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ABSTRACT This study develops a model for a single cell electroporated by an external electric field and uses it to investigate
the effects of shock strength and rest potential on the transmembrane potential Vm and pore density N around the cell. As
compared to the induced potential predicted by resistive-capacitive theory, the model of electroporation predicts a smaller
magnitude of Vm throughout the cell. Both Vm and N are symmetric about the equator with the same value at both poles of
the cell. Larger shocks do not increase the maximum magnitude of Vm because more pores form to shunt the excess stimulus
current across the membrane. In addition, the value of the rest potential does not affect Vm around the cell because the
electroporation current is several orders of magnitude larger than the ionic current that supports the rest potential. Once the
field is removed, the shock-induced Vm discharges within 2 ms, but the pores persist in the membrane for several seconds.
Complete resealing to preshock conditions requires approximately 20 s. These results agree qualitatively and quantitatively
with the experimental data reported by Kinosita and coworkers for unfertilized sea urchin eggs exposed to large electric fields.

INTRODUCTION

Electroporation is the formation of microscopic, current-
carrying pores in a lipid bilayer exposed to a large trans-
membrane potentialVm. The pores are long lived, often
surviving in the membrane for up to several minutes and
providing pathways for the movement of ions, drugs, and
even DNA fragments into the cell. These properties have
made electroporation a common tool in biotechnology
(Chang et al., 1992; Neumann et al., 1989), and the medical
applications of electroporation are now being realized
(River et al., 1991; Tsong, 1991; Tung et al., 1995; Zhang
et al., 1996).

However, the process of electroporation is not well un-
derstood. Numerous experimental studies have been aimed
at revealing the mechanism of electroporation in various
types of membranes ranging from artificial lipid bilayers
(Chernomordik and Chizmadzhev, 1989; Glaser et al.,
1988) to red blood cells (Chang, 1992; Kinosita and Tsong,
1979) to chick myocyte monolayers (Jones et al., 1978,
1987). These studies investigated the properties of pore
formation and resealing using pulse charge techniques
(Benz et al., 1979; Zimmermann, 1982), measured the ki-
netics of electroporation in voltage-clamped membranes
(Chernomordik and Chizmadzhev, 1989; Tovar and Tung,
1992), tracked the movement of ions and fluorescent dyes
across electroporated membranes (Kinosita et al., 1991;
Mehrle et al., 1989; Rossignol et al., 1983), imaged the
transmembrane potential using voltage-sensitive dyes (Hi-
bino et al., 1993; Knisley, 1994), and visualized large pores

using freeze-fracture electron microscopy (Chang, 1992).
With the wide variety in membrane composition and exper-
imental techniques, the literature on electroporation is dif-
ficult to compare and often conflicting. A model is needed
to help understand the experimental results and draw qual-
itative, universal conclusions about the electroporation pro-
cess and the behavior of electroporated cells.

Until recently, the development of theoretical models of
electroporation has lagged behind the experimental re-
search, with the available models unable to fully replicate or
explain the experimental observations. The first model de-
scribed the basic biophysics of electroporation using the
Smoluchowski equation, which governs the evolution of the
pore distribution function in the space of the pore radii
(Pastushenko et al., 1979). Weaver and coworkers derived
the equations of Pastushenko et al. from statistical mechan-
ics and expanded the biophysical description into a numer-
ical model (Barnett and Weaver, 1991; Freeman et al.,
1994). However, these formulations are mathematically and
computationally complex and therefore only suitable for use
in space-clamped membranes. Recognizing the need to
model electroporation in spatially extended systems,
Weaver suggested a cubic cell model for electroporation
that consists of two space-clamped membrane patches con-
nected by a resistor (Weaver and Barnett, 1992). This rep-
resentation captures some features of cellular electropora-
tion, but it does not allow for spatial variation in the
transmembrane potential or pore density.

