 1992; Harbury et al., 1993; O’Shea et al.,
1993) and de novo protein design (Hodges et al., 1981; Su
and Hodges, 1994; Monera et al., 1996; Lovejoy et al.,
1993; O’Neil et al., 1990) because they represent the sim-
plest example of quarternary structures in proteins. There-
fore, leucine zipper motifs have been attractive targets for
both experimental (O’Shea et al., 1991, 1993; Harbury et
al., 1993; Lumb et al., 1994; Kenar et al., 1995; Sosnick et
al., 1996; Zitzewitz et al., 1995; Lovett et al., 1996; Holtzer
et al., 1997) and theoretical studies (Krystek et al., 1991;
Nilges and Brunger, 1993; Zhang and Hermans, 1993;
DeLano and Brunger, 1994; Vieth et al., 1994–1996). In
this spirit, here we present a computational study of the
folding thermodynamics of the GCN4 leucine zipper.

The high-resolution structure of the GCN4 leucine zip-
per, GCN4-lz, (O’Shea et al., 1991), has been obtained from
x-ray crystallography. In the crystal state, GCN4-lz adopts a
dimeric, parallel coiled coil structure (O’Shea et al., 1991).
The effects of various mutations in the GCN4-lz sequence
on the stability and state of oligomerization (Harbury et al.,
1993; O’Shea et al., 1993) of the coiled coil structure have
been investigated in detail using CD, equilibrium ultracen-
trifugation, and gel filtration. The thermal stability of vari-
ous subdomains of GCN4-lz (Lumb et al., 1994) has also
been determined. Thermodynamic (Kenar et al., 1995;
Sosnick et al., 1996) and kinetic (Zitzewitz et al., 1995)
studies that attempt to probe the nature of the conforma-
tional transition in the GCN4-lz indicate that the folding/
unfolding transition is well described by a simple two-state
model (Kenar et al., 1995; Sosnick et al., 1996), i.e., the
equilibrium population is essentially comprised of only a
native dimer and a completely denatured monomer. How-
ever, recent unfolding studies (Holtzer et al., 1997) on a
GCN4-like leucine zipper indicate that the equilibrium na-
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tive population is much richer than that suggested by a
simple two-state model.

Surprisingly, compared to the large number of experi-
mental studies, there have been relatively few theoretical
studies (Krystek et al., 1991; Nilges and Brunger, 1993;
Zhang and Hermans, 1993; DeLano and Brunger, 1994;
Vieth et al., 1994–1996) on leucine zippers. Molecular
mechanics (Krystek et al., 1991) and free energy perturba-
tion (Zhang and Hermans, 1993) calculations on model
leucine zipper structures indicate that leucines in the d
position of the heptad make a major contribution to the
stability of dimeric coiled coils. In contrast, residues at
position a play a relatively minor role. Starting from a pair
of parallel, in-register alpha helices, Nilges and Brunger
(1991, 1993) used an all-atom force field and a molecular
dynamics-based simulated annealing protocol to predict the
coiled coil structure of the GCN4-lz. In their simulations
(Nilges and Brunger, 1993), they used helical backbone
hydrogen bond restraints and interhelical distance restraints.
They predicted a structure whose backbone had a coordinate
root mean squared deviation (RMSD) of 1.26 Å from the
subsequently solved crystal structure (O’Shea et al., 1991)
of GCN4-lz. Ab initio folding of the GCN4-lz, starting from
a pair of random chains, was first attempted by Vieth and
co-workers (Vieth et al., 1994). Using a high coordination
lattice representation of the protein and knowledge-based
potentials (Kolinski and Skolnick, 1994), they obtained
interesting insights into the folding process and mechanism
of chain assembly. The predicted native structures had a Ca

RMSD from GCN4-lz crystal structure in the range of 2.3 to
3.7 Å. Subsequent refinement of these structures using an
all-atom representation and a solvation shell resulted in a
family of structures with a backbone heavy atom RMSD of
0.81 Å from the GCN4-lz crystal structure. Vieth and co-
workers subsequently developed theoretical methods (Vieth
et al., 1995, 1996) that could successfully predict the equi-
librium between different oligomeric species of GCN4-lz,
its mutants, and various subdomains. Hence, simulations
based on a lattice protein representation and knowledge-
based potentials have been successful in reproducing a
number of experimental observations related to the structure
and thermodynamics of the GCN4-lz.

In view of the encouraging results obtained from lattice-
based computer simulations (Vieth et al., 1994–1996) on
GCN4-lz, it is tempting to ask if such lattice models and
knowledge-based potentials can be used for simulations of
folding thermodynamics. In such a simulation, one would
be interested in predicting the various microscopic confor-
mational states that contribute to an observed macroscopic
property at a given temperature. Hence, the result of such a
simulation would directly tell us if the molecular population
at transition temperature consists of a completely folded
native dimer in equilibrium with a structureless denatured
state, as suggested by simple two-state models (Kenar et al.,
1995; Sosnick et al., 1996), or are more aptly described by
a complex array of conformational states, as suggested by
Holtzer and co-workers (Holtzer et al., 1997). However, the

success of such a statistical thermodynamic calculation is
crucially dependent on whether the knowledge-based poten-
tial cannot only describe the properties of the native state,
but also the unfolded states of GCN4-lz. One minimal
requirement is that such a model reproduce the conforma-
tional properties of the denatured state, in particular, its
helix content. In Vieth’s folding simulations (Vieth et al.,
1994), the helix content of the isolated chains ranges from
30 to 35% and increases to 90% upon formation of the
native dimer. In contrast, experiment (Holtzer et al., 1997)
suggests that the helix content of thermally denatured chains
is ;10–15%. The intrinsic secondary structure content of
the denatured state is related to the relative weight of the
local (short-range) versus the nonlocal (long-range) interac-
tions. Therefore, it might be possible to reduce the intrinsic
helix content in the denatured state by adjusting the relative
strengths of the short- versus long-range interactions. How-
ever, in practice, reducing the intrinsic helix content for
isolated chains increases the mean folding time. If the
intrinsic helix propensity for isolated chains is too small,
then the resulting native structure for the dimer may not be
helical. Since the principal aim of the work of Vieth and
co-workers (Vieth et al., 1994) was the ab initio prediction
of native structure, they opted for an energy parametrization
that allowed the folding of coiled coil sequences to their
native state within a reasonable mean folding time, but the
effect of this parametrization on the structure of the dena-
tured state had not been fully explored.

