Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1999 Jul;77(1):99–113. doi: 10.1016/S0006-3495(99)76875-X

Probing the structural changes in the light chain of human coagulation factor VIIa due to tissue factor association.

L Perera 1, T A Darden 1, L G Pedersen 1
PMCID: PMC1300315  PMID: 10388743

Abstract

The crystallographic structure of human coagulation factor VIIa/tissue factor complex bound with calcium ions was used to model the solution structure of the light chain of factor VIIa (residues 1-142) in the absence of tissue factor. The Amber force field in conjunction with the particle mesh Ewald summation method to accommodate long-range electrostatic interactions was used in the trajectory calculations. The estimated TF-free solution structure was then compared with the crystal structure of factor VIIa/tissue factor complex to estimate the restructuring of factor VIIa due to tissue factor binding. The solution structure of the light chain of factor VIIa in the absence of tissue factor is predicted to be an extended domain structure similar to that of the tissue factor-bound crystal. Removal of the EGF1-bound calcium ion is shown by simulation to lead to minor structural changes within the EGF1 domain, but also leads to substantial relative reorientation of the Gla and EGF1 domains.

Full Text

The Full Text of this article is available as a PDF (956.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton A. W., Boehm M. K., Johnson D. J., Kemball-Cook G., Perkins S. J. The solution structure of human coagulation factor VIIa in its complex with tissue factor is similar to free factor VIIa: a study of a heterodimeric receptor-ligand complex by X-ray and neutron scattering and computational modeling. Biochemistry. 1998 Jun 2;37(22):8208–8217. doi: 10.1021/bi972574v. [DOI] [PubMed] [Google Scholar]
  2. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  3. Banner D. W. The factor VIIa/tissue factor complex. Thromb Haemost. 1997 Jul;78(1):512–515. [PubMed] [Google Scholar]
  4. Bjoern S., Foster D. C., Thim L., Wiberg F. C., Christensen M., Komiyama Y., Pedersen A. H., Kisiel W. Human plasma and recombinant factor VII. Characterization of O-glycosylations at serine residues 52 and 60 and effects of site-directed mutagenesis of serine 52 to alanine. J Biol Chem. 1991 Jun 15;266(17):11051–11057. [PubMed] [Google Scholar]
  5. Butenas S., Mann K. G. Kinetics of human factor VII activation. Biochemistry. 1996 Feb 13;35(6):1904–1910. doi: 10.1021/bi951768c. [DOI] [PubMed] [Google Scholar]
  6. Bérubé C., Ofosu F. A., Kelton J. G., Blajchman M. A. A novel congenital haemostatic defect: combined factor VII and factor XI deficiency. Blood Coagul Fibrinolysis. 1992 Aug;3(4):357–360. [PubMed] [Google Scholar]
  7. Chaing S., Clarke B., Sridhara S., Chu K., Friedman P., VanDusen W., Roberts H. R., Blajchman M., Monroe D. M., High K. A. Severe factor VII deficiency caused by mutations abolishing the cleavage site for activation and altering binding to tissue factor. Blood. 1994 Jun 15;83(12):3524–3535. [PubMed] [Google Scholar]
  8. Cheung W. F., Stafford D. W. Localization of an epitope of a calcium-dependent monoclonal antibody to the N-terminal region of the Gla domain of human factor VII. Thromb Res. 1995 Jul 15;79(2):199–206. doi: 10.1016/0049-3848(95)00105-z. [DOI] [PubMed] [Google Scholar]
  9. Cooper D. N., Millar D. S., Wacey A., Banner D. W., Tuddenham E. G. Inherited factor VII deficiency: molecular genetics and pathophysiology. Thromb Haemost. 1997 Jul;78(1):151–160. [PubMed] [Google Scholar]
  10. Davie E. W. Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost. 1995 Jul;74(1):1–6. [PubMed] [Google Scholar]