The need for a model that provides a closer relationship
between theory and experiments can be fulfilled by the
macroscopic model of electroporation recently developed
by DeBruin and Krassowska (1998), Krassowska (1995),
and Neu and Krassowska (1999), which provides a means
for investigating the mechanisms and effects of electropo-
ration in a variety of tissue geometries. To date, the model
has been used successfully to reproduce experimental re-
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sults involving guinea pig papillary muscle fibers exposed
to large electric fields (DeBruin and Krassowska, 1998) and
to investigate the influence of electroporation on the shock-
induced transmembrane potential in a two-dimensional
sheet of cardiac tissue (Aguel et al., 1999).

Part I of the present study uses the macroscopic model of
electroporation as a basis for the development of a model of
a single cell electroporated by an external electric field. This
model is used to investigate the process of electroporation in
a spherical cell, including the time evolution and spatial
distribution of the transmembrane potential and pore density
as well as the effects of the rest potential and shock strength.
The modeling results are compared to experimental data
reported in the literature.

METHODS

Mathematical Model

The transmembrane potential on the surface of an isolated single cell
exposed to an external electric field can be computed using Laplace’s
equation, because both the intracellular and extracellular domains are
source-free:

¹2Fi 5 0 in intracellular space, (1)

¹2Fe 5 0 in extracellular space, (2)

where Fi and Fe are the intracellular and extracellular potentials. The
uniform external fieldE is included as a condition onFe,

Fe 5 2Er cosu, (3)

wherer is the distance to the outer boundary of the extracellular space, and
u is the azimuthal angle (Fig. 1). The current density across the membrane
S is given by

2n̂ z ~si¹Fi! 5 2n̂ z ~se¹Fe!

5 Cm

Vm

t
1 I ion 1 Iep onS,

(4)

wheren̂ is the unit vector normal to the membrane’s surface,si andse are
the intracellular and extracellular conductivities,Cm is the specific mem-
brane capacitance,Vm [ Fi 2 Fe is the transmembrane potential on the
membrane,t is time, I ion is the ionic current, andIep is the current due to
electroporation. To focus on the effects of electroporation, the cell is
assumed to have passive membrane kinetics in whichI ion can be described
as

I ion 5 gl~Vm 2 El!, (5)

where gl is the specific membrane conductance andEl is the reversal
potential of the ionic current.Iep is the current due to the movement of ions
through the shock-induced pores,

Iep 5 Niep, (6)

whereiep is the current through a single pore andN is the pore density. The
currentiep assumes that the pores provide pathways for the movement of
generalized charges that are not identified as any particular ion species. A
previously derived expression based on the Nernst–Planck equation models
iep as an instantaneous function of the transmembrane potential (Barnett,

1990; DeBruin and Krassowska, 1998; Glaser et al., 1988),

iep 5
prm

2 svmRT

Fh

z
evm21

woe
wo2nvm 2 nvm

wo 2 nvm
evm 2

woe
wo1nvm 1 nvm

wo 1 nvm

, (7)

where rm is the radius of the pore,s is the conductivity of the aqueous
solution that fills the pore, F is Faraday’s constant, R is the universal gas
constant, T is the absolute temperature,h is the thickness of the membrane,
wo is the energy barrier inside the pore, andn is the relative entrance length
of the pore. The variablevm is the nondimensional transmembrane poten-
tial, vm [ Vm(F/RT). In previous applications of Eq. 7 (DeBruin and
Krassowska, 1998; Glaser et al., 1988), the energy barrierwo accounted for
the narrowing of the pore as it crosses the lipid bilayer as well as the
electrical interactions between the ions and the pore wall. Therefore, the
value ofrm in Eq. 7 was taken to be the size of the pore entrance,h/2. For
this study,rm denotes the radius of the narrowest part of the pore, sowo

reflects only the ion–wall interactions.
The pore densityN is governed by a first-order differential equation

(DeBruin and Krassowska, 1998; Neu and Krassowska, 1999),

dN

dt
5 ae(Vm/Vep)2 S1 2

N

No
e2q(Vm/Vep)2D , (8)

whereNo is the pore density whenVm 5 0 mV, anda, Vep, and q are
constants. An explanation of the origin of Eq. 8 is given in Appendix A.