In the present work we use lattice-based computer sim-
ulations for a complete thermodynamic characterization of
the native and denatured states of the GCN4-lz. The specific
questions we attempt to address are the following: Can we
predict the experimentally observed conformational proper-
ties of both the native and denatured states of the GCN4-lz
using the existing knowledge-based parameters? If not, can
the agreement with experiment be obtained by a simple
reweighting of the relative strengths of short- versus long-
range interactions, or are more drastic changes in the energy
functions required? If our parameters are capable of pre-
dicting the conformational properties of the native and
denatured states of the GCN4-lz, we can also answer the
following questions related to the thermodynamics of the
folding transition. Is the folding transition adequately de-
scribed by a two-state model, as suggested by experiment?
If so, what is the origin of this behavior?

For a complete thermodynamic analysis of the various
monomeric and dimeric states of the GCN4-lz, it is essential
to estimate the entropies associated with the various energy
states. Recent work (Kolinski et al., 1996) has demonstrated
that the Entropy Sampling Monte Carlo (ESMC) technique
of Hao and Scheraga (1994) can be used to obtain a rea-
sonably accurate estimate of the entropies for 310 type
lattice protein models. For a single chain, the ESMC tech-
nique suggested by Hao and Scheraga can be used in a
straightforward way to calculate various thermodynamic
properties. However, for multimeric systems, one needs to
calculate the equilibrium between the monomer and the
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multimer (Vieth et al., 1996); hence, a number of modifi-
cations to the original ESMC protocol are required. There-
fore, to study folding/unfolding thermodynamics of GCN4-
lz, we have carried out ESMC simulations with appropriate
modifications for the two-chain system.

METHODS

In this section a brief description of the following is given: protein models,
interaction scheme, ESMC formalism, and the formalism for obtaining the
thermodynamic variables for a two-chain system from ESMC simulations.

Protein model

The (310) lattice model used here has been described in detail elsewhere
(Kolinski and Skolnick, 1994). Each amino acid of a given polypeptide
chain is represented by a set of two points corresponding to the position of
the Ca and the center of mass of the amino acid side chain. The Ca

positions are restricted to lattice points on an underlying cubic lattice, with
a lattice spacing of 1.22 Å. The virtual bond vector connecting two
consecutive Ca positions can take 90 possible orientations defined by the
set of vectors {(3,1,1),. . . , (3,1,0),. . . , (3,0,0),. . . , (2,2,1),. . . , (2,2,0),
. . . , . . .}. However, to exclude nonphysical conformations, there are
further restrictions that limit two consecutive virtual bonds to an angle in
the range of 72.5 to 154°. Using this high-resolution lattice representation,
it is possible to build lattice models of proteins with an average Ca RMSD
of 0.6 to 0.7 Å (Godzik et al., 1993) from the actual structure. The spheres
representing the side chains are not confined to lattice points, and there are
multiple rotamers for all amino acids except Gly, Ala, and Pro. The spatial
resolution of the rotamers in the model are such that the center of mass of
the side chain in a given rotameric state in a real protein is no farther than
1 Å from another member of the rotamer library.

Interaction scheme

The knowledge-based potential has the same functional form and param-
eters as in the work of Vieth and co-workers (Vieth et al., 1994, 1995). The
total energy (Etot) of the system consists of energy contributions from
hydrogen bonds (Ehb), an effective Ramachandran potential (ER14), a local
side chain orientational coupling term (Ebeta), a rotamer energy (Erot), a
burial energy (Eone), a pair potential (Epair), and a cooperative pair potential
(Etemp). The reader is referred to the work of Vieth and coworkers (Vieth
et al., 1995) for a detailed description of these terms. The various interac-
tions in the model can be divided into short- and long-range terms. The
short-range interactions areEhb, Ehcoop, ER14, Ebeta, and Erot as they
describe the local conformational preference in a polypeptide chain. Since
we are considering helical structures, we classifyEhb as being short-range,
but in b-proteins it may be long-range as well. The long-range interactions
are Eone, Epair, and Etemp that result from interactions between residues
separated by at least three amino acids along a chain, but which are close
in space. The structure and thermodynamics of a protein are obviously the
result of the balance between the short- and long-range interactions. In our
model, this balance is maintained by use of appropriate scale factors. Thus,
the total energy (Etot) in our model is given by

Etot 5 Elong 1 Eshort

Elong 5 Spair*Epair 1 Sone*Eone1 Stemp*Etemp (1)

Eshort5 Shb*Ehb 1 SR14*ER14 1 Sbeta*Ebeta1 Srot*Erot

In the work of Vieth et al., the scale factors wereSpair 5 5.0,Sone5 0.5,
Stemp 5 4.25, Shb 5 1.0, SR14 5 0.25, Sbeta 5 1.0, Srot 5 0.5. Here, we
carried out one set of simulations using these scale factors. This will be
referred to as parameter set I. We then carried out another set of simula-

tions usingSpair 5 5.0, Sone 5 0.5, Stemp 5 4.25,Shb 5 0.5, SR14 5 0.10,
Sbeta 5 0.5, Srot 5 0.5. This will be referred to as parameter set II. In
parameter set II, the lower scale factors for hydrogen bond, orientational
coupling, and Ramachandran potential reduced the weight of short-range
interactions relative to the long-range interactions. As will be discussed
later in the Results section, this reduction in the weight of short-range
interactions significantly reduced the helix content of the denatured state
and made the model in better agreement with experiment.

Conformational sampling scheme and move set

The most widely used method of conformational sampling for lattice
models is the asymmetric Metropolis Monte Carlo (MMC) scheme (Me-
tropolis et al., 1953). Here, the transition probability from a conformation
with energyEi to that with energyEj is given by

Pij
MMC 5 min{1, exp(2DEij /kT)} (2)

Here,DEij 5 Ej 2 Ei, k is Boltzmann’s constant, andT is the simulation
temperature. Since the transition probability is decided by the energy
difference between the two conformations, this method is sensitive to the
presence of energy barriers. Hence, to achieve an adequate sampling of
representative structures at all energy states, which is essential for any
statistical thermodynamic calculation, the MMC protocol needs a suffi-
ciently complete move set (Kolinski and Skolnick, 1994) and the simula-
tion must be carried out over a range of temperatures. Even then, there is
no obvious way to demonstrate convergence.