  11. Dickinson C. D., Kelly C. R., Ruf W. Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14379–14384. doi: 10.1073/pnas.93.25.14379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dickinson C. D., Ruf W. Active site modification of factor VIIa affects interactions of the protease domain with tissue factor. J Biol Chem. 1997 Aug 8;272(32):19875–19879. doi: 10.1074/jbc.272.32.19875. [DOI] [PubMed] [Google Scholar]
  13. Edgington T. S., Dickinson C. D., Ruf W. The structural basis of function of the TF. VIIa complex in the cellular initiation of coagulation. Thromb Haemost. 1997 Jul;78(1):401–405. [PubMed] [Google Scholar]
  14. Ellison E. H., Castellino F. J. Adsorption of bovine prothrombin to spread phospholipid monolayers. Biophys J. 1997 Jun;72(6):2605–2615. doi: 10.1016/S0006-3495(97)78904-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freskgârd P. O., Petersen L. C., Gabriel D. A., Li X., Persson E. Conformational stability of factor VIIa: biophysical studies of thermal and guanidine hydrochloride-induced denaturation. Biochemistry. 1998 May 19;37(20):7203–7212. doi: 10.1021/bi972847m. [DOI] [PubMed] [Google Scholar]
  16. Geng J. P., Castellino F. J. Properties of a recombinant chimeric protein in which the gamma-carboxyglutamic acid and helical stack domains of human anticoagulant protein C are replaced by those of human coagulation factor VII. Thromb Haemost. 1997 May;77(5):926–933. [PubMed] [Google Scholar]
  17. Hagen F. S., Gray C. L., O'Hara P., Grant F. J., Saari G. C., Woodbury R. G., Hart C. E., Insley M., Kisiel W., Kurachi K. Characterization of a cDNA coding for human factor VII. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2412–2416. doi: 10.1073/pnas.83.8.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hamaguchi N., Charifson P., Darden T., Xiao L., Padmanabhan K., Tulinsky A., Hiskey R., Pedersen L. Molecular dynamics simulation of bovine prothrombin fragment 1 in the presence of calcium ions. Biochemistry. 1992 Sep 22;31(37):8840–8848. doi: 10.1021/bi00152a021. [DOI] [PubMed] [Google Scholar]
  19. Harlos K., Martin D. M., O'Brien D. P., Jones E. Y., Stuart D. I., Polikarpov I., Miller A., Tuddenham E. G., Boys C. W. Crystal structure of the extracellular region of human tissue factor. Nature. 1994 Aug 25;370(6491):662–666. doi: 10.1038/370662a0. [DOI] [PubMed] [Google Scholar]
  20. Harris R. J., Leonard C. K., Guzzetta A. W., Spellman M. W. Tissue plasminogen activator has an O-linked fucose attached to threonine-61 in the epidermal growth factor domain. Biochemistry. 1991 Mar 5;30(9):2311–2314. doi: 10.1021/bi00223a004. [DOI] [PubMed] [Google Scholar]
  21. Iino M., Foster D. C., Kisiel W. Functional consequences of mutations in Ser-52 and Ser-60 in human blood coagulation factor VII. Arch Biochem Biophys. 1998 Apr 15;352(2):182–192. doi: 10.1006/abbi.1998.0595. [DOI] [PubMed] [Google Scholar]
  22. Inoue K., Shimada H., Ueba J., Enomoto S., Tanaka-Saisaka Y., Kubota T., Koyama M., Morita T. High-affinity calcium-binding site in the gama-carboxyglutamic acid domain of bovine factor VII. Biochemistry. 1996 Oct 29;35(43):13826–13832. doi: 10.1021/bi960713n. [DOI] [PubMed] [Google Scholar]
  23. Jesty J., Morrison S. A. The activation of Factor IX by tissue factor-Factor VII in a bovine plasma system lacking Factor X. Thromb Res. 1983 Oct 15;32(2):171–181. doi: 10.1016/0049-3848(83)90028-2. [DOI] [PubMed] [Google Scholar]
  24. Kelly C. R., Dickinson C. D., Ruf W. Ca2+ binding to the first epidermal growth factor module of coagulation factor VIIa is important for cofactor interaction and proteolytic function. J Biol Chem. 1997 Jul 11;272(28):17467–17472. doi: 10.1074/jbc.272.28.17467. [DOI] [PubMed] [Google Scholar]