FIGURE 1 Schematic of a spherical single cell with radiusa immersed
in a spherical shell of extracellular space with thickness 2a. The electric
field E is oriented such that the depolarized pole is atu 5 0 and the
hyperpolarized pole is atu 5 p. All profiles of the transmembrane
potentialVm or the pore densityN around the cell are plotted from2p/2
to 3p/2.
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Method of Solution

For any cell shape, Eqs. 1–8 must be solved numerically. The intracellular
and extracellular space is discretized using a finite difference method, and
the resulting linear system of equations is transformed using LU decom-
position. In each time step, the intracellular and extracellular potentials are
computed using forward and backward substitution. The results are used to
find Vm, I ion, Iep, andN at the present time step to be used in the calculation
of Fi and Fe at the next time step. This approach solves the original
problem described by Eqs. 1–4. An alternative approach is to use singular
perturbation to derive an asymptotic approximation to those equations. By
expanding the potentials in powers of a small parameter« and using only
the leading order terms, the time dependence of the boundary conditions
disappears and Eqs. 1–4 become a quasi-stationary system that may be
solved at widely spaced time intervals. In this case, changes in the trans-
membrane potential are driven by the time dependence in Eq. 8 for the pore
density N. To achieve both accuracy and computational efficiency, this
study developed a combined solution method in which Eqs. 1–4 are solved
during the shock and the singular perturbation approximation is used
during resealing. Additional details are given in Appendix B.

As an example, this study uses a spherical single cell with radiusa 5
50 mm immersed in a spherical shell of extracellular space with thickness
2a 5 100 mm (Fig. 1). Whenever possible, the cell parameters (diameter,
passive kinetics), stimulus protocol (electric field strength, duration), ma-
terial constants (intracellular, extracellular conductivities), and electropo-
ration characteristics (significant effects atVm ' 1 V) are matched to the
values reported by Kinosita and coworkers for unfertilized sea urchin eggs
(Hibino et al., 1991, 1993; Kinosita et al., 1988, 1991, 1992). When a rest
potential of280 mV is required (Chambers and de Armendi, 1979), the
reversal potential of the ionic currentEl is set to283.75 mV. For a rest
potential of 0 mV,El is set to 0 mV. The shock protocol consists of a
400-V/cm field applied for a duration of 1 ms. The electroporation param-
etersa, Vep, No, and wo appearing in Eqs. 7–8 depend on the type of
membrane. For this study, the values ofa, No, and wo are based on
experimental results from artificial lipid bilayers (Glaser et al., 1988),
whereas the parameterVepwas altered such that the critical transmembrane
potentialVcr at which electroporation becomes significant is approximately
1 V. Values for all parameters are given in Table 1.

The constantsVep andVcr are related, but they are not equivalent.Vep is
a parameter in Eq. 8 indicating that the change inVm causes ane-fold
increase in the pore creation rate. Hence,Vep is analogous to a time or
length constant. IfVm 5 Vep, then the pore creation rate changes by only
a factor ofe1 5 2.7, too small to be detected experimentally. However, if
Vm 5 Vcr ' 4Vep, then the pore creation rate changes bye4 5 55, a factor

large enough to cause an experimentally detectable change in the mem-
brane conductance.