As elegantly demonstrated in a series of recent theoretical work (Hao
and Scheraga, 1994a,b, 1995; Kolinski et al., 1996), the ESMC scheme not
only overcomes these drawbacks of MMC, but offers several other advan-
tages; in particular, it provides an objective measure of convergence.
ESMC can be formulated in several different ways (Lee, 1993; Berg and
Neuhaus, 1991; Hao and Scheraga, 1994a), some of which are very similar
to the multicanonical MC (Hansmann and Okamoto, 1993; Okamoto and
Hansmann, 1995). Here, the ESMC scheme as proposed by Hao and
Scheraga (1994a,b) was used. The transition probability from a conforma-
tion with energyEi to a conformation with energyEj is given by

Pij
ESMC 5 min{1, exp(2DSij /k)} (3)

Here,k is the Boltzmann constant,DSij 5 S(Ej) 2 S(Ei), andS(Ei) andS(Ej)
are the entropies associated with energy statesEi and Ej, respectively.
Thus, ESMC generates an artificial distribution of states controlled by their
relative entropies.

At the beginning of the simulation, the entropies of the various states,
S(E), are not known. Thus, the simulation is started with an approximate
guess for the entropy,J(E), which could be a constant. The sampled
conformations are then used to obtain a density of states histogram,H(E).
In turn,H(E) is used to get a better approximation for the entropy. If thekth
iteration consists of an ESMC run withS(E) approximated byJk21(E), then
the new approximation forS(E), Jk(E) is given by

Jk~E! 5 Jk21~E! 1 ln(max$1, Hk~E!%) (4)

After a sufficient number of iterations, when convergence is achieved, all
energy states are equally sampled and the density of states histogram
becomes flat. Thus, one has a means of determining whether or not
convergence was achieved. After convergence, theJ(E) curve shifts by a
constant in successive iterations and the true entropy,S(E), of the system
is given byJ(E) 1 C, whereC is some constant.

If the system gets trapped in low entropy states, it may take a very large
number of iterations to achieve convergence. Kolinski et al. (1996) have
suggested a means to accelerate the convergence of ESMC simulations by
making use of a “conformational pool.” The conformational pool is essen-
tially a library of seed structures, which can be obtained from initial ESMC
iterations or from MMC folding or unfolding simulations. Then, during the
ESMC run, periodically, one randomly selects a new structure from the
conformational pool and accepts it subject to Eq. 3. Then, if successful, the
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ESMC simulation is continued with the structure picked from the pool.
Thus, by picking new starting structures from the conformational pool, one
can randomly shift the system between distant energy levels, and yet
detailed balance is maintained. This way, the sampling process can sur-
mount possible entropic barriers. The other advantage of using a confor-
mational pool is that the long ESMC iteration essentially becomes a series
of short runs, each of which starts with an independent new conformation.
Thus, the computational task involved in simulation can be easily paral-
lelized on multiprocessor machines.

In the present work the simulations were carried out using eight pro-
cessors of a CRAY T3E. At the beginning of the simulation, the processors
randomly picked structures from different regions of conformational space.
Starting from these structures, each processor executed several cycles of
Monte Carlo moves (Vieth et al., 1995) using the transition probability
given by Eq. 3. Each cycle consisted of (N 2 2)*M two-bond moves, (N 2
3)*M three-bond moves, 2*M chain end moves,M shifts of chain pieces,
andM rigid body shifts and rotamer rearrangements after each backbone
conformational change. Here,M is the number of chains in the system and
N is the number of beads in each chain. In our case,N is 35, including two
dummy beads at the ends, andM is one or two, depending on whether the
simulation is for a monomer or dimer. As mentioned before, the main task
in an ESMC simulation is to sample different conformations of the mole-
cule and construct the density of states histogram (Hao and Scheraga,
1994a). Hence, the conformations sampled by each processor were stored
at 50-cycle intervals to build the density of states histogram. A bin size of
4 kT was used in the construction of the density of states histogram. The
choice of this bin size is based on the work of Kolinski et al., where it had
been observed that a coarse-grained histogram accelerates sampling, but
there was no substantial loss of conformational resolution (Kolinski et al.,
1996).

Starting from the initial structure, each processor executed 25,000 MC
cycles and generated 500 conformations for building the density of states
histogram. Then, each processor randomly picked a new structure from the
conformational pool and executed another 25,000 MC cycles to generate
another 500 conformations for the density of states histogram. This process
of picking a new initial structure from the pool and collecting conforma-
tions for density of states histograms was repeated 10 times until each
processor collected a total of 5000 conformations. Then, the individual
histograms obtained from all eight processors were combined and the
resulting histogram, consisting of (50003 8 5) 40,000 points, was used to
update the entropy curve using Eq. 4, and the updated entropy was
communicated to the individual processors. This entire process will be
referred to as one communication cycle, which essentially consists of 80
short ESMC runs, each of which began from a different starting structure.
The next communication cycle was executed on the eight processors of
CRAY T3E using the updated entropy obtained from the previous com-
munication cycle. One iteration of an ESMC run consisted of four such
communication cycles, requiring;28 h of CPU time on eight processors
of CRAY T3E for one iteration of an ESMC run for the dimer.

The convergence of the simulation was estimated by the following
function:

Errk~Ei! 5
100*abs~DJ~Ei! 2 DJ0!

DJ~Ei)
(5a)

Here, Errk(Ei) is the error in convergence in theith energy bin in thekth
iteration.

DJ~Ei! 5 Jk~Ei! 2 Jk21~Ei! (5b)

DJ0 5 ODJ~Ei)/nbin (5c)

and nbin is the total number of bins over which statistics have been
collected in thekth iteration.

The ESMC simulations were considered converged when for successive
iterations, Err(Ei) was ,5% in each energy bin. The total computational
cost to build up the entropy curve for the dimer from scratch was;600
CPU hours on eight processors of a CRAY T3E, and it took 20 iterations.

For the monomer, it was;200 CPU hours on four processors of a CRAY
T3E.