  25. Kirchhofer D., Guha A., Nemerson Y., Konigsberg W. H., Vilbois F., Chène C., Banner D. W., D'Arcy A. Activation of blood coagulation factor VIIa with cleaved tissue factor extracellular domain and crystallization of the active complex. Proteins. 1995 Aug;22(4):419–425. doi: 10.1002/prot.340220412. [DOI] [PubMed] [Google Scholar]
  26. Kirchhofer D., Nemerson Y. Initiation of blood coagulation: the tissue factor/factor VIIa complex. Curr Opin Biotechnol. 1996 Aug;7(4):386–391. doi: 10.1016/s0958-1669(96)80112-1. [DOI] [PubMed] [Google Scholar]
  27. Krishnaswamy S. The interaction of human factor VIIa with tissue factor. J Biol Chem. 1992 Nov 25;267(33):23696–23706. [PubMed] [Google Scholar]
  28. Lawson J. H., Butenas S., Mann K. G. The evaluation of complex-dependent alterations in human factor VIIa. J Biol Chem. 1992 Mar 5;267(7):4834–4843. [PubMed] [Google Scholar]
  29. Lawson J. H., Mann K. G. Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation. J Biol Chem. 1991 Jun 15;266(17):11317–11327. [PubMed] [Google Scholar]
  30. Leonard B. J., Chen Q., Blajchman M. A., Ofosu F. A., Sridhara S., Yang D., Clarke B. J. Factor VII deficiency caused by a structural variant N57D of the first epidermal growth factor domain. Blood. 1998 Jan 1;91(1):142–148. [PubMed] [Google Scholar]
  31. Li L., Darden T. A., Freedman S. J., Furie B. C., Furie B., Baleja J. D., Smith H., Hiskey R. G., Pedersen L. G. Refinement of the NMR solution structure of the gamma-carboxyglutamic acid domain of coagulation factor IX using molecular dynamics simulation with initial Ca2+ positions determined by a genetic algorithm. Biochemistry. 1997 Feb 25;36(8):2132–2138. doi: 10.1021/bi962250r. [DOI] [PubMed] [Google Scholar]
  32. Li L., Darden T., Foley C., Hiskey R., Pedersen L. Homology modeling and molecular dynamics simulation of human prothrombin fragment 1. Protein Sci. 1995 Nov;4(11):2341–2348. doi: 10.1002/pro.5560041112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Li L., Darden T., Hiskey R., Pedersen L. G. Computational studies of human prothrombin fragment 1, the Gla domain of factor IX and several biological interesting mutants. Haemostasis. 1996;26 (Suppl 1):54–59. doi: 10.1159/000217241. [DOI] [PubMed] [Google Scholar]
  34. Martin D. M., O'Brien D. P., Tuddenham E. G., Byfield P. G. Synthesis and characterization of wild-type and variant gamma-carboxyglutamic acid-containing domains of factor VII. Biochemistry. 1993 Dec 21;32(50):13949–13955. doi: 10.1021/bi00213a026. [DOI] [PubMed] [Google Scholar]
  35. McDonald J. F., Evans T. C., Jr, Emeagwali D. B., Hariharan M., Allewell N. M., Pusey M. L., Shah A. M., Nelsestuen G. L. Ionic properties of membrane association by vitamin K-dependent proteins: the case for univalency. Biochemistry. 1997 Dec 16;36(50):15589–15598. doi: 10.1021/bi971114z. [DOI] [PubMed] [Google Scholar]
  36. McDonald J. F., Shah A. M., Schwalbe R. A., Kisiel W., Dahlbäck B., Nelsestuen G. L. Comparison of naturally occurring vitamin K-dependent proteins: correlation of amino acid sequences and membrane binding properties suggests a membrane contact site. Biochemistry. 1997 Apr 29;36(17):5120–5127. doi: 10.1021/bi9626160. [DOI] [PubMed] [Google Scholar]
  37. Meade T. W. Factor VII and ischaemic heart disease: epidemiological evidence. Haemostasis. 1983;13(3):178–185. doi: 10.1159/000214724. [DOI] [PubMed] [Google Scholar]
  38. Muranyi A., Finn B. E., Gippert G. P., Forsén S., Stenflo J., Drakenberg T. Solution structure of the N-terminal EGF-like domain from human factor VII. Biochemistry. 1998 Jul 28;37(30):10605–10615. doi: 10.1021/bi980522f. [DOI] [PubMed] [Google Scholar]