Throughout the shock, Eqs. 1–4 are solved with a combined solution
method using varying time steps. When the transmembrane potential of the
cell is changing quickly (i.e., charging, discharging), the original equations
are solved with a time step oftc/32 5 0.034 ms, wheretc is the time
constant of cellular polarization (Hibino et al., 1993),

tc 5 aCmS1

si
1

1

se
D 5 1.1ms. (9)

After the initial transient (8tc 5 9 ms for a 400-V/cm field),Vm and N
change slowly and the time step is increased totc/4 5 0.28ms. Once the
shock is terminated and the cell discharges, the resealing process is
captured with the singular perturbation approximation and a time step of
100 ms. Eq. 8, for the pore density, is solved using Euler’s method
throughout the simulation. The spatial discretization of the cell uses 64
nodes over one-half of the sphere’s circumference and, in the radial
direction, uses 10 nodes within the cell and 20 nodes within the extracel-
lular space. Simulations were run on a Sun Ultra 1 workstation.

RESULTS

RC Cell versus Electroporating Cell

According to the literature, a spherical cell with a passive
resistive-capacitance (RC) membrane exposed to an exter-
nal electric field will polarize such that the maximum and
minimum transmembrane potentialsVm occur at the poles
of the cell, andVm at the equator is equal to the rest potential
Vrest (Schwann, 1989). The polarization arises with a time
constant oftc 5 1.1 ms (Eq. 9), and the time course ofVm

is consistent with the exponential charging expected of an
RC membrane (Fig. 2A, dashed line). Once charging is
complete, the transmembrane potential varies cosinusoi-
dally around the circumference of the cell according to the
relationship

Vm 5 3
2
Eacosu, (10)

whereE is the electric field strength,a is the radius of the
sphere, andVrest5 0 mV is assumed (Fig. 2B, dashed line).
This result has been verified experimentally for small
shocks, i.e.,uVmu , 300 mV (Gross et al., 1986; Lojewska
et al., 1989).

However, when a cell is exposed to a shock that induces
larger transmembrane potentials, electroporation occurs and
the RC theory fails. TheVm charging transient is inter-
rupted, and the transmembrane potential settles into a nearly
constant value of approximately 1 V, the critical value of
transmembrane potentialVcr required to produce significant
electroporation in this preparation (Fig. 2A). At the end of
a 1-ms shock, the transmembrane potential profile around
an electroporated cell is smaller than the profile predicted
for an RC cell (Fig. 2B). The largest decrease inVm occurs
at the poles where the induced potential is largest, and the
smallest decrease is near the equator. The profile has also
lost its cosinusoidal shape, appearing flattened as approxi-
mately two-thirds of the cell’s circumference has a nearly
uniform Vm magnitude ofVcr ' 1 V.

TABLE 1 Geometric, electrical, and
electroporation parameters

Symbol Value Definition

a 50.0 mm Cell radius
rm 0.76 nm Pore radius
h 5.0 nm Membrane thickness

gl 0.19 mS/cm2 Specific membrane resistance
El 283.75 mV Reversal potential of ionic current
Cm 0.95 mF/cm2 Specific membrane capacitance
si 4.55 mS/cm Intracellular specific conductivity
se 50.0 mS/cm Extracellular specific conductivity
T 295 K (22°C) Temperature

s 13.0 mS/cm Conductivity of aqueous solution in pores
n 0.15 Relative entrance length of pores
q 2.46 Electroporation constant

a 100.0 cm22 ms21 Electroporation parameter
Vep 258 mV Characteristic voltage of electroporation
No 1.5 3 105 cm22 Equilibrium pore density whenVm 5 0 mV
wo 2.65 Energy barrier within pore
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Time Evolution of Vm and N

This dramatic change in the electrical behavior of the cell
can be explained with a detailed examination of the time
courses ofVm and the pore densityN. When exposed to an
electric field, the cell initially polarizes with a cellular time
constanttc 5 1.1 ms. Near the equator, where the induced
potential is less than the critical value for electroporation
Vcr, the membrane will polarize to the steady-state potential
predicted for an RC cell (Fig. 3A, u 5 3p/8, p/2). The
membrane in this region will contain a small, baseline
number of pores (e.g.,No at Vm 5 0 mV), but N does not
change significantly during charging (Fig. 3B) and the
current through these pores does not influenceVm. Near the
poles, the transmembrane potential quickly exceeds the
critical value for electroporation (Vcr ' 1 V) and creates a
very fast increase in the pore densityN (Fig. 3,u 5 0, p/8).
A portion of the stimulus current is shunted across the

membrane through these pores, interrupting theVm charging
transient within about 1ms of exposure to the electric field.
In the region between the pole and the equator (u 5 p/4),
the increase inN is more gradual because the induced
potential is smaller.

