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ABSTRACT A rigorous statistical mechanical formulation of the equilibrium properties of selective ion channels is devel-
oped, incorporating the influence of the membrane potential, multiple occupancy, and saturation effects. The theory provides
a framework for discussing familiar quantities and concepts in the context of detailed microscopic models. Statistical
mechanical expressions for the free energy profile along the channel axis, the cross-sectional area of the pore, and probability
of occupancy are given and discussed. In particular, the influence of the membrane voltage, the significance of the electric
distance, and traditional assumptions concerning the linearity of the membrane electric field along the channel axis are
examined. Important findings are: 1) the equilibrium probabilities of occupancy of multiply occupied channels have the familiar
algebraic form of saturation properties which is obtained from kinetic models with discrete states of denumerable ion
occupancy (although this does not prove the existence of specific binding sites; 2) the total free energy profile of an ion along
the channel axis can be separated into an intrinsic ion-pore free energy potential of mean force, independent of the
transmembrane potential, and other contributions that arise from the interfacial polarization; 3) the transmembrane potential
calculated numerically for a detailed atomic configuration of the gramicidin A channel embedded in a bilayer membrane with
explicit lipid molecules is shown to be closely linear over a distance of 25 Å along the channel axis. Therefore, the present
analysis provides some support for the constant membrane potential field approximation, a concept that has played a central
role in the interpretation of flux data based on traditional models of ion permeation. It is hoped that this formulation will provide
a sound physical basis for developing nonequilibrium theories of ion transport in selective biological channels.

INTRODUCTION

Recent progress in the determination of the three-dimen-
sional structure of biological ion channels at atomic reso-
lution gives a fresh impetus to efforts directed at under-
standing the fundamental principles governing ion
permeation (Cowan et al., 1992; Doyle et al., 1998;
Ketchem et al., 1997). Theoretical studies based on molec-
ular dynamics (MD) simulations of atomic models can help
us to better understand how ion channels function at the
microscopic level (Brooks et al., 1988; Karplus and Petsko,
1990). The calculated classical trajectory, though an ap-
proximation to the real world, provides ultimate detailed
information about the time course of the atomic motions,
thus permitting a characterization of energetic and dynamic
factors that are not easily accessible experimentally. Current
methodologies have reached the point where one can gen-
erate trajectories of realistic atomic models of complex
biological membrane systems (Tieleman and Berendsen,
1998; Tieleman et al., 1999; Woolf and Roux, 1994, 1996;
Zhong et al., 1998). Molecular mechanical potential energy
functions for detailed atomic models of proteins (MacKerell
et al., 1998) and lipids (Schlenkrich et al., 1996), as well as
fast and reliable simulation algorithms are available (Pro-
cacci et al., 1996). Nevertheless, despite the progress in

computational methodologies theoretical investigations of
ion channels are still confronted with difficult fundamental
problems.

The first and main problem in simulating ion permeation
is one of time scale. The translocation of a single ion across
a channel takes on the order of a microsecond (Hille, 1992),
which is extremely long compared to the typical length of
calculated trajectories (Tieleman and Berendsen, 1998;
Tieleman et al., 1999; Woolf and Roux, 1994, 1996; Zhong
et al., 1998). A second problem is presented by the treat-
ment of the membrane potential and its coupling to the ion
movements. MD simulations of a realistic representation of
the membrane potential, which arises from a very small
imbalance of net charges of the mobile ions near the mem-
brane-solution interface, would require a prohibitively large
atomic system and are currently impractical (Roux, 1997).
A last problem is the difficulty in identifying the relevant
microscopic processes to simulate because it is likely that
ion permeation in biological channels occurs via complex
events involving several ions in a concerted fashion (Hille,
1992). The recent crystal structure of the KcsA K1 channel,
with three cations located in the pore, provides a striking
example of the functional importance of multiple ion occu-
pancy (Doyle et al., 1998). For these reasons, current MD
calculations typically attempt to simulate some equilibrium
state of ion channels rather than the complete nonequilib-
rium permeation process. To establish a connection with
nonequilibrium transport properties, the results from the
trajectories are often interpreted within the framework of
simple phenomenological approaches, such as kinetic rate
models (Heckmann, 1965a,b; La¨uger, 1973; Parlin and Ey-
ring, 1954; Zwolinski et al., 1949), or continuous electro-
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diffusion models (Chen et al., 1997; Goldman, 1943; Kurni-
kova et al., 1999; Levitt, 1986; McGill and Schumaker,
1996; Neumcke and La¨uger, 1969). For example, the free
energy profile of Na1 in the gramicidin A (GA) channel
calculated from MD simulations (Roux and Karplus, 1993)
has been used as an input in a random walk diffusion model
to calculate the current-voltage response (McGill and Schu-
maker, 1996). At the present time such simple models must
be used for translating the results from MD simulations into
electrophysiological observables. In fact, The situation is
not specific to ion permeation. For example, statistical me-
chanical theories of transport are also established on a
similar basis, with simple theories serving as a bridge be-
tween the microscopic and macroscopic levels (Helfand,
1960).

Statistical mechanical theories of nonequilibrium phe-
nomena are generally constructed in terms of deviations
from equilibrium states (Berne and Pecora, 1976). A rigor-
ous formulation of the equilibrium state is thus an important
first step in the establishment of any transport theory. Fun-
damental theories of ion permeation should be constructed
according to similar guidelines. This would ensure, for
example, that they are built on firm ground and return to a
correct equilibrium state when external nonequilibrium con-
ditions caused by the transmembrane potential or concen-
tration gradients are removed. Current phenomenological
theories of ion permeation, whether they are kinetic (Heck-
mann, 1965a,b; La¨uger, 1973; Parlin and Eyring, 1954;
Zwolinski et al., 1949) or electrodiffusion models (Chen et
al., 1997; Kurnikova et al., 1999; Levitt, 1986; McGill and
Schumaker, 1996), do not necessarily return to a satisfac-
tory description of the equilibrium state of ion channels in
the absence of ion fluxes. This is not surprising, because
these theories attempt to describe very complex molecular
systems with many simplifying assumptions (e.g., discrete
states, mean-field potential, etc.).

A statistical mechanical formulation of the equilibrium
state of ions in membrane channels can contribute to the
clarification and improvement of current kinetic and elec-
trodiffusion theories of ion transport. Furthermore, a char-
acterization of equilibrium can be used for interpreting
experimental ion flux data in the limit of zero current and is
of interest in its own right. Analysis of the voltage-depen-
dent and concentration-dependent equilibrium properties of
an ion, in the absence of net fluxes, yields valuable infor-
mation about the existence of favorable locations along the
permeation pathway (“binding sites”), ion-ion interactions
in the pore, probabilities of singly and multiply occupied
states, and the coupling of ions to the transmembrane po-
tential. In principle, MD calculations of detailed atomic
models can be used to simulate ion channels at equilibrium.
However, because a rigorous statistical mechanical formu-
lation is lacking at the present time, it is not possible to
make full use of the information provided by MD simula-
tions. Clearly, a better characterization of the equilibrium
state of ion channels at the microscopic level is needed.

The goal of this paper is to develop a rigorous statistical
mechanical equilibrium theory of ions in membrane chan-
nels, including the influence of the membrane potential,
ion-ion interactions, multiple occupancy, and saturation.
Although the present paper is concerned only with equilib-
rium properties, it is hoped that the formulation will con-
stitute a first step toward a comprehensive theory of non-
equilibrium transport phenomena in ion channels. The
present analysis provides a rigorous framework and helps to
clarify the microscopic significance of familiar quantities
and concepts in the context of detailed microscopic models.
Statistical mechanical expressions are given for the free
energy profile along the channel axis, the probability of
singly and multiply occupied states, the equilibrium binding
constant(s), and the cross-sectional area of a pore. In addi-
tion, the influence of the membrane voltage, the signifi-
cance of the electric distance, and traditional assumptions
concerning the linearity of the membrane electric field
along the channel axis are examined in detail.

In the next section, the main theoretical developments are
given. In the third section, the theoretical framework is
discussed and illustrated in the context of the gramicidin A
(GA) channel. The paper is concluded with a summary of
the principal results in the fourth section.

THEORETICAL DEVELOPMENTS

Description of the microscopic system

An ion channel embedded in a lipid membrane in equilib-
rium with surrounding aqueous salt solutions is considered.
The electrolyte solutions are not symmetrical, and there is a
Nernst potential across the membrane. It is assumed that the
channel is passively permeable to only one ionic species and
remains in the open conducting state with no gating transi-
tions; no other ions can pass through the channel or the
membrane. Ideal selectivity of the channel to one ionic
species is a necessary condition for a true equilibrium
situation to exist in the presence of asymmetrical solutions.
This is a direct extension of the concept of the perfectly
semipermeable membrane, which is required for the exis-
tence of the equilibrium Nernst membrane potential (Hille,
1992; Roux, 1997). For example, the system could represent
the GA channel bathed by KCl aqueous solutions of differ-
ent concentrations, because this channel is virtually imper-
meable to anions (Hille, 1992). To proceed further with the
statistical mechanical equilibrium theory, we assume that it
is possible to identify a “pore” region from which all ions
other than the permeating species are excluded, and a “bulk”
region that contains the electrolytic solutions. The micro-
scopic system is illustrated schematically in Fig. 1.

In thermodynamic equilibrium, a very small net charge
accumulates on one side of the membrane, creating a mem-
brane potential opposing the movement of the permeable
ion (Roux, 1997). However, the bulk densities do not
change significantly, and the solutions remain globally neu-
tral, because any macroscopic charge imbalance in the bulk
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region would be energetically prohibitive. The density of
the permeable ions on the side S (I or II) of the membrane
is r# (S), and the chemical potential of the permeable ions on
the side S (I or II) of the membrane ism# (S). For the
permeable species,

r# ~I!

r# ~II ! 5
e2bm# (I)

e2bm# (II) , (1)

whereb 5 (kBT)21. In contrast, the chemical potential of
the nonpermeating ions is not restricted by any conditions.
The excess chemical potential of the permeable ion on side
S is

m# ~S! 5 Dm# ~S! 1 qf# ~S) , (2)

where q is the charge of the ion andDm# (S) andf# (S) are the
intrinsic excess chemical potential and the electrostatic po-
tential in the bulk solution on side S, respectively. For
example, the value ofDm# (S) corresponds roughly to the sum
of Born and Debye-Hu¨ckel charging free energies (Roux,
1997). The former depends on the dielectric constant of the
solvent, and the latter depends on the ionic strength of the
salt solutions. The difference in the average electrostatic
potential in the bulk solution is the Nernst membrane
potential,

f# ~II ! 2 f# ~I! 5
kBT

q
ln Fr# ~I!

r# ~II !G 1
1

q
@Dm# ~I! 2 Dm# ~II !#

5
kBT

q
ln F r# ~I!ebDm# ~I!

r# ~II !ebDm# ~II)G .
(3)

By adjusting the composition of the salt solutions carefully,
it is possible to balance the value of the intrinsic excess
chemical potential on both sides and avoid differences in the
activities. For the sake of simplicity, we assume thatV 5
f# (II) 2 f# (I) in the following.

The total potential energy of the entire system is
U(r1, . . . , rN, X), where (r1, . . . , rN) are the coordinates of
theN permeable ions andX [ X i, Xw, X l, Xc represent the
remaining degrees of freedom in the system (i.e.,X i [
impermeable ions,Xw [ water molecules,X l [ lipid mol-
ecules, andXc [ channel). The permeating ions can trans-
locate from one side to the other, whereas the nonpermeat-
ing ions cannot exchange from side I and side II. Because
their numberN(S) is fixed on each side S, their configura-
tional integral is restricted to the side to which those ions are
assigned. In contrast, the accessible configurational space of
the permeating ions corresponds to the whole volume of the
system.

Probability of occupancy and potential of
mean force

By definition, the existence of the pore and bulk regions
implies that any spatial integral over the whole volumeV
can be expressed as the sum of two integrals,

E
V

dr · · · ; E
pore

dr · · · 1 E
bulk

dr · · · . (4)

From this definition, it follows that it is possible to deter-
mine the total number of permeating ions inside the pore for
any instantaneous configuration of the pore system. It is
given by the discrete functionn9(r1, r2, . . . , rN), defined as

n9~r 1, r 2, . . . , rN! 5 E
pore

dr O
i51

N

d~r 2 r i), (5)

wherer i is the position of theith ion, and the subscript of
the integral sign implies that the integral is taken over the
volume of the pore region. The probability,3n, of having
exactlyn ions inside the pore is calculated from the average,

3n 5 ^dnm9& 5
* dr 1· · ·* drN * dX dn,n9 e2bU

* dr 1· · ·* drN * dX e2bU , (6)

wherednn9 is a Kronecker discrete delta function,

dnn9 5 H10 if n 5 n9~r 1,r 2, · · · ,rN)

otherwise.
(7)

By construction, the probabilities3n are normalized, i.e.,(n

3n 5 1, via the completeness of the Kronecker delta. It
follows that the average of any observableA may be expressed
as a weighted sum over the occupancy states of the channel,

^A& 5 O
n

3n^A&~n), (8)

FIGURE 1 Schematic representation of the ion channel-membrane sys-
tem with asymmetrical solutions on sides I and II. The “pore region,”
which corresponds to the ideally selective part of a channel, is highlighted
with a dashed line. The “bulk region” corresponds to the remaining space
in the system. The density of the permeable ions, the excess chemical
potential, and the average electrostatic potential are, respectively,r# (S), m# (S),
and f# (S) on the side S (I or II) of the membrane. For any instantaneous
configuration, it is possible to know the number of ions occupying the pore
region.
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where^A&(n) is the average ofA when exactlyn ions are in
the pore region. For example,A could be a spectroscopic
observable such as a NMR chemical shift (Hinton et al.,
1988; Jing et al., 1995; Tian et al., 1996; Woolf and Roux,
1997).

To determine the probabilities of occupancy, it is useful
to consider the binding factor@n corresponding to the ratio
3n/30. For n 5 1, this is

@1 5
* dr 1. . .* drN * dX d1,n9e

2bU

* dr 1. . .* drN * dX d0,n9e
2bU , (9)

(the expression for3n in Eq. 6 has been used). Because the
factord1,n9 in the integrand is zero unless one of theN ions
is located inside the pore, the expression may be rewritten as

@1 5 N
*

pore
dr 1 *

bulk
dr 2· · ·*

bulk
drN * dX e2bU

*
bulk

dr 1 *
bulk

dr 2· · ·*
bulk

drN * dX e2bU , (10)

where the ion number 1 was chosen arbitrarily to occupy the
pore. The factor ofN is included to account for the multiple
ways to obtain equivalent configurations. Similarly, the
n-ion binding factor@n is

@n 5
N!

n!~N 2 n!!

3
*

pore
dr 1· · ·*

pore
dr n *

bulk
dr n11· · ·*

bulk
drN * dX e2bU

*
bulk

dr 1. . .*
bulk

drN * dX e2bU ,

(11)

because there areN!/(n!(N 2 n)!) equivalent configurations
with identical ions. In the thermodynamic limit,N3 `, and
the prefactor (N 2 n)!/n! ' Nn/n!.

The one-ion binding factor may be expressed as

@1 5 N
*

pore
dr 1 e2b0(r 1)

**
bulk

dr 1 e2b0(r1) , (12)

where0(r1) is the potential of mean force (PMF) with one
ion inside the pore. The PMF corresponds to the reversible
thermodynamic work needed to adiabatically move an ion
into the pore region. Its first derivative is equal to minus the
average (mean) force exerted on a permeating ion by the
channel, the water, the other counterions, and the mem-
brane, i.e.,̂F& 5 2¹0. In that sense, the PMF is not equal
to an average potential energy but to a free energy. The
concept of the PMF was originally introduced by Kirkwood
(1935) to describe the structure of liquids. Such a reversible
work function currently plays a key role in modern statis-
tical mechanical theories of equilibrium and nonequilibrium
processes in molecular systems (Chandler, 1978) in general,
and in ion transport (Roux and Karplus, 1991a,b) in partic-
ular. Here we are only concerned with the relation of the
PMF to the equilibrium properties.

According to Eq. 12, the PMF is determined relative to an
arbitrary offset constant. To have a simple relationship with

the excess chemical potential of the ion in the bulk solution,
we choose to define the PMF relative to a system with one
noninteracting ion,

e2b0(r1) 5
*

bulk
dr 2 · · ·*

bulk
drN * dX e2bU

*
bulk

dr 2· · ·*
bulk

drN * dX e2bU*1
, (13)

where the notationU*1 means that all interactions involving
ion 1 with the rest of the system have been switched off.
This procedure is formally similar to that used in alchemical
free energy molecular dynamics techniques (e.g., see Koll-
man, 1993, and references therein). Note that, by construc-
tion, 0(r1) 3 m# (S) as r1 goes to side S at a large distance
from the pore. The volume integral over the bulk region is

E
bulk

dr 1 e2b0(r1) 5 V(I)e2bm# (I)
1 V(II)e2bm# (II) (14)

5
N

r# (I) e2bm# (I)

5
N

r# (II) e2bm# (II) , (15)

becauseN 5 V(I)r# (I) 1 V(II)r# (II) and e2bm# (II)

5 (r# (II) /
r# (I))e2bm# (I)

, according to Eq. 1. Because the density and the
excess chemical potential at equilibrium are related via Eq.
1, it is possible to express the ratio@1 in terms ofr# (I) or,
equivalently,r# (II) :

@1 5 r# ~I!E
pore

dr 1 e2b@0~r1!2m# ~I!#

5 r# ~II !E
pore

dr 1 e2b@0~r1!2m# ~II !# . (16)

Similarly, then-ion binding factor is

@n 5 ~r# (I)!n
1

n! E
pore

dr 1· · ·E
pore

dr n e2b@0~r1, · · ·rn!2nm# ~I!# ,

(17)

where then-ion PMF has been defined relative ton nonin-
teracting ions:

e2b0~r1, · · · ,rn!5
*

bulk
dr n11· · ·*

bulk
drN* dX e2bU

*
bulk

dr n11· · ·*
bulk

drN* dX e2bU*1,· · · ,n
, (18)

where the notation indicates that all interactions involving
ion 1, . . . ,n have been switched off in the energyU*1, . . . , n.

Once the binding factors@n have been determined, the
probability of any state of occupancy can be obtained using
@0 5 1 with the normalization condition

^dn,n& 5 ^d0,n9&@n, (19)
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yielding

3n 5
@n

1 1 @1 1 @2 1 @3 1 · · ·
. (20)

In particular, the probability that the pore is unoccupied is

30 5
1

1 1 @1 1 @2 1 @3 1 · · ·
. (21)

The denominator in Eqs. 20 and 21 may be expressed in the
form of an effective Grand Canonical Partition function of
an open finite system in contact with a bath of particles,

J 5 O
n50

`

enbm# (I)
~r# ~I!!n

1

n! E
pore

dr 1· · ·E
pore

dr n e2b0(r1, · · · ,rn) .

(22)

Equation 22 provides a compact and useful notation for
handling the multiion configurational distribution functions
in the pore system.

For any realistic channel, all of the probabilities of occu-
pancy3n must necessarily be zero ifn is larger than some
valueNmax, the maximum number of ions that can occupy
the pore simultaneously. One important special case, the
so-called one-ion pore theory (La¨uger, 1973; Levitt, 1986;
McGill and Schumaker, 1996), occurs if it is assumed that
the pore cannot be occupied by more than one ion. It follows
that all of the binding factors@2 5 @3 . . . 5 0, and the
probability of finding one ion inside the pore is simply

31 5
@1

1 1 @1
. (23)

This equation can be compared with the familiar expression
for first-order saturation for substrate binding,

31 5
r# ~I! K1

1 1 r# ~I! K1
(24)

(expressed in terms of side I), whereK1 is the one-ion
binding constant,

K1 5 E
pore

dr 1 e2b[0(r1)2m# (I)] (25)

Then-ion binding constantsKn can be defined for multiply
occupied channels in a similar fashion.

Influence of the membrane potential

So far, our treatment describes the most general situation
with asymmetrical solutions and a Nernst membrane poten-
tial. Symmetrical solutions with no membrane potential
correspond to a particularly important special case. It may
be anticipated that the equilibrium properties in the general
situation can be expressed in terms of a dominant contribu-
tion corresponding to the symmetrical solutions with no

membrane potential, plus other contributions associated
with the transmembrane potential.

For this purpose, we separate the system into a pore
subsystem and the rest. One purpose of this separation is to
enable us to use a continuum electrostatics approximation to
describe the transmembrane potential (see below). For the
sake of simplicity, we focus on the one-ion PMF, although
the treatment can be easily generalized to then-ion PMFs
described in the previous section. The subsystem is consti-
tuted by the ion, the channel, and them nearest solvent
molecules in the pore region. LetXw/p represent the degrees
of freedom of them nearest water molecules located inside
the pore region, and letXw/b represent those of the remain-
ing water molecules in the bulk region. The degrees of
freedom of the pore subsystem are represented byXp [ r1,
Xc, Xw/p, those of the rest byXr [ r2, . . . ,rN, X1, Xw/b. The
permeating ion is particle 1 according to the notation. The
potential energyU may be written as the sum of three
contributions,U 5 Up(Xp) 1 Upr(Wp, Xr) 1 Ur(Xr).

The statistical properties of such a finite subsystem rep-
resentation of an infinite thermodynamic system have been
formulated previously (Beglov and Roux, 1994). For a fixed
configuration, the free energy of the ion and the subsystem
in the membrane potential is

e2b^(Xp) 5
* dXr Hp(Xr)e

2b[Up(Xp)1Upr(Xp,Xr)1Ur(Xr)]

* dXr e2bUr(Xr) , (26)

whereHp(Xr) is a Heaviside step function that prevents the
permeating ions (2, . . .,N) as well as the impermeable ions
from penetrating the pore region p. That is,Hp(Xr) 5 0 if
any of those particles is located in the pore region, in accord
with Eq. 4. In addition, the functionHp(Xr) restricts the
configuration of the bulk solvent molecules so that they
remain farther than themnearest molecules (see Beglov and
Roux, 1994, for a discussion of restricted configurational
integrals). In the general case, the free energy function
^(Xp) depends on the density of ions on side I and side II,
i.e., ^(Xp) 5 ^(Xp; r# (I), r# (II)). Under symmetrical condi-
tions with no membrane potential, the free energy is
^sym(Xp) [ ^(Xp; r# (I) 5 r# (II) 5 r#).

The transmembrane potential results from long-range
electrostatic interactions due to a very small imbalance of
net charges, involving the mobile ions in the bulk solutions
on each sides of the membrane. To describe its influence on
the PMF, it is necessary to use some approximation. A
possible approach is to use a continuum electrostatic treat-
ment based on the Poisson-Boltzmann equation modified to
account for an equilibrium Nernst membrane potential
(Roux, 1997),

¹ z @e~r !¹f~r ! 2 k# 2~r !@f~r ! 2 VQ~r !# 5 24plrp(r ),
(27)

whereQ(r ) is a step function equal to one on side II and
zero otherwise,k#2(r ) is the space-dependent screening fac-
tor, rp(r ) is the charge density of the pore subsystem, andl
is a coupling parameter. The step function ensures that
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mobile ions are in equilibrium with the bath with which they
are in contact (on the right side the reference voltage is zero;
on the left side the reference voltage isV). A closed-form
expression for the free energŷ(Xp) of a macromolecular
subsystem in the membrane field has been derived based on
Eq. 27:

^~Xp! 5 Up~Xp! 1 ^cavity 1
1

2
CV2 1 FO

p

qpfmp~r p!GV
1

1

2 FO
p

qpfrf~r p!G, (28)

where the first term is the microscopic energy of the pore
subsystem, the second term is the free energy associated
with the creation of a cavity to insert the neutral subsystem
in the membrane, the third term is the free energy needed to
charge up the capacitanceC of the neutral subsystem, the
fourth term represents the interaction of the protein charges
with the membrane potential (calculated in the absence of
the charge of the subsystem withl 5 0 andV 5 1),

¹ z @e~r !¹fmp(r !] 2 k# 2~r !@fmp(r ! 2 Q~r !] 5 0, (29)

and the fifth and last term represents the reaction field due
to the solvent. The reaction field is computed as the differ-
ence between the potentialf in the complete environment
and vacuum (Honig and Nicholls, 1995; Nina et al., 1997),
i.e., frf 5 f(env) 2 f(vac), wheref is the solution to the
standard PB equation with no membrane potential (V 5 0
andl 5 1):

¹ z @e~r !¹f~r !# 2 k# 2~r !f~r ! 5 24prp(r ). (30)

The capacitive contribution is negligibly small and can be
ignored in the present case (Roux, 1997). The cavity term is
independent of the membrane potential and is roughly pro-
portional to the solvent-exposed surface area (Ben-Tal et al.,
1996). It should be emphasized that^(Xp) in Eq. 28 de-
pends on the microscopic configurationXp of the whole
content of the pore (ion, channel, and water) defining the
pore region. Equations 27, 29, and 30 have forms similar to
that of the traditional linearized Poisson-Boltzmann equa-
tion (Honig and Nicholls, 1995). The space-dependent di-
electric functione(r ) and Debye screening factork(r ) can
be constructed following a standard prescription with the
solvent-excluded molecular surface (Nina et al., 1997). In
addition, the Heaviside step functionHp forces the value of
k# (r ) to be zero and the value ofe(r ) to be one in the pore
region, in accord with Eq. 26. One may note that the
influence of explicit charges in the pore region and the
transmembrane potential are superimposable on the free
energy Eq. 28 because the modified PB Eq. 27 has been
linearized. This has been pointed out previously (Jordan et
al., 1989).

Following Eqs. 13 and 26, the one-ion PMF may be
expressed as

e2b0~r1! 5
* dX9p d~r 12r 91!e

2b^~X 9p!

* dX9p d~r 12r 91!e
2b^* ~X 9p! , (31)

where the notation̂ * means that all interactions involving
the ion with all atoms in the system (bulk and pore) have
been switched off. In the general case, the PMF is0(r1)
and depends on all conditions on the system. In the special
case of symmetrical electrolyte solutions and no membrane
potential, the PMF is0(0)(r1), which we call the “intrinsic
ion-pore PMF.” We seek an expression for the difference
0(r1) 2 0(0)(r1),

e2b@0~r1!20~0!~r1!#

5
* dX9p d~r 1 2 r 91!e

2b^~X 9p!

* dX 9p d~r 12r 91!e
2b^* ~X 9p) 3

* dX 9p d~r 12r 91!e
2b^*sym~X 9p!

* dX 9p d~r 12r 91!e
2b^sym~X 9p!

(32)

5
* dX 9p d~r 1 2 r 91!e

2b^~X 9p!

* dX 9p d~r 12r 91!e
2b^sym~X 9p! 3

* dX 9p d~r 12r 91!e
2b^*sym~X 9p!

* dX 9p d~r 12r 91!e
2b^* ~X 9p!

5 ^e2bD^&^sym;r 1) 3 ^e2bD^*&(^ *sym)
21 ,

whereD^ 5 ^ 2 ^sym and D^* 5 ^* 2 ^*sym are the
excess perturbation free energy contributions caused by
asymmetrical conditions relative to symmetrical systems.
The bracket with subscript (̂sym; r1) represents an average,

^· · ·&~^sym;r1! ;
* dX 9p· · ·d~r 1 2 r 91!e

2b^sym~X 9p!

* dX 9p d~r 1 2 r 91e
2 b^sym~X 9p! (33)

with the ion fixed atr1; the configurations are Boltzmann-
weighted by the free energŷsym of a symmetrical system.
A similar expression holds for the configurational averages
performed with the free energŷ*sym. Note that in the latter
case the subscriptr1 can be dropped because averages are
equivalent to those that would be calculated in the absence
of ion inside the pore, because its interactions have been
switched off.

We must now evaluate the excess perturbation free ener-
gies,D^ andD^*. In fact, their form is remarkably simple.
The cavity formation̂ cavity does not contribute because it
is independent of the membrane potential. Furthermore,
even though the reaction field free energy arises from long-
range electrostatic interactions between the charges in the
pore subsystem and the environment, it does not contribute
to the excess perturbations if the ionic strength of the
solution is kept unchanged on both sides of the membrane
as the transmembrane potential is applied. It follows that

D^~Xp! 5 VFO
p

qpfmp~r p!G
5 VFq1fmp~r 1! 1 O

p.1

qpfmp~r p!G , (34)
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where particle 1 is the ion (the sum withp . 1 runs over all
particles other than the ion). Similarly,

D^* ~Xp! 5 VFO
p.1

qpfmp(r p)G , (35)

because the interactions of the ion with the surrounding are
switched off. The membrane potentialfmp(r ) represents the
influence of the polarization of the counterions in the solute
at the membrane-bulk interface. It is calculated with Eq. 29,
i.e., in the absence of the charge of the subsystem.

It is possible to treat the couplingsD^ andD^* pertur-
batively and express the complete PMF as a series in in-
creasing powers of the membrane potentialV. To this end,
we develop the exact expression Eq. 32 in terms of a
cumulant expansion (Balescu, 1975),

^e2bD^& 5 e2b^D^&1b2@^D^2&2^D^&2#/21· · · (36)

(the subscripts on the bracket have been omitted for the sake
of clarity). Such a cumulant expansion does not require that
the perturbation be small, but that the structure of the
coupling with the reference system be simple. A cumulant
expansion is usually a good approximation if high-order
terms are small (asymmetry of the distribution, etc.). For
example, truncating the cumulant expansion to second order
as in Eq. 36 corresponds to the quasiharmonic approxima-
tion for the fluctuations of proteins (Ichiye and Karplus,
1987), which would be rigorously exact if the fluctuations
of the pore subsystem were Gaussian. From Eq. 32 the PMF
is to lowest order in the perturbation,

0~r 1! 5 0~0!~r 1! 1 0~1!~r 1! 1 0~2!~r 1! 1 · · · , (37)

where the first-order term is

0~1!~r 1! 5 ^D^&~^sym;r1! 2 ^D^&~^*sym!

5 VFq1fmp~r 1! 1 KO
p.1

qpfmp~r p!L
~^sym;r1!

2 KO
p.1

qpfmp~r p!L
~^*sym!

G , (38)

(the explicit expressions forD^ andD^* have been used).
Thus, to linear order inV, the influence of the membrane
potential arises from the interaction of all of the charges of
the pore subsystem (i.e., the ion, the channel, and its water
content) with the fieldfmp. The second-order term (qua-
dratic in V) is due to the influence of fluctuations,

0~2!~r 1! 5 2
1

2kBT
@^D^2&~^sym;r1!2^D^&~^sym;r1!

2 2^D^2&~^*sym!

1^D^&~^*sym!
2 # . (39)

Because the ion is fixed atr1, the direct termq1fmp(r1) does
not contribute to the fluctuations in Eq. 39 (although the

presence of the ion atr1 has a direct influence on the
fluctuations of the remaining components inside the pore.
The second-order contribution is quadratic in the membrane
potential V, which is analogous to a capacitive energy
(Sigworth, 1993). It can be shown that it is related to the
linear response of the charge distribution in the pore region
due to the influence of the transmembrane field (Balescu,
1975). Although the analysis was carried out for the case of
one ion inside the pore, the influence of the membrane
potential on a multiply occupied state withn ions can be
derived using a similar route (see the discussion in the next
section).

Reduction to a one-dimensional system

With current computers, calculation of the function0(r ) at
a large number of positionsr [ (x, y, z) of the permeating
ion in three-dimensional space (the subscript 1 is omitted
for simplicity) is nearly intractable. Ion permeation is gen-
erally discussed in terms ofw(x), the free energy profile of
ions along the channel axis. The functionw(x) is an impor-
tant input in kinetic rate models (La¨uger, 1973) and in the
one-dimensional Nernst-Planck equation (Levitt, 1986;
McGill and Schumaker, 1996). From a dynamical point of
view, the reduction in dimensionality is based on the as-
sumption that that motions perpendicular tox reach equi-
librium rapidly and thatx is the only slow variable in the
system (i.e., it plays the role of a reaction coordinate).
However, discussions of the equilibrium free energy profile
along the channel axis require no such assumptions about a
separation of time scale. From Boltzmann statistics, the free
energy profile,wprj(x), expressed as a projection of the
complete PMF0(r ) coordinatex, is

e2bwprj~x! 5 e2b@0~xc,yc,zc!2m# ~I!#
* dy dz e2b0~x,y,z!

* dy de e2b0~xc,y,z! . (40)

The free energy profile in Eq. 40 is normalized such that the
value ofwprj(x) at the positionxc is equal to the relative free
energy [0(r ) 2 m# (I)] of an ion at the pointrc, chosen
arbitrarily at some position along the axis of the channel. A
definition of the cross section of the pore, S, follows from
the choice of the reference pointrc:

S5 E dy dz e2b[0(xc,y,z)20(xc,yc,zc)] . (41)

This definition is convenient for establishing a link with
well-known expressions for the one-ion equilibrium binding
constant in terms of the free energy profile and the cross-
sectional area of the channel (Levitt, 1986),

K1 5 SE
pore

dx e2bwprj~x! (42)

which is equivalent to Eq. 25. The value of the cross-
sectional area involved in the definition of the binding
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constant differs from the cross-sectional area of the pore
estimated on the basis of the exclusion radius of the channel
atoms (Smart et al., 1993). In particular, its value depends
on both the channel structure and the radius of the ion.
According to this analysis, a single value is defined for the
cross-sectional area of the pore. Alternatively, one could
define a cross-sectional areaS(x) that varies along thex axis,

S~x! 5 E dy dz e2b@0~x,y,z!20@x,yc,zc!# . (43)

From this choice, the binding constant is

K1 5 E
pore

dx S~x!e2bwaxi~x! , (44)

which implies that the appropriate definition of the free
energy profile following from this construction would have
to be the value of the PMF along the channel axis,waxi(x) 5
[0(x, yc, zc) 2 m# ], to recover the correct one-ion binding
constantK1. Note thatwaxi(x) differs from wprj(x) based on
Eq. 40.

Although there is definitely a certain element of arbitrari-
ness in the definition of a suitable free energy profile and
cross-sectional area along the channel axis, it is important
that Eqs. 41 and 43 remain consistent with Eq. 25. In kinetic
rate models the cross-sectional area is related to the concept
of capture radius (La¨uger, 1973). A projection of the three-
dimensional configurational space of an ion onto a single
variablex is meaningful only in the pore region, where the
lateral displacements of the ion (alongy andz) are bounded.
The extension of free energy profiles to the bulk region has
no significance and actually diverges because the ion has
infinitely more lateral freedom in the bulk region than inside
the pore. Nevertheless, one-dimensional free energy profiles
can be very useful concepts.

DISCUSSION

In the following, the main results concerning the probabil-
ities of multiply occupied states, the definition of the free
energy PMF, the effect of the transmembrane potential and
its linearity, and the reduction to a one-dimensional system
are reviewed and discussed. Where possible, the results are
illustrated in the context of the GA channel.

Probabilities of occupancy

The present analysis, based on equilibrium statistical me-
chanical considerations, demonstrates that the probability of
multiply occupied states, with explicit numbers of ions, can
be expressed as

3n 5
Kn ~r# ~I!!n

1 1 K1 ~r# ~I!! 1 K2 ~r# ~I!!2 1 K3 ~r# ~I!!3 1 · · ·
. (45)

The form of 3n is very similar to that of the familiar
saturation expressions obtained from kinetic models. This
surprising result may be understood simply. Kinetic models
are constructed on the basis of two ingredients: first, it is
assumed that the total configurational space of the whole
system is constituted of a complete collection of distinct
subspaces (the states); second, it is assumed that the system
possesses no dynamical memory when it leaves one state to
enter another (the Markov assumption). Although it is al-
ways possible to define a complete collection of states for
any system, the Markov assumption may not be valid in
some cases (e.g., if there are no free energy barriers between
different regions and the movement is purely diffusive).
Saturation properties expressed as the probability of multi-
ply occupied states with an explicit number of ions inside
the pore are not a consequence of the Markov assumption,
but are shown here to follow directly from a statistical
mechanical analysis. Although kinetic models are formu-
lated in terms of transition rate constants, equilibrium prop-
erties do not rely on the Markov assumption. However, the
form of 3n in Eq. 45 does not necessarily imply that an ion
binds at a specific location inside the pore. Then-ion
binding constantsKn are expressed as integrals over the
whole pore region (see below), with no assumptions con-
cerning specific binding sites. In addition, it should be noted
that there is a hidden dependence on the ion concentration in
the association constantsKn, despite the simple form of Eq.
45. This effect can be reduced by keeping the ionic strength
of the solutions constant with impermeable ions while the
concentration of a specific ion is varied.

The GA channel provides a useful example for examining
the significance of the binding constants at the microscopic
level. A cation-binding site is located near the entrance at
each end of the dimer channel (Olah et al., 1991). At most,
one of the binding sites is occupied at low concentrations of
permeant ions, whereas the two sites may be occupied
simultaneously at higher concentrations. There is no exper-
imental evidence for a multiply occupied state with three
ions. Analysis based on molecular dynamics simulations
indicates that13C and15N solid-state NMR chemical shift
anisotropy data (Smith et al., 1990; Tian et al., 1996) are
consistent with a pair of Na1-binding sites located69.2 Å
from the center of the channel (Woolf and Roux, 1997).
Those positions correspond to the minima found in MD free
energy calculations with Na1 (Roux and Karplus, 1993).
Studies of13C chemical shift changes upon Na1 binding to
GA channels incorporated into lipid vesicles were analyzed
in terms of a tight and a weak binding constant, correspond-
ing to singly and doubly sodium-occupied channels, which
were estimated to be 67 M21 and 1.7 M21, respectively
(Jing et al., 1995). Another estimate for the singly occupied
association constant, based on TI 205 NMR spectroscopy, is
31.6 M21 (Hinton et al., 1988). Other estimates for the
singly and doubly occupied equilibrium constant, obtained
from an analysis of nonequilibrium ion flux data, are 7.34
M21 and 0.25 K21, respectively (Becker et al., 1992).

146 Biophysical Journal Volume 77 July 1999



The variations of the average NMR chemical shifts as a
function of Na1 concentration can be understood on the
basis of Eqs. 8 and 45, because those measurements were
performed at equilibrium. In the present formulationK1

corresponds to the equilibrium association constant to load
one ion into any of the two sites of the GA channel, whereas
the equilibrium association constant for loading a second
ion is Kd 5 2K2/K1. The one-ion binding constant corre-
sponds to a three-dimensional volume integral of the Boltz-
mann factor, exp[2(0(r1) 2 m# )]. For simplicity we assume
that the solutions are symmetrical and thatm# (I) 5 m# (II) . In
the case of the GA channel, the volume integral is domi-
nated by the two local minima in the PMF near the channel
entrance,

K1 5 E
pore

dr 1 e2b@0~r1!2m# # (46)

< 2 3 dvb e2b@0b2m# # ,

wheredvb 5 dxbdybdzb is the volume corresponding to the
fluctuations of the Na1 ion in one binding site, and [0b 2
m# ] is the binding free energy of Na1 relative to the bulk
solution. MD of one Na1 located in the binding site sug-
gests that it spontaneously fluctuates between 8.5 and 10.5
Å along the channel axis (Woolf and Roux, 1997), whereas
displacements off the channel axis are only on the order of
0.5 Å (Woolf and Roux, unpublished results). This yields a
microscopic binding volumedvb of 0.5 Å3 for Na1 in the
binding site of the GA channel. An estimate of the free
energy of one Na1 in the entrance of the GA channel
relative to the bulk solution can be obtained from the
measured one-ion association constant as2kBT ln(K1/2dvb)
(n.b.: the measured binding constants in M21 must be
divided by 6.023 1024 to be converted into Å3). This
yields values of26.9 kcal/mol (Jing et al., 1995),26.5
kcal/mol (Hinton et al., 1988), and25.6 kcal/mol (Becker
et al., 1992) for the relative free energy [0b 2 m# ]. Inter-
estingly, the various estimates of the free energy are in good
accord, despite the vast differences in methodology and
experimental conditions. It should be noted that the volume
factor in the definition of the absolute binding constant is
often overlooked (see Gilson et al., 1997, for a recent
discussion). In particular, the quantity2kBT ln(K1), with K1

expressed in M21, does not correspond to a meaningful
binding free energy. For example, this expression yields
only a free energy of22.5 kcal/mol with a binding constant
of 67 M21. Following Eq. 44, the binding constant can also
be calculated as a one-dimensional integral along the chan-
nel axis in terms of the free energy profilew(x) and the
cross-sectional areaS(x). According to Eq. 43, the cross-
sectional area is related to the fluctuations perpendicular to
the channel axis. The off-axis fluctuations of Na1 in the GA
channel are on the order of 0.5 Å (Woolf and Roux, unpub-
lished results), which yields a cross-sectional area on the
order of 0.25 Å2. This value is much smaller than estimates

of the pore diameter based on van der Waals radii (Smart et
al., 1993), although the magnitude of the binding constant is
not very sensitive to the precise value of the cross-sectional
area.

Comparison of the binding constant for the doubly occu-
pied channel to that of the singly occupied channel provides
information about ion-ion repulsion between two Na1 lo-
cated in the binding sites (Roux et al., 1995). Assuming that
the ion binding sites do not change their positions in the
doubly occupied state, the expression2kBT ln(2Kd/K1)
gives an estimate of the ion-ion interactions in the GA
channel. In terms of the one-ion and two-ion PMF, the
ion-ion interaction is [0(r1,r2) 2 0(r1) 2 0(r2)]. Repul-
sion energies of11.6 and11.9 kcal/mol are estimated from
the data of Becker et al. (1992) and Jing et al. (1995),
respectively. A value of16 kcal/mol was obtained from
MD free energy calculations (Roux et al., 1995). The bare
repulsion in vacuum for two ions separated by 19 Å (on the
order of118 kcal/mol) is significantly reduced in the chan-
nel environment. Interestingly, the thermodynamics of dou-
ble occupancy is sensitive to the ionic species; e.g., it is
relatively easier to load two K1 than two Na1, because of
the single-file structure of the water molecules in the narrow
GA channel (Roux et al., 1995). Such an effect cannot be
understood on the basis of a structureless continuum model
of the pore environment. Similar energetic and structural
considerations are expected to be very important in the
characterization of the KcsA K1 channel, which can contain
several K1 simultaneously (Doyle et al., 1998).

The PMF and the membrane potential

Our analysis, which led to Eq. 37, demonstrates that the
total PMF can be written as a power series inV, the
transmembrane potential,

0~r 1! 5 0~0!~r 1! 1 0~1!~r 1! 1 0~2!~r 1! 1 · · · (47)

The intrinsic ion-pore free energy,0(0)(r1), is dominated by
the interactions of the permeating ion with the channel and
its water content. It corresponds to equilibrium conditions,
with V 5 0 and symmetrical concentration of permeant ions
on both sides of the membrane. In addition, long-range
electrostatic interactions with the solvent, counterions, and
lipid headgroups give rise to reaction field, electroosmotic
(Jordan et al., 1989), and interfacial dipolar polarization
effects (Shinoda et al., 1998), which also contribute to
0(0)(r1). However,0(0)(r1) is not voltage-dependent. Only
the remaining terms,0(1)(r1) and0(2)(r1), are due to the
membrane potential. The coupling between the pore content
(the permeating ion, the channel, and the water molecules
inside the channel) and the transmembrane potential is
mostly electrostatic in nature. For this reason, it seems
reasonable that a continuum electrostatic description based
on Eqs. 27 and 29 can be valid. In contrast, the microscopic
interactions giving rise to the intrinsic ion-pore PMF arise
from the quantum mechanical Born-Oppenheimer energy
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surface of the molecular system, which includes complex
contributions such as the influence of the charge distribu-
tion, core-core repulsion, London dispersion, induction, po-
larization, and charge transfer (Claverie, 1978). Molecular
mechanical potential functions, such as AMBER (Cornell et
al., 1995), CHARMM PARAM22 (MacKerell et al., 1998),
or OPLS (Jorgensen et al., 1996), are aimed at reproducing
the main features of this energy surface by using simple
classical functional terms (Brooks et al., 1988). Further-
more, the intrinsic ion-pore PMF,0(0)(r1), corresponds to a
thermal average for the molecular system, in which the
structural flexibility of the channel is expected to play an
essential role. In particular, it has been shown that the PMF
of Na1 along the axis of the GA channel results from a
complex interplay of water-water, water-channel, and chan-
nel-channel hydrogen bonding interactions (Roux and Kar-
plus, 1991a). Therefore, although a continuum electrostatic
representation for calculating0(0)(r1) may be useful in the
case of large wide channels, there is no reason to believe a
priori that this is a valid approximation in the case of narrow
channels, in which the ions and the water molecules are
configured in single file.

Similar observations can be made concerning multiply
occupied channels. Then-ion intrinsic PMF,0(0)(r1, . . . , rn),
is a nonadditive many-body free energy potential. It is likely
that pairwise additivity of ion-ion interactions is not a good
approximation in the confined environment of a narrow
pore. For example, MD free energy calculations showed
that the double occupancy of the GA channel is sensitive to
the ionic species, despite the fact that the binding sites are
almost 20 Å apart (Roux et al., 1995). It is relatively
straightforward to extend the present analysis to obtain the
first-order contribution to the PMF in the case of a multiply
occupied state withn ions inside the pore. Following argu-
ments similar to those that led to Eq. 38, we write

0~1!~r 1, · · · ,r n!

5 ^D^&~^sym;r1, · · · ,r1! 2 ^D^&~^*sym! 5 VO
p51

n

qpfmp~r p!

1 VFKO
p.n

qpfmp~r p!L
~^sym;r1, · · · ,rn!

2 KO
p.n

qpfmp~r p!L
~^*sym!

G ,

(48)

where particles 1 ton are permeant ions and particles with
p . n are the remaining charges in the pore region (e.g.,
channel and water molecules). Because the transmembrane
field fmp(r ) is calculated with Eq. 29, in which the charges
of the pore regions are not involved, it follows that the
mathematical form of0(1)(r1, . . . ,rn) is unchanged, re-
gardless of the number of ions inside the pore region. To
lowest order inV, the coupling to the membrane potential is
the direct interactions of the changes in the pore region with
the transmembrane fieldfmp(r ). An explicit atomic repre-

sentation of the channel and the water molecules inside the
pore is required to calculate the contribution from the mem-
brane potential. The total coupling to a transmembrane poten-
tial cannot be obtained with a continuum representation of the
solvent because the average charge distribution in the pore
region, with and without an ion present, is important. There-
fore, despite its apparent simplicity, the first-order contribution
0(1) is also a many-body nonadditive function.

Linearity of the transmembrane potential

Our analysis shows that the transmembrane potential can be
calculated on the basis of Eq. 29. To linear order inV, its
dominant effect is to act on the ion, channel, and water
molecules located in the pore region, as described by Eq. 38.
If the local geometry of the channel-membrane system is
approximately planar (e.g., the pore and the vestibule are
relatively narrow and the length of the pore does not exceed
the thickness of the membrane), it is possible that the field
fmp in the pore region may be approximately linear along
the channel axis over some lengthL. To examine the spatial
dependence of the transmembrane field, we consider the
case of the GA channel. For the purpose of the calculation,
a typical atomic configuration of the channel embedded in
an explicit lipid bilayer is used. In practice, an average over
a number of configurations (channel and membrane) should
be performed, although no large variations are expected in
the present case. The model incorporates one GA channel
and 10 single-file water molecules embedded in a lipid
bilayer constituted by 100 dimyristoylphosphatidylcholine
(DMPC) molecules (50 molecules in the upper and lower
leaflet, respectively). In the model, the bilayer extends in the
y, z plane, and the GA channel is located at the origin of the
system with the pore parallel to thex axis. The construction
procedure for generating the model is described briefly in
Fig. 2, although the details are not expected to be very
important for the purpose of the present calculations.

The electrostatic transmembrane fieldfmp(r ) is calcu-
lated by solving Eq. 29 numerically as described previously
(Roux, 1997). In the calculation, the channel and the mem-
brane are represented in full atomic detail, and the solution
is represented as continuous media. The solution is modeled
by a uniform dielectric constant of 80 with a salt concen-
tration of 150 mM. Values of one and zero are assigned to
the dielectric constant and the Debye screening factor, re-
spectively, in the interior of all explicit atoms (protein and
lipids). The same values are imposed for the pore region
because the counterions from the bulk as well as solvent
molecules, other than the 10 explicitly represented single-
file water molecules, are excluded from the pore region
because of the Heaviside step functionHp(Xr) in the integral
of Eq. 26. We assume that the pore region is a cylindrical
region of 5-Å radius extending from212.5 Å to112.5 Å
along thex axis. The cylinder corresponds to the most
cation-selective part of the GA channel. This choice is
consistent with free energy calculations that have shown
that Cl2 anions cannot penetrate into the GA channel be-
cause their presence is energetically unfavorable, due to the
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charge asymmetry of the backbone structure (Roux, 1996).
In practice, the choice of the radius is not critical, as long as
the interior of the pore is included (see Fig. 1).

The calculated transmembrane potential field along thex
axis is shown in Fig. 3 for differenty, z positions near the
center of the pore region. The field is clearly linear, al-
though there are small deviations near the entrance of the
channel. In part, this is due to the fact that the thickness of
a DMPC membrane matches quite well the length of the GA
channel. Furthermore, the high dielectric constant of water
and the screening due to the mobile ions in the bulk solution
damp out the electric field everywhere except in the mem-
brane and pore region. Fig. 3 is similar to the results
obtained previously by Jordan et al. (1989) in the case of a
cylindrical pore. They arrived at essentially the same con-
clusion: “the presence of electrolyte significantly affects the

voltage profile due to an applied potential, substantially
compressing the electric field to the immediate vicinity of
the pore itself” (Jordan et al., 1989).

The fraction of the field felt by a cation located in the
entrance binding site at29.5 Å is on the order of 15%, in
good agreement with previous estimates based on analysis
data (Becker et al., 1992; Busath and Szabo, 1988). The
calculation suggests that the form

fmp(r ) < H0~x/L 1 1/2!
1

if x , 2L/2
if 2L/2 , x , 1 L/2
if x . 1 L/2

(49)

with a lengthL of 25 Å is reasonable for the GA channel.
However, it should be stressed that the observed linearity of
the transmembrane fieldfmp implies nothing about the

FIGURE 2 Picture of the atomic configuration of the GA in a DMPC bilayer used to calculate the transmembrane fieldfmp. The model incorporates one
GA channel, a lipid bilayer constituted by 100 DMPC molecules (50 molecules in the upper and lower leaflets, respectively), and 10 single-file water
molecules. The model was assembled using an equilibrated configuration of a GA:DMPC system (Woolf and Roux, 1996). The initial configuration with
one GA and 41 DMPC was extended to yield a large patch of membrane by adding 59 preequilibrated DMPC molecules, using a methodology developed
previously (Woolf and Roux, 1994, 1996). The final configuration was refined with energy minimization. Periodic boundary conditions were applied in
theyzdirections to simulate an infinite bilayer; the dimension of the central unit was chosen to be 58 Å, to correspond roughly to the cross-sectional area
of one GA and 50 DMPC molecules (Woolf and Roux, 1996).
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linearity of the intrinsic PMF0(0)(r1); i.e., it is a necessary
but insufficient condition, because the true voltage coupling
to the ion’s motion is via the PMF. Following from Eq. 49,
the PMF is

0~r 1! 5 0~0!~r 1! 1 Fq1Sx1 1
L

2D 1 dDx~r 1!G SVLD
2

1

2kBT
@dDx

2~r 1!# SVLD
2

, (50)

where dDx(r1) and dDx
2(r1) are, respectively, the average

and fluctuations of thex-component of the dipole moment
of the channel and water content of the pore with the ion at
r1 relative to the unoccupied channel.

The first-order contribution can be written as0(1) 5
q1xelecV/L, wherexelec 5 x1 1 L/2 1 dDx(r1)/q1 plays the
role of an effective “electric distance” (Hille, 1992). Devi-
ations of the electric distance from the simple geometric
position [x1 1 L/2] depend on the magnitude ofdDx(r1), the
variation of the dipole moment of the channel and water in
the pore region. In the case of the GA channel, theb-helical
structure does not undergo large conformational changes in
the presence of an ion (Tian et al., 1996; Woolf and Roux,
1997). In such a situation, the variations in the dipole
moment are expected to be dominated by the anisotropic

orientational polarization of water molecules. Detailed MD
studies indicate that the orientation of the 10 water mole-
cules disposed in single file along the channel axis is sig-
nificantly affected by the presence of an ion (Roux et al.,
1995; Roux and Karplus, 1993; Woolf and Roux, 1997);
one Na1 located near the entrance of the channel is suffi-
cient to roughly orient six of the single-file water molecules,
with their oxygen pointing toward the ion. In the absence of
ions the single-file water molecules form hydrogen-bonded
chains with their dipole parallel to the channel axis (Chiu et
al., 1991; Mackay et al., 1983), although a symmetrical
arrangement has also been observed (Roux et al., 1995). The
maximum dipole moment of a single file oriented along the
x axis in the absence of an ion is;3 eÅ (Pomes and Roux,
1998). By symmetry, the orientation of the whole single file
is reversed when the ion moves from one end of the channel
to the other. Correspondingly, the orientation of the single-
file water molecules affects the apparent electric distance by
3 Å toward the center of the channel. For an arbitrary ion
position x1, the average orientational polarization of the
single-file water molecules is expected to take intermediate
values, although there are small deviations (Roux and Kar-
plus, 1991a).

The second-order contribution of the perturbation in-
volves the fluctuations in thex component of the total
electric dipole of the channel and them internal water
molecules while the ion is fixed atr1. In the case of the GA
channel, it may be expected that the fluctuations in the
dipole moment of the single-file water molecules are sig-
nificantly reduced when the ion is in the pore (i.e., the
presence of an ion “freezes” the single file). To estimate the
importance of this contribution, we assume that the 10
single-file water molecules can fluctuate between two con-
figurations with maximum dipoleDmax in the absence of an
ion in the channel. Accordingly, the rms fluctuations of the
total dipole associated with the single file areDmax

=2. For
a membrane field corresponding to a change of 100 mV
over 25 Å, the corresponding second-order energy contri-
bution is10.36 kcal/mol, opposing the binding of the ion in
the pore. The magnitude of the second-order contribution is
relatively modest, suggesting that the first-order contribu-
tion is dominant. Nonetheless, because the magnitude of
0(2) is quadratic with the membrane potentialV, it in-
creases rapidly to10.80 kcal/mol for a potential of 150 mV.

This analysis shows that the coupling between the ion
position and the transmembrane potential involves all of the
atomic charges located in the pore region. In particular, the
orientational polarization of the water molecules along the
channel axis plays an important role. Further MD studies
suggest that the orientation of water molecules is also aniso-
tropic in a variety of channel models (Breed et al., 1996).
No preferential order of water dipoles was observed in a
hydrophobicb-barrel, whereas the water molecules were
observed to orient antiparallel to the helix dipole in a
tetrameric polyalanine bundle. A simulation of the OmpF
porin channel trimer in a lipid membrane shows that the
water molecules are oriented perpendicular to the channel

FIGURE 3 Calculated transmembrane fieldfmp along thex axis plotted
for several values ofy, z near the center of the pore. The results were
obtained by solving Eq. 29 numerically. The field along thex axis fory and
z between22.5 and12.5 Å are shown. The transmembrane voltage is
given by V 3 fmp. The electrostatic problem was mapped onto a dis-
cretized cubic grid of 1603 1163 116 points in thex, y, z directions with
a grid spacing of 0.5 Å and periodic boundary condition in the membrane
plane. The dielectric boundary between the molecules and the solvent was
constructed based on a set of atomic Born radii derived from the average
solvent radial charge distribution functions around the 20 amino acids in
molecular dynamics simulations with explicit water molecules (Nina et al.,
1997). The numerical calculations were carried out using a standard relax-
ation algorithm (Klapper et al., 1986; Warwicker and Watson, 1982). The
continuum electrostatic calculations were performed using a modified
version of the modified Poisson-Boltzmann Eq. 27 implemented in the
PBEQ module (Beglov, Im, and Roux, unpublished work) of the biomo-
lecular program CHARMM (Brooks et al., 1983).
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axis (Tieleman and Berendsen, 1998). A simulation of a
hexameric alamethicin bundle in a lipid membrane indicates
that the water molecules are strongly oriented along the
channel axis over a distance of 20 Å (Tieleman et al., 1999).
Most of these calculations were performed in the absence of
permeating ions. Further work will be necessary to charac-
terize the orientation of the water molecules in the presence
of a permeating ion in those channels.

CONCLUSION

We have developed a rigorous statistical mechanical theory
of the equilibrium properties of ion channels. General ex-
pressions, valid for a system with an ideally selective chan-
nel in thermodynamic equilibrium, were obtained for the
probability of multiply occupied states, the free energy
PMF, the influence of the membrane potential, and the free
energy profile along the channel axis. The main results are
as follows:

• The equilibrium probabilities of occupancy of multiply
occupied channels have the familiar algebraic form of
saturation properties, which is obtained from kinetic
models with discrete states of denumerable ion occu-
pancy (although this does not prove the existence of
specific binding sites).

• The total free energy profile of an ion along the channel
axis can be separated into an intrinsic ion-pore free
energy PMF, independent of the transmembrane poten-
tial, andother contributions that arise from the interfacial
polarization.

• To linear order in the transmembrane potentialV, the
contribution from the membrane potential is expressed as
the average interaction of all of the charges in the pore
region with the membrane field when an ion is present in
the channel minus the average interaction of all of the
charges in the pore region with the membrane field when
no ion is present.

• Higher order corrections are related to the fluctuations of
the interaction of all of the charges in the pore region
with the membrane field, with and without ion present in
the channel.

• The contribution from the membrane potential can be
calculated using a modified Poisson-Boltzmann theory as
the interaction of the charges in the pore region with a
field, in the absence of the charges in the pore.

• In the case of narrow channels such as the GA channel,
the calculated transmembrane potential resulting from
the interfacial polarization is shown to be fairly linear
over a significant fraction of the permeation pathway.

It is useful to review the main steps that led to the
conclusions concerning the linearity of the membrane po-
tential to appreciate their scope and significance. Above all,
the conclusion relies upon the observed linearity of the
transmembrane fieldfmp(r ). The present analysis shows
that this function is approximately linear in the ion’s posi-

tion along the narrow GA channel axis, as described by Eq.
50 and shown in Fig. 3. The functionfmp(r ), calculated by
solving numerically the modified PB Eq. 29 for the detailed
atomic configuration of the GA in a DMPC membrane, is
shown in Fig. 2. Clearly, it can reasonably be expected that
the transmembrane field will be roughly linear for most
narrow selective channels. However, linearity of the trans-
membrane potential functionfmp(r ) is a necessary but
insufficient requirement. The true free energy coupling be-
tween the ion’s position and the transmembrane voltageV is
via the PMF,0(r1). A cumulant perturbation expansion
was used to express the total PMF as a power series inV.
The first-order free energy correction,0(1)(r1), which de-
pends on the average charge distribution in the pore, is
linear inV. In the case of the narrow GA channel,0(1)(r1)
is quite linear in the ion’s positionx1 along the channel axis.
The linearity in V also depends on the magnitude of the
second-order correction,0(2)(r1), which is quadratic inV.
In the case of the GA channel, we showed that the second-
order correction, which depends on the fluctuations of the
charge in the pore, should be roughly negligible forV
smaller than 150 mV.

In conclusion, our analysis indicates that the free energy
profile is linear with respect to bothV, the net transmem-
brane potential, andx1, the ion’s position along the channel
axis, which is a reasonable approximation in the case of the
narrow cation-selective GA channel. This provides some
support for the constant membrane potential field approxi-
mation, a concept that has played a central role in the
interpretation of flux data based on traditional models of ion
permeation (Becker et al., 1992; La¨uger, 1973; McGill and
Schumaker, 1996). In part, this may explain why the posi-
tion of the Na1-binding sites in the GA channel dimer
deduced from ion flux data using phenomenological models
is in such excellent agreement with the results from15N and
13C solid-state NMR chemical shift anisotropy (Smith et al.,
1990; Tian et al., 1996; Woolf and Roux, 1997). However,
the validity of the constant membrane potential field ap-
proximation depends clearly on specific details about a
channel structure and dynamics and, for example, about
how the average charge distribution and fluctuations are
reflected in the first- and second-order free energy contri-
butions. In practice, MD studies based on atomic models are
necessary to examine the validity of such an approximation
at the microscopic level.

A key ingredient for the formal development of the
present theory is the concept of a pore region from which all
ions other than the permeating ions are excluded. This is
clearly an idealization. In reality, the presence of imperme-
able ions inside real channels is energetically unfavorable,
but not absolutely forbidden. Although the concept of an
ideally selective pore region may appear to be somewhat
arbitrary, it represents a direct extension of the perfectly
semipermeable membrane that is invoked in the derivation
of the Nernst membrane potential (Hille, 1992). An equi-
librium situation with asymmetrical solutions cannot exist
unless the membrane-channel system is perfectly imperme-

Roux Equilibrium Theory of Channels 151



able to all but one ionic species. To proceed further, one
must therefore replace the finite (though significant) selec-
tivity of the pore region of a real channel into an ideally
selective pore region. The pore region should be chosen, on
energetic and structural grounds, to correspond to the most
selective region of an ion channel. In the case of the narrow
cation-specific GA channel, the choice of a pore region is
relatively straightforward: anions cannot penetrate inside
the channel because their interaction with the backbone is
energetically unfavorable (Roux, 1996). Similarly, a potas-
sium-selective pore region can be defined for the KcsA
channel (Doyle et al., 1998), and it may reasonably be
expected that this will be the case for other selective bio-
logical channels. For wide unselective channels it may be
difficult, or even impossible, to identify a well-defined pore
region. Nonetheless, it should emphasized that the concept
of an ideally selective pore region is not needed if one’s
goal is simply to formulate a statistical mechanical theory
describing the equilibrium state of an ion channel embedded
in a membrane with symmetrical solutions and no mem-
brane potential. Such a theory would yield similar expres-
sions for the probabilities of multiply occupied states and
n-ion PMFs, which could be used to characterize the selec-
tivity of an ion channel without making ad hoc assumptions
about a pore region.

Although the present paper was only concerned with
equilibrium properties, it is hoped that the formulation will
provide a sound physical basis for assessing nonequilibrium
theories of ion fluxes in channels. One may anticipate that
a reasonable formulation of nonequilibrium properties fol-
lowing from the present work should have the following
features: a multiion diffusion-like theory, derived from fun-
damental considerations about fluctuation-dissipation, and
constructed in such a way that the ion distribution relaxes
back to the configurational probabilities determined by the
Grand Canonical Partition function of Eq. 22. Clearly, the
construction of a nonequilibrium theory will require careful
consideration.

In future work, the present theory will be used to examine
the validity of the assumptions upon which current kinetic
(Läuger, 1973) and continuous electrodiffusion models
(Chen et al., 1997; Kurnikova et al., 1999; McGill and
Schumaker, 1996) are established, and to investigate mul-
tiple-ion equilibrium occupancy effects in the GA channel
(Ketchem et al., 1997), OmpF porin (Cowan et al., 1992),
and KcsA K1 channel (Doyle et al., 1998).
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