  39. Nakagaki T., Lin P., Kisiel W. Activation of human factor VII by the prothrombin activator from the venom of Oxyuranus scutellatus (Taipan snake). Thromb Res. 1992 Jan 1;65(1):105–116. doi: 10.1016/0049-3848(92)90230-8. [DOI] [PubMed] [Google Scholar]
  40. Nemerson Y., Esnouf M. P. Activation of a proteolytic system by a membrane lipoprotein: mechanism of action of tissue factor. Proc Natl Acad Sci U S A. 1973 Feb;70(2):310–314. doi: 10.1073/pnas.70.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nishimura H., Kawabata S., Kisiel W., Hase S., Ikenaka T., Takao T., Shimonishi Y., Iwanaga S. Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. J Biol Chem. 1989 Dec 5;264(34):20320–20325. [PubMed] [Google Scholar]
  42. O'Brien D. P., Kemball-Cook G., Hutchinson A. M., Martin D. M., Johnson D. J., Byfield P. G., Takamiya O., Tuddenham E. G., McVey J. H. Surface plasmon resonance studies of the interaction between factor VII and tissue factor. Demonstration of defective tissue factor binding in a variant FVII molecule (FVII-R79Q). Biochemistry. 1994 Nov 29;33(47):14162–14169. doi: 10.1021/bi00251a027. [DOI] [PubMed] [Google Scholar]
  43. Perera L., Darden T. A., Pedersen L. G. Trans-cis isomerization of proline 22 in bovine prothrombin fragment 1: a surprising result of structural characterization. Biochemistry. 1998 Aug 4;37(31):10920–10927. doi: 10.1021/bi980263u. [DOI] [PubMed] [Google Scholar]
  44. Perera L., Li L., Darden T., Monroe D. M., Pedersen L. G. Prediction of solution structures of the Ca2+-bound gamma-carboxyglutamic acid domains of protein S and homolog growth arrest specific protein 6: use of the particle mesh Ewald method. Biophys J. 1997 Oct;73(4):1847–1856. doi: 10.1016/S0006-3495(97)78215-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Persson E. Characterization of the interaction between the light chain of factor VIIa and tissue factor. FEBS Lett. 1997 Aug 18;413(2):359–363. doi: 10.1016/s0014-5793(97)00941-1. [DOI] [PubMed] [Google Scholar]
  46. Persson E. Influence of the gamma-carboxyglutamic acid-rich domain and hydrophobic stack of factor VIIa on tissue factor binding. Haemostasis. 1996;26 (Suppl 1):31–34. doi: 10.1159/000217237. [DOI] [PubMed] [Google Scholar]
  47. Persson E., Nielsen L. S. Site-directed mutagenesis but not gamma-carboxylation of Glu-35 in factor VIIa affects the association with tissue factor. FEBS Lett. 1996 May 6;385(3):241–243. doi: 10.1016/0014-5793(96)00400-0. [DOI] [PubMed] [Google Scholar]
  48. Persson E., Olsen O. H., Ostergaard A., Nielsen L. S. Ca2+ binding to the first epidermal growth factor-like domain of factor VIIa increases amidolytic activity and tissue factor affinity. J Biol Chem. 1997 Aug 8;272(32):19919–19924. doi: 10.1074/jbc.272.32.19919. [DOI] [PubMed] [Google Scholar]
  49. Persson E., Petersen L. C. Structurally and functionally distinct Ca2+ binding sites in the gamma-carboxyglutamic acid-containing domain of factor VIIa. Eur J Biochem. 1995 Nov 15;234(1):293–300. doi: 10.1111/j.1432-1033.1995.293_c.x. [DOI] [PubMed] [Google Scholar]
  50. Petersen L. C., Persson E. Effect of Ca2+ on the structure and function of factor VIIa. Haemostasis. 1996;26 (Suppl 1):40–44. doi: 10.1159/000217239. [DOI] [PubMed] [Google Scholar]
  51. Petersen L. C., Valentin S., Hedner U. Regulation of the extrinsic pathway system in health and disease: the role of factor VIIa and tissue factor pathway inhibitor. Thromb Res. 1995 Jul 1;79(1):1–47. doi: 10.1016/0049-3848(95)00069-4. [DOI] [PubMed] [Google Scholar]
  52. Pollock J. S., Shepard A. J., Weber D. J., Olson D. L., Klapper D. G., Pedersen L. G., Hiskey R. G. Phospholipid binding properties of bovine prothrombin peptide residues 1-45. J Biol Chem. 1988 Oct 5;263(28):14216–14223. [PubMed] [Google Scholar]