After the charging transient,N in the electroporated re-
gions of the cell settles into a slow upward drift becauseVm

is still greater thanVcr. This continued creation of pores
provides additional pathways to shunt current across the
membrane, andVm throughout the electroporated region
slowly decreases towardVcr. This feedback betweenVm and
N occurs at different rates in different locations. Near the
poles, theVm transients are steeper and create larger pore
densities than in the surrounding regions (Fig. 3). With
more current pathways across the membrane, the post-
transient transmembrane potential is smaller. This situation
can be observed at the end of the 5-ms shock shown in Fig.
3 A, where the transmembrane potential at the pole (u 5 0)
is smaller thanVm atu 5 p/8, which is, in turn, smaller than
Vm atu 5 p/4. At theu 5 3p/8 location, the transmembrane
potential is subcritical and no electroporation occurs.

The post-transient differences inVm create concavities, or
dips, in the transmembrane potential distribution around the

FIGURE 2 (A) Time course of the transmembrane potentialVm at the
depolarizing pole of a spherical cell exposed to a 400-V/cm field. The
nonelectroporating single cell (dashed line) charges to its steady-state
value with a time constanttc 5 1.1 ms, but the charging of the electropo-
rating cell (solid line) is interrupted within 1ms of shock application and
Vm settles into a constant value of approximately 1 V. (B) Vm around the
cell at the end of a 400-V/cm, 1-ms shock. The transmembrane potential
for the nonelectroporating cell (dashed line) shows the cosinusoidal shape
predicted by RC theory.Vm around the electroporated cell (solid line) is
lower and the profile is flattened in the polar regions.

FIGURE 3 Time course of (A) Vm and (B) N at five locations around a
spherical cell. Near the poles (u 5 0, p/8), theVm transient is initially steep
but quickly truncated, andN experiences almost a step increase onceVm

exceeds the critical value for electroporationVcr ' 1 V. Near the equator,
where the induced potentials are smaller (u 5 3p/8, p/2), Vm follows the
time course for an RC cell. SinceVm ,, Vcr, there is no significant increase
in N in that region.
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cell (Fig. 4A). The magnitude of these concavities de-
creases over time asN compensates by increasing nonuni-
formly (Fig. 4B). At the end of a 1-ms shock,Vm is nearly
constant at 1 V throughout the electroporated regions (Fig.
4 A, heavy solid line). The transmembrane potential may be
considered symmetric about the equator, because the mag-
nitude of Vm is the same at the depolarized and hyperpo-
larized ends of the cell. The pore densityN is also symmet-
ric.

Rest Potential

Theory applicable to RC cells predicts that the intrinsic rest
potentialVrest of the cell will alter the transmembrane po-
tential profile by shifting it in the direction ofVrest. Vm at the
poles would still be symmetric about the equator, but the
transmembrane potential at that location would be equal to
the rest potential. For example, ifVrest5 280 mV, then the
cell in this study would haveVm equal to12.92 V at the
depolarized pole and23.08 V at the hyperpolarized pole,
both 3 V from the rest potential. However, in this scenario,
the transmembrane potentials still far exceed the critical
potential for electroporation,Vcr ' 1 V, so significant
electroporation will occur at both ends of the cell. Intu-
itively, one would expect that the negative bias of the rest

potential would cause the hyperpolarized end to electropo-
rate earlier than the depolarized end, and the correspond-
ingly steeper slope of theVm transient would produce a
larger pore density. Since the cell is a source-free system
(Eq. 1), the net transmembrane current must be zero under
all conditions (Krassowska and Neu, 1994). After the first
1–2 ms, the capacitive transient is complete, and the elec-
troporation current is much larger than the ionic current.
Therefore, one would also expect thatVm at the hyperpo-
larized end would be smaller than at the depolarized end.

ComparingVm andN at points around the cell at the end
of a 400-V/cm, 1 ms shock confirms that intuitive scenario
qualitatively (Table 2). WithVrest 5 280 mV, the pore
density at the hyperpolarized pole is larger thanN at the
depolarized pole, while the opposite is true for the magni-
tude ofVm. Quantitatively, the asymmetry inVm andN is
very small, and it is unlikely that this minor variation would
be detectable experimentally. However, Table 2 also shows
a surprising result that can be measured experimentally:Vm

at the equator (u 5 p/2) is approximately equal to 0 mV
even if the intrinsic rest potential of the cell is280 mV.
This negative offset disappears during the initial charging
transient because the nearly step increase inN increases the
electroporation currentIep by four orders of magnitude,
making Iep .. I ion, the ionic current that supports the rest
potential. The electrical behavior of the cell is governed by
Iep, even in regions which are not electroporated. The in-
trinsic rest potential of the cell plays only a minor role,
producing the slight asymmetry inVm and N observed in
Table 2.

Field Strength

The bimodal shape of the pore density distribution around
the cell (Fig. 4B) is directly related to the cosinusoidally
varying magnitude of the transmembrane potential initially
induced by the electric field. Larger potentials, such as those
near the poles, produce more pores to shunt the extra
stimulus current across the membrane. Near the equator, the
subcriticalVm does not significantly influenceN. Increasing
the electric field strength will increase the number of pores
throughout the cell in an effort to dissipate the extra stim-
ulus current, and a larger fraction of the cell membrane will
attain the critical transmembrane potentialVcr and electro-
porate. However, the shape of the pore density distribution

FIGURE 4 (A) Vm and (B) N around a spherical cell for four time
instants during a 1-ms shock. The concavity inVm near the poles disap-
pears over time, while the pore density distribution gradually widens and
increases.

TABLE 2 Effect of rest potential on electroporation

Parameter Location Vrest 5 0 mV Vrest 5 280 mV

Vm (mV) 0 989.37 992.73
p/2 0.00 0.10
p 2989.37 2981.75

N (cm22) 0 8.493 109 8.36 3 109

p/2 1.503 105 1.94 3 105

p 8.493 109 8.57 3 109
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and the transmembrane potential are qualitatively un-
changed (Fig. 5).

The exception to this behavior occurs when the cell is
exposed to a shock that induces transmembrane potentials
just overVcr. For example, if the cell in this study is exposed
to a 150-V/cm field, the maximum RC transmembrane
potential equals 1.125 V instead of the usual 3 V. With the
smaller field strength, the initial transient inVm is less steep,
fewer pores are formed, and the initial bias in pore density
produced by the rest potential becomes important. Figure 6
shows the time course ofVm andN at both poles during a
150-V/cm shock. The hyperpolarized pole electroporates
first because of the negative value ofVrest, and N in that
region increases by approximately three orders of magni-
tude (Fig. 6B, dashed line). The pore density at the depo-
larized pole is still small becauseVm , Vcr. If the shock
ended during this time frame (duration less than 80ms),
there would be a significant asymmetry in the pore density
profile. As Vm at the hyperpolarized pole becomes less
negative, the balance of current increasesVm at the depo-
larized pole. For shock durations between 100ms and 240
ms, N at the depolarized pole is larger as the increasingVm

causes that end of the cell to electroporate. For shocks
longer than about 240ms, the difference inN at the two
poles become less significant, and, after 500ms, both the

transmembrane potential and the pore density are almost
symmetric. These results imply that shock strength and rest
potential may be important, but only when the cell is po-
larized to just over the criticalVm with shocks of very short
duration. Larger or longer shocks eliminate the effects of
Vrest.

Resealing

When the shock ceases, the cell discharges the potential
induced by the electrical field. This process is faster than
cellular polarization because electroporation increases the
total conductance of the membrane. IfVrest 5 0 mV, the
transmembrane potential around the cell discharges to zero
within a few microseconds. IfVrest5 280 mV,Vm follows
a similar time course, discharging to a value very close to 0
mV within 1–2ms. The cell requires about 20 s to return to
its preshock conditions (Fig. 7).

The cell’s prolonged recovery period is due to the slow
rate of pore resealing, whose time constant can be evaluated

FIGURE 5 (A) Vm and (B) N around a spherical cell at the end of a 1-ms
exposure to three electric field strengths. Larger fields did not alter the
maximum magnitude ofVm, but did increase the height and width of the
pore density profile. As a result, the fraction of the cell membrane with
Vm ' 1 V also increased.

FIGURE 6 Time course of (A) Vm and (B) N at the poles of a spherical
cell exposed to an electric field of 150 V/cm. This field induces potentials
that barely exceed the critical value of electroporation,Vcr ' 1 V, at the
poles of the cell.Vm experiences some minor fluctuations aroundVcr, but
the time course ofN shows that electroporation at the depolarized pole is
delayed by 80ms with respect to the hyperpolarized pole. If the shock were
terminated during this time period, a very asymmetric pore density profile
could be obtained. After 500ms, N is almost identical at each pole.
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from Eq. 8,

tN 5
No

a
e(q21)(Vm/Vep)2. (11)

For Vm 5 0 mV, tN 5 No/a 5 1.5 s. The pore density
decreases exponentially and requires approximately 20 s to
return to its preshock distribution (Fig. 7B). The slow
decrease inN keepsVm elevated because the electroporation
currentIep } N is still large even after the shock has ended.
The electrical behavior of the cell is dominated byIep,
which has a reversal potential of 0 mV. As the pores reseal,
Iep decreases and becomes comparable to the magnitude of
the ionic currentI ion that supports the rest potential. AsN
returns to its preshock value,I ion dominates the transmem-
brane current and reestablishes the cell’s intrinsic rest po-
tential of 280 mV.

DISCUSSION

This study developed a computationally efficient model of a
spherical single cell with an electroporating membrane. The
modeling results demonstrate that electroporation substan-
tially alters the transmembrane potential around the cell. As

compared toVm predicted for an RC cell, electroporation
decreases the transmembrane potential throughout the cell
and flattens the predicted cosinusoidal profile near the
poles. The pore density increases with shock strength such
that Vm in the electroporated regions remains nearly con-
stant at 1 V regardless of the strength of the applied electric
field. After the shock, the pores reseal with a time constant
of 1.5 s, and complete recovery of the cell to preshock
conditions requires approximately 20 s. The intrinsic rest
potential of the cell was found to have essentially no effect
on eitherVm or N.

Comparison to Experimental Results

The majority of results reported in this study are similar to
experimental observations made by Kinosita and cowork-
ers, who used a voltage-sensitive fluorescent dye to inves-
tigate the transmembrane potential induced in unfertilized
sea urchin eggs exposed to large electric fields (Hibino et
al., 1991, 1993; Kinosita et al., 1988, 1991, 1992). First, the
researchers observed that the transmembrane potential
throughout the cell was much lower than predicted for an
RC cell, similar to the modeling results shown in Fig. 2B of
this study. The experimental profile ofVm showed a flat-
tening in the polar regions, and a concavity existed at both
poles. However, in contrast to Fig. 4A of this modeling
study, the degree of concavity did not appear to decrease
over time. Kinosita and coworkers also found that signifi-
cant electroporation occurred during the first microsecond