Generalization of ESMC for a two-chain
system and formalism for calculation of
thermodynamic parameters

In this section we describe the required modifications to the ESMC
protocol for calculating thermodynamic variables for a two- (or multi)
chain system.

Let us first consider the monomer. In order to calculate the equilibrium
constant, one must separate the translational, rotational, and internal de-
grees of freedom of the chain (Davidson, 1962; Herschbach, 1959). Thus,
we fix the first Ca in space and perform ESMC simulations. The entropy
for the monomer,SM(E), obtained from ESMC simulations contains con-
tributions from the internal conformational entropy (Sint-conf,M) and rota-
tional entropy (Srot,M). The rotational entropy of the monomer is related to
the number of conformational states sampled for the first two Ca bond
vectors,VM, by the equation,

Srot,M 5 ln VM (6)

and can be calculated from the manifold of structures obtained from a
converged ESMC run. Thus, internal conformational entropy for the mono-
mer,Sint-conf,M, can be obtained by the equation,

Sint-conf,M 5 SM~E! 2 Srot,M (7)

Hence, the monomer configurational partition function,Zint-conf,M, is given
by,

Zint-conf,M 5 O exp(2E/kT1 Sint-conf,M ~E!) (8)

However,Zint-conf,M can be constructed only to within a constant because
of the arbitrary constant associated with the entropy obtained from ESMC.

ESMC simulations are then carried out for the dimer. The dimer is
defined as any configuration of two chains containing at least one inter-
chain side chain contact. Hence, in the dimer simulation, configurations
without any interchain contacts are rejected. During the simulations, the
first bead of chain 1 in the dimer is kept fixed in space so as to exclude the
translational entropy. The entropy of the dimer,SD(E), obtained from
ESMC simulations consists of three classes of terms:

1. The translational entropy of bead 1 in chain 2, which is in fact related
to the average volume accessible to this bead,^V&, by

Strans,D5 ln^V& (9)

2. The rotational entropy of the dimer, which is related to the number of
accessible conformations for the first two Ca bond vectors in chains 1
and 2,VD1 andVD2, by

Srot,D 5 ln(VD1*VD2) (10)

3. The conformational entropy arising from internal configurations of both
chains in the dimer,Sint-conf,D.

Therefore, Strans,D and Srot,D can be calculated from the manifold of
structures obtained from a converged ESMC simulation for the dimer using
Eqs. 8 and 9, and the internal conformational entropy for the dimer can be
obtained by

Sint-conf,D~E! 5 SD~E! 2 Strans,D2 Srot,D (11)

Then, within a constant, the internal configurational partition function of
the dimer is given by

Zint-conf,D 5 Oexp(2E/kT1 Sint-conf,D~E!) (12)
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Now that we have calculated the total internal partition functions of the
monomer and dimer, any internal thermodynamic or conformational prop-
erty, W, can be obtained from

^W& 5
OW~E!exp(2E/kT1 Sint-conf,L~E!)

Zint-conf,L
(13)

Here,L 5 D or M.
At this point, we have the total internal partition functions of the

monomer and dimer to within a constant. The problem is that the constant
provided by ESMC is arbitrary; thus, we need a procedure to relate the
partition function of the dimer to that of the monomer. This is equivalent
to demanding that all species have the same reference state. If so, then the
equilibrium constant follows from Herschbach (1959) and Mayer and
Mayer (1963)

KMD 5
^V&VD1VD2Zint-conf,D

sDVM
2 Zint-conf,M

2 (14)

Here,sD is the symmetry number and equals 2 for a homodimer and 1 for
a heterodimer.

Therefore, we have to place the monomer and dimer in the same
reference state. We first observe that for internal configurational contribu-
tions in the limit of very large energies, we would expect that

Sint-conf,D~E! 5 2Sint-conf,M~EM) (15)

Here,Sint-conf,D(E) is the internal configurational entropy of the dimer with
energy E, Sint-conf,M(EM) is the internal configurational entropy of the
monomer having an energy per chain,EM, andE 5 2EM. This equation
simply says that in very high energy states, the internal configurational
entropy accessible to a chain in the dimer should be the same as that in a
monomer. By demanding that Eq. 15 hold in the limit of large energies, we
can shift the entropy curves of the monomer and dimer systems so that they
have the same reference state.

The equilibrium constantKMD can be used to calculate the fraction of all
chains,XD, that exist as a dimer at any given chain concentration,C0, using
the relation (McQuarrie, 1976)

xD 5
~1 1 4KMDC0! 2 Î1 1 8KMDC0

4KMDC0
(16)

The average overall helix content over the entire range of temperatures
can be calculated from the equation

u~T! 5 xD~T!uD~T! 1 1 2 xD~T!)uM~T! (17)

Here,xD(T) is the mole fraction of dimers,u(T) is the overall helix content,
anduD anduM are the average helix contents for the dimer and monomer,
respectively, at the temperatureT. They are calculated from the manifold
of structures for the dimer and monomer using Eq. 13.

A macroscopic measure of how well a given thermodynamic transition
is described by a two-state model can be obtained from a van’t Hoff

FIGURE 1 The average helix content versus temperature curves for simulations with parameter set I. The dashed and dashed-dotted lines represent the
average helix contents of the dimer and monomer, respectively. The dashed, dotted, and solid lines represent the overall helix contents at chain
concentrations of 2mM, 43 mM, and 1 mM, respectively.
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analysis (Privalov and Gill, 1988; Marky and Breslauer, 1987) of theu(T)
versusT curve. In the van’t Hoff analysis, one computes the apparent
fraction of the native dimer,fN(T) from theu(T) versusT curve, assuming
that a two-state model holds good for the folding transition. Thus, it is
assumed that at any temperatureT, the overall helix content,u(T) is given
by

u~T! 5 fN*uN 1 1 2 fN)*uD (18)

Hence, fN(T) can be extracted from theu(T) versusT curve using the
relation

fN~T! 5 ~u~T! 2 uD)/(uN 2 uD) (19)

Here,uN anduD are the helix contents of the native and denatured state,
respectively, and their values can be obtained from the low and high
temperature plateau regions of theu(T) versusT curve. However, in many
cases, the regions representing the native and denatured states in theu(T)
versusT curve show a linear decline of helix content with increase in
temperature. In such a case, the values ofuN anduD can be chosen in two
different ways. One possible way is to assume thatuN and uD change
linearly with temperature, and hence their values at any temperature are
obtained by fitting straight lines to the native and denatured regions and
extrapolating those straight lines to the transition region. This method is
known as “baseline fitting” (Marky and Breslauer, 1987). The second
possible way is to take the values ofu(T) at the lowest and highest
temperatures as the values foruN anduD, respectively. This method does
not involve any baseline fitting, and it is assumed thatuN anduD do not

change with temperature. Hence, for the van’t Hoff analysis, the apparent
fraction of the native dimer,fN(T), can be obtained in two different ways,
i.e., with and without baseline fitting.

The values for the fraction of native dimer,fN, can be used to calculate
the apparent equilibrium constant,Kapp, for the transition from the native
to the denatured state using the equation

Kapp~T! 5 fN/~1 2 fN)2 (20)

The van’t Hoff enthalpy can be calculated from theKapp(T) versusT curve
using

DHVH 5
d~lnKapp!

dT
kT2 (21)

The calorimetric enthalpy for the transition can be computed using the
equation

DHcal 5 ^ED& 2 2^EM& (22)

Here,^ED& and^EM& are the average energies of the dimer and monomer,
respectively, at the transition temperature. They can be computed for the
monomer and dimer using Eq. 13.

If the transition is in fact two-state, then the van’t Hoff enthalpy should
be equal to the calorimetric enthalpy obtained directly from Boltzmann
averaging of energy over the microscopic states (Privalov and Gill, 1988;
Marky and Breslauer, 1987). Hence,DHVH can be compared toDHcal to

FIGURE 2 Entropy of the dimer of GCN4-lz as a function of its energy. The five different entropy curves have been obtained from last five successive
iterations of the ESMC run after convergence of the simulations. The inset shows the error in entropy plotted as a function of the energy.
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estimate how well the two-state model fits the folding transition in our
simulation for the GCN4-lz.

RESULTS

As mentioned in the Methods section, we carried out two
sets of ESMC simulations for the monomers and dimers of
the GCN4-lz. In parameter set I, we used exactly the same
scale factors as in the work of Vieth and co-workers (1995).
Here, we present the final results for simulations with pa-
rameter set I, skipping the details. As described in the
Methods section, the entropy versus energy curves for the
monomer and dimer of the GCN4-lz were obtained from
ESMC simulations, and the entropy curves were used to
calculate the partition functions for the monomer and dimer.
The equilibrium between monomer and dimer at different
temperatures was calculated using the partition functions.
The mole fractions of the monomer and dimer at different
chain concentrations were calculated from equilibrium con-
stants. The overall helix content for the GCN4-lz was com-
puted using the average helix contents of the dimer, average
helix content of the monomer, and mole fractions of the
monomer and dimer.

Fig. 1 shows the average helix content for the monomer
and dimer of the GCN4-lz at various temperatures and the
overall helix content of the GCN4-lz at different chain
concentrations. As seen in the figure, the monomer helix
content is far too high, being close to 85% at the lowest
temperature. At 2mM chain concentration, after the com-
plete dissociation of two chains, the monomer is 70% heli-
cal. This indicates that the GCN4-lz undergoes a folding/
unfolding transition with a helical monomer as an
intermediate, which is completely at variance with experi-
mental observations (Kenar et al., 1995; Sosnick et al.,
1996). Even at 1 mM chain concentration, where dissocia-
tion takes place at a substantially higher temperature, this
parameter set predicts the existence of a monomer that is
.50% helical. Thus, it is clear that this parameter set
predicts too high a helix content in the denatured state.

Therefore, we decided to explore whether it is possible to
reduce the helix content in the denatured state and at the
same time correctly predict the native dimer conformation.
Hence, we carried out simulations with parameter set II,
where we reduced the weight of its short-range interactions
relative to the long-range interactions by a simple adjust-

FIGURE 3 Plot of RMSD (from the native GCN4-lz) versus energy for the structures obtained from a converged ESMC run for the dimer. The inset
shows the average helix content of these dimer structures as a function of their energy.
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ment of the scale factors of certain energy terms in our
potential. Below, we discuss in detail the results of simula-
tions with parameter set II.

Fig. 2 shows the relative entropy versus energy curves for
the dimer obtained from a series of converged ESMC runs
carried out with parameter set II. The manifold of structures
obtained from these converged ESMC runs span the energy
range 2348 to 60 kT, with the structures in the lowest
energy bin rarely sampled. As seen in Fig. 2, the entropy
curves have shifted by a constant amount in successive
iterations in all bins except for the lowest energy bin at
2348kT. This indicates that we have achieved convergence
everywhere except in the lowest energy bin. The inset to
Fig. 2 shows the average error in the entropy in each bin.
For each converged iteration, the error in a given energy bin
was computed using Eq. 5a, and these were averaged over
the last five iterations shown in Fig. 2 to obtain the average
error in each of the energy bins. As can be seen in Fig. 2, the
errors are larger toward the lowest energy bins, but the
maximum error is 2.5%, with a,1% average overall error.
This indicates good convergence of the ESMC simulation
for the dimer. The error values shown in the figure were
expressed as a percentage of the shift in entropy in succes-

sive iterations. Since the entropy curves shown in Fig. 2
shift by ;23 k in successive iterations, the maximum error
in entropy is 0.57k, and the average error in entropy is
,0.23k.

In Fig. 3 we show a plot of the energy versus RMSD
(from native GCN4) for the structures obtained from a
typical converged ESMC simulation for the dimer. As can
be seen, the lowest energy structures typically have an
RMSD ranging from 3.5 to 4 Å from the native GCN4, and
the lowest energy misfolded structures are at least 80kT
above the lowest energy minimum. These lowest energy
misfolded structures consist of two helical hairpins with
very few contacts between the two chains. There is a large
population of structures in the range of 2–3 Å from native
GCN4, but these are at least 20kT in energy above the
lowest energy structure. Overall, there is a significant cor-
relation between RMSD and energy. The clustering of
points at lower energies is a reflection of the lowering of the
entropy as one goes to lower and lower energy states. It is
important to note that the lowest energy structures obtained
from the simulation are close to the native structure for
GCN4-lz. Thus, the model with diminished short-range
interaction contributions also recovers the native state. This

FIGURE 4 Free energy,F(E), of the GCN4-lz dimer as a function of energy,E, at T 5 1.75, which is the transition temperature for the conformational
transition within the dimer. The insets show the population of GCN4-lz dimers as a function of energy and helix content at the transition temperature.
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also can be seen in the inset to Fig. 3, which shows the
average helix content of the structures in various energy
states, with the lowest energy state having a helicity of 91%
and the very high energy states close to 2%.

At any temperatureT, the microscopic free energy,F(E,
T), for the dimer can be computed from theS(E) curve for
the dimer, using the expressionE 2 TS(E) (Hao and Sch-
eraga, 1994a,b; Kolinski et al., 1996). At the transition
temperature, the low and high energy states must have equal
free energy. Thus, the transition temperature for the confor-
mational transition within the dimer was obtained by de-
manding that low and high energy states of the dimer have
equal free energy. Fig. 4 shows the free energyF(E, T)
versus energy curve for the GCN4-lz dimer atT 5 1.75,
which is the transition temperature for the conformational
transition within the dimer. It must be noted that the abso-
lute value of the free energies is arbitrary because the
entropy has an arbitrary constant. But the most important
feature that can be seen in Fig. 4 is that there is no free
energy barrier separating the native state and the high en-
ergy states with much lower helix content. This indicates
that the conformational transition within the dimer is con-
tinuous, and that a large number of conformational states

will be populated at the transition temperature. This can be
seen from the insets to Fig. 4. Inset 1 shows the population
at various energy states of the dimer at the transition tem-
perature for the conformational transition within the dimer.
Inset 2 shows the population of the dimer as a function of
helix content. As can be seen from inset 2, at the transition
temperature a large number of states with helix contents
varying from 10% to 70% will be significantly populated.

Even though the free energy profile of the dimer indicates
the presence of a large number of conformational states, it
is important to note that we defined the dimer as any
configuration of two chains with at least one interchain side
chain contact, which is rather arbitrary. However, at any
given temperature, whether or not these dimeric states will
be populated will depend on their relative weight compared
to monomeric states. It is possible that a dissociation of
chains takes place at a temperature lower than 1.75, possibly
rendering the distributions shown in Fig. 4 not relevant for
the GCN4-lz system. The true distribution of conforma-
tional population at any temperature can be determined only
by calculating the equilibrium between monomer and
dimer.

Fig. 5 shows the relative entropy versus energy for the

FIGURE 5 Entropy of the monomer of GCN4-lz as a function of its energy. The four different entropy curves have been obtained from the last four
successive ESMC iterations after convergence has been achieved. The inset shows the error in entropy as a function of energy.
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monomer, obtained from an ESMC simulation using param-
eter set II. The various monomer states obtained from the
ESMC simulation span an energy range of2164 to 60kT,
but convergence could be achieved only in energy bins up to
2156 kT. The results shown here are from the last four
converged iterations. In the inset to Fig. 5 we show the
average errors in monomer entropy for each of the energy
bins. The errors were calculated in the same way as for the
dimer and finally averaged over the last four converged
iterations. As can be seen from Fig. 5, the errors are larger
toward the lowest energy bins, but the maximum error is
;3%, and the average overall error is,1%. This indicates
that we have also achieved good convergence for the mono-
mer simulation.

An analysis of the monomer structures sampled in a
converged ESMC run indicates that the lowest energy struc-
ture for the monomer is only 40% helical, and structures
having energy higher than2148 kT have an average helix
content of,20%, dropping to 2% in the highest energy
states. Hence, in general, the GCN4 monomer does not
seem to favor a highly helical structure even at the lowest
temperature. The isolated monomer is likely to have an

average helix content of,40%. However, at any tempera-
ture, whether or not the monomer will be present in the
overall population of GCN4-lz can be known only from the
calculation of equilibrium constant.

As discussed in detail in the Methods section, to calculate
the equilibrium between monomer and dimer we must shift
the entropies of the monomer and dimer to the same refer-
ence state. Fig. 6 shows the entropies of the monomer and
dimer shifted to the same reference state. The solid line is
the internal entropy (after subtraction of translation and
rotation components),Sint-conf,D(E), versus energy (E) of the
dimer. The dashed lines indicate twice the internal entropy
for the monomer, i.e., 2Sint-conf,M(EM), plotted as a function
of E1, with E1 5 2EM and EM being the energy of the
monomer. The dashed line essentially represents the inter-
nal entropy versus energy curve for a hypothetical dimer
consisting of two independent monomers.E1 varies from
2312 to 120kT, while E varies from2344 to 60kT. The
dimer curve has been shifted by a constant so that atE 5 60
kT, both curves match. As seen in Fig. 6, from160 to116
kT, both curves almost overlap, indicating that in those
energy regions, the dimer essentially behaves as two inde-

FIGURE 6 The solid line represents the internal entropy of the dimer,Sint-conf,D(E), plotted as a function of its energy,E. The dashed line represents twice
the internal entropy of the monomer, 2Sint-conf,M(EM), plotted as a function ofE1, with E1 5 2EM andEM being the energy of the monomer. The curves
have been shifted so that in the limit of very large energies we haveSint-conf,D(E) 5 2Sint-conf,M(EM) andE 5 2EM.

Mohanty et al. Folding Thermodynamics of GCN4 Leucine Zipper 63



pendent chains, while the deviation between the two en-
tropy curves increases as the energy becomes lower and
lower.

After shifting the internal entropies of the monomer and
dimer to have the same reference state, the internal partition
functions for the monomer and dimer were computed at
various temperatures. Hence, for the monomer-dimer equi-
librium, the dominant species at a given temperature was
determined from the ratio of their respective partition func-
tions as described in detail in the Methods section. Fig. 7
shows the variation of dimer mole fraction,xD, with tem-
perature for chain concentrations of 2, 43, and 300mM. As
can be seen, at a 2mM chain concentration, while the
population is entirely dimeric belowT 5 1.2, it becomes
essentially monomeric aboveT 5 1.6. T 5 1.45 is the
transition midpoint where both monomer and dimer are
equally populated. With increasing chain concentration, the
transition region shifts to higher temperatures. The mid-
points for the transition at 43 and 300mM chain concen-
tration are atT 5 1.53 and 1.59, respectively. In general, the
xD versusT curves indicate that the GCN4-lz undergoes a
sharp dissociating transition.

In Fig. 8 we show the average overall helix content versus
temperature for chain concentrations of 2, 43, and 300mM,
as well as the helix contents for dimer and monomer at
various temperatures. Fig. 8 also shows that at a 2mM chain
concentration, the overall helix content for the GCN4-lz
declines slowly from a value of 91% atT 5 0.1 to 83% at
T 5 1.2, and then exhibits a sharp transition to a value close
to 10% atT 5 1.6, with the transition midpoint being atT 5
1.45. In general, for all chain concentrations, first there is a
linear decline in helix content with increase in temperature
and then there is a sharp transition with the transition
temperature increasing with an increase in chain concentra-
tion. This result is consistent with the experimental results
from melting studies on the GCN4-lz. Of course, in our
theoretical curve, we also see another broad transition that
occurs at a still higher temperature and the monomer helix
content drops from 10% to;2%. It is possible that this
might occur outside the experimental temperature range.
Comparison of the overall helix content curve to the helix
content curves for monomer and dimer gives us a qualitative
picture of the folding transition in the GCN4-lz. At the
lowest temperature, the molecule is a dimer that is close to

FIGURE 7 The mole fraction of dimers as a function of temperature, at chain concentrations of 2mM (solid line and circle),43 mM (dotted line and
star), and 300mM (dashed line and square).
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91% helical, and with an increase in temperature there is a
continuous unfolding in the dimer. However, by the time the
molecule unfolds to a state with 80% helix content, the
chains fall apart and the monomeric chains have a helix
content of;10%. The second transition we see corresponds
to full melting of the residual helix in the monomer.

Hence, our simulation results suggest that the equilibrium
population in the GCN4-lz consists of folded dimers and
essentially unfolded single chains. This can be seen in Fig.
9, which shows the population of various microscopic states
at T 5 1.45, i.e., transition midpoint for the chain concen-
tration of 2mM. At this temperature, the dimer and mono-
mer populations show sharp peaks in two distinct energy
regions. At the same temperature, the population of the
monomer and dimer as a function of the helix content is
shown in the inset to Fig. 9. The population versus helix
content curves for the monomer and dimer indicate that the
two distinct peaks correspond to folded dimer and unfolded
single chains. A similar distribution of monomer and dimer
populations is also seen at reduced temperatures of 1.53 and
1.59, which correspond to the transition midpoints for chain
concentrations of 43 and 300mM.

We have also done a van’t Hoff analysis (Privalov and
Gill, 1988; Marky and Breslauer, 1987) of the overall helix
content curve to check whether the two-state model indeed
holds. For the van’t Hoff analysis, only the portion of the
helix content curve up toT 5 1.9 was used and the higher
temperature regions of the curve, which represent a transi-
tion within the monomer, were excluded. As described in
the Methods section, the results of the van’t Hoff analysis
would depend on whether or not baseline fitting to theu(T)
curve was done. We first discuss the results of the van’t
Hoff analysis obtained by baseline fitting. In Fig. 10A we
show the apparent fraction of native state,fN(T), obtained
from the helix content curve by the method of baseline
fitting. The fN values at different temperatures were used to
calculate the apparent equilibrium constant (Kapp) using Eq.
20. Using the temperature derivative of lnKapp, the van’t
Hoff enthalpy was calculated using Eq. 21. The calorimetric
enthalpies at the corresponding temperatures were calcu-
lated directly from the average energy of the dimer and
monomer using Eq. 22. Fig. 10B shows the ratio of the
van’t Hoff to calorimetric enthalpies,DHVH/DHcal, in the
transition region for the three different chain concentrations.

FIGURE 8 The average helix content of the monomer(dotted line)and dimer(dashed line)as a function of the temperature. The solid lines represent
the average overall helix content versus temperature curves at chain concentrations of 2mM (circles), 43 mM (squares),and 300mM (triangles).The
dashed-dotted lines represent the baselines fitted to the native and denatured regions that will be used for van’t Hoff analysis.
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The transition region has been defined as the temperature
range in whichfN(T) varies from 95% to 5%. As shown,
DHVH/DHcal is 1.002, 0.997, and 0.999 at reduced temper-
atures of 1.45, 1.53, and 1.59, corresponding to the mid-
points of the transition for the three different chain concen-
trations considered here. This ratio is also close to 1.0 over
most of the transition range. This indicates that the folding
transition shown in Fig. 8 can be well-represented by a
two-state model as defined by baseline fitting. The experi-
mental studies also use a similar baseline fitting to deduce
the helix content from the CD data and conclude that
GCN4-lz exhibits a two-state folding transition. Hence, the
results of our statistical thermodynamics calculation repro-
duce the experimentally observed two-state transition (Ke-
nar et al., 1995; Sosnick et al., 1996) in the GCN4-lz.

However, if we do the van’t Hoff analysis without base-
line fitting, theDHVH/DHcal at the transition temperature is
close to 0.8 for all three chain concentrations, thus indicat-
ing that there are intermediates present and transition cannot
be represented by a two-state model. It is important to
understand why the result of the van’t Hoff analysis with the
baseline fitting differs from that without baseline fitting. In

the method of baseline fitting, we used a relaxed definition
for the native state. Structures with reduced helix content
were considered native, and hence a two-state model was
applicable. However, without baseline fitting, we used a
strict definition of native state and all structures with minor
unfolding were considered transition intermediates. Hence,
the conclusion about whether or not the folding/unfolding
transition is two-state would depend on whether or not
baseline fitting was done. Even though this has been real-
ized before in the experimental analysis of melting curves,
different workers have given different justifications for use
of baseline. Some (Hvidt et al., 1985; Lehrer and Stafford,
1991) deny conformational significance to the linear region
of the melting curve. They attribute it to the temperature
dependence of the chiro-optical properties of the native
coiled coil, and hence justify the use of a baseline. However,
others (Holtzer et al., 1983, 1990; Holtzer and Holtzer,
1992) ascribe a conformational significance to the linear
region of the melting curve and attribute it to slow unfolding
below room temperature. They have given independent
experimental evidence for their interpretation by carrying
out site-specific unfolding studies (Holtzer et al., 1997) on

FIGURE 9 The populations of the dimer(solid line and circle)and monomer(dotted line and square)in various energy states atT 5 1.45, which is the
transition temperature for chain concentration of 2mM. The inset shows the population of the dimer(solid line and circle)and monomer(dotted line and
square)as a function of helix content atT 5 1.45.
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a GCN4-like leucine zipper. The results from our simula-
tions agree with the interpretation of Holtzer and co-workers.

Thus, our simulations with knowledge-based potentials
(Vieth et al., 1995) clearly indicate that the statistical po-
tentials derived from a database of native protein structures
can indeed describe the conformational properties of the
native as well as the nonnative states of proteins, and can
also reproduce many features of their folding thermodynam-
ics. Since reduced models of proteins often employ such
potentials, this observation is of considerable significance,
in view of the recent questions (Thomas and Dill, 1996;
Ben-Naim, 1997) raised in the literature about whether or
not such knowledge-based potentials have physical mean-
ing. While these objections are, in principle, valid in a series
of model studies, it has been demonstrated that such poten-
tials of mean force can be extracted from a structural data-
base comprised of native protein structures and are quite

close to the “true” potentials (Zhang and Skolnick, 1998).
The present work further suggests that these knowledge-
based potentials, derived from native structures of proteins,
are applicable to nonnative states and that general questions
related to thermodynamics can be addressed. This observa-
tion is also supported by the results (Mohanty et al., 1998)
obtained from a detailed comparison of knowledge-based
potentials with detailed atomic potentials for various folded
and unfolded conformations of GCN4-lz. The two poten-
tials show a good correlation, which extends from the folded
to the unfolded region. Since there is a wide body of
evidence that detailed atomic potentials do quite a good job
of describing folded as well as unfolded states of proteins
(Brooks, 1993, 1995; Brooks et al., 1988; Hirst and Brooks,
1995), a good correlation between the two potentials indi-
cates that knowledge-based potentials might also describe
the properties of native and nonnative states. Finally,

FIGURE 10 (A) The apparent frac-
tion of native GCN4-lz,fN, as a func-
tion of temperature at chain concen-
trations of 2mM (solid line),43 mM
(dotted line),and 300mM (dashed
line). The fN values have been ex-
tracted from the overall helix content
versus temperature curves assuming
a two-state model for the folding/un-
folding transition.(B) The ratio of the
van’t Hoff to the calorimetric en-
thalpy,DHVH/DHcal, at different tem-
peratures in the transition region for
chain chain concentrations of 2mM
(solid line),43mM (dashed line),and
300 mM (dotted line).The filled cir-
cle, square, and triangle indicate the
values ofDHVH/DHcal at T 5 1.45,
1.53, and 1.59, respectively, corre-
sponding to the transition midpoints
for these chain concentrations, re-
spectively. The dashed-dotted line rep-
resents theDHVH/DHcal value of unity
expected for a two-state transition.
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knowledge-based potentials are designed to be applied to
reduced models to capture some proteinlike features not
readily encoded in a molecular mechanics potential as ap-
plied to a simplified protein representation.

CONCLUSIONS

In this work we carried out ESMC simulations using lattice
model and knowledge-based potentials (Kolinski and
Skolnick, 1994; Vieth et al., 1995) to study the thermody-
namics of the folding/unfolding transition in the GCN4
leucine zipper. Even though ESMC simulations have been
used before for studying the thermodynamics of folding in
single chain proteins (Hao and Scheraga, 1994a,b; Kolinski
et al., 1996), here we described a method for generalizing
the ESMC approach to multichain systems. By using this
method we computed the average helix content for the
two-chain GCN4-lz system over a range of temperatures
and chain concentrations, taking into account the dissociat-
ing transition. Simulations with exactly the same parameters
as in the earlier folding simulation (Vieth et al., 1994) of
Vieth and co-workers predicted a denatured state helix
content that is too high. However, by a simple reduction of
the scale factors for the short-range interactions, it was
possible to diminish the helix content of the denatured state
to a value that was in agreement with experiment, while at
the same time keeping the native state significantly helical.
These results indicate that it is possible to predict the
experimentally observed conformational properties of the
native and denatured states of the GCN4-lz using this lattice
protein model and knowledge-based potentials.

The van’t Hoff analysis of the helix content versus tem-
perature curves, with baseline fitting, indicates that the
folding transition can be described by a two-state model at
chain concentrations ranging from 2 to 300mM. Hence, our
simulations clearly reproduce the two-state folding transi-
tion of the GCN4-lz observed experimentally (Kenar et al.,
1995; Sosnick et al., 1996). Our results also suggest that the
physical origin of this two-state folding transition in the
GCN4-lz is very different from that observed for globular
proteins. The conformational transition within the dimer of
the GCN4-lz is continuous, but the chains fall apart after
very little unfolding in the dimer. The balance of short- and
long-range interactions in the GCN4-lz is such that the
isolated chains have very little helix content, but in the
dimer, quarternary interactions stabilize the helical struc-
ture. Hence, after dissociation, the molecule essentially
loses all its helix content and, at transition temperature, one
sees only the folded dimer and unfolded single chains.
However, this folded dimer population at the transition
temperature does not represent completely folded native
states, rather it is comprised of structures with slight un-
folding from the native state. Hence, only if a relaxed
definition is used for the native state by “baseline fitting,”
the transition can be described as two-state. If a strict
definition is used where only the structures at the lowest

temperature are native, then the transition cannot be de-
scribed by a two-state model; rather, there is an initial loss
of helix content within the dimer, which is subsequently
followed by chain dissociation.

Even though recent theoretical work on the thermody-
namics of folding transitions in idealized protein models
(Dill et al., 1995) have given us interesting insights into the
origin of all-or-none folding transitions observed for pro-
teins, there have been relatively few simulations incorpo-
rating sufficient details in the model for meaningful com-
parison with experiment. The results presented here clearly
demonstrate that using a lattice protein model, knowledge-
based potentials, and powerful techniques such as ESMC, it
is not only possible to predict the native structure, but also
features related to their folding thermodynamics, which can
be directly compared with experiment.
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