  53. Rapaport S. I., Rao L. V. The tissue factor pathway: how it has become a "prima ballerina". Thromb Haemost. 1995 Jul;74(1):7–17. [PubMed] [Google Scholar]
  54. Ruf W. Factor VIIa residue Arg290 is required for efficient activation of the macromolecular substrate factor X. Biochemistry. 1994 Sep 27;33(38):11631–11636. doi: 10.1021/bi00204a026. [DOI] [PubMed] [Google Scholar]
  55. Sakai T., Lund-Hansen T., Paborsky L., Pedersen A. H., Kisiel W. Binding of human factors VII and VIIa to a human bladder carcinoma cell line (J82). Implications for the initiation of the extrinsic pathway of blood coagulation. J Biol Chem. 1989 Jun 15;264(17):9980–9988. [PubMed] [Google Scholar]
  56. Selander-Sunnerhagen M., Ullner M., Persson E., Teleman O., Stenflo J., Drakenberg T. How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem. 1992 Sep 25;267(27):19642–19649. doi: 10.2210/pdb1ccf/pdb. [DOI] [PubMed] [Google Scholar]
  57. Sunnerhagen M. S., Persson E., Dahlqvist I., Drakenberg T., Stenflo J., Mayhew M., Robin M., Handford P., Tilley J. W., Campbell I. D. The effect of aspartate hydroxylation on calcium binding to epidermal growth factor-like modules in coagulation factors IX and X. J Biol Chem. 1993 Nov 5;268(31):23339–23344. [PubMed] [Google Scholar]
  58. Takamiya O., Abe S., Yoshioka A., Nakajima K., McVey J. H., Tuddenham E. G. Factor VIIShinjo: a dysfunctional factor VII variant homozygous for the substitution Gln for Arg at position 79. Haemostasis. 1995 May-Jun;25(3):89–97. doi: 10.1159/000217147. [DOI] [PubMed] [Google Scholar]
  59. Thim L., Bjoern S., Christensen M., Nicolaisen E. M., Lund-Hansen T., Pedersen A. H., Hedner U. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry. 1988 Oct 4;27(20):7785–7793. doi: 10.1021/bi00420a030. [DOI] [PubMed] [Google Scholar]
  60. Triplett D. A., Brandt J. T., Batard M. A., Dixon J. L., Fair D. S. Hereditary factor VII deficiency: heterogeneity defined by combined functional and immunochemical analysis. Blood. 1985 Dec;66(6):1284–1287. [PubMed] [Google Scholar]
  61. Tuddenham E. G., Pemberton S., Cooper D. N. Inherited factor VII deficiency: genetics and molecular pathology. Thromb Haemost. 1995 Jul;74(1):313–321. [PubMed] [Google Scholar]
  62. Tuddenham E. G. The tissue factor-factor VII complex: recent advances towards elucidating the structure and function of the initiator of haemostasis. Haemostasis. 1996;26 (Suppl 1):20–24. doi: 10.1159/000217235. [DOI] [PubMed] [Google Scholar]
  63. Welsch D. J., Nelsestuen G. L. Amino-terminal alanine functions in a calcium-specific process essential for membrane binding by prothrombin fragment 1. Biochemistry. 1988 Jun 28;27(13):4939–4945. doi: 10.1021/bi00413a052. [DOI] [PubMed] [Google Scholar]
  64. Wildgoose P., Berkner K. L., Kisiel W. Synthesis, purification, and characterization of an Arg152----Glu site-directed mutant of recombinant human blood clotting factor VII. Biochemistry. 1990 Apr 3;29(13):3413–3420. doi: 10.1021/bi00465a039. [DOI] [PubMed] [Google Scholar]
  65. Wildgoose P., Jørgensen T., Komiyama Y., Nakagaki T., Pedersen A., Kisiel W. The role of phospholipids and the factor VII Gla-domain in the interaction of factor VII with tissue factor. Thromb Haemost. 1992 Jun 1;67(6):679–685. [PubMed] [Google Scholar]
  66. Yamamoto M., Nakagaki T., Kisiel W. Tissue factor-dependent autoactivation of human blood coagulation factor VII. J Biol Chem. 1992 Sep 25;267(27):19089–19094. [PubMed] [Google Scholar]
  67. Zur M., Nemerson Y. The esterase activity of coagulation factor VII. Evidence for intrinsic activity of the zymogen. J Biol Chem. 1978 Apr 10;253(7):2203–2209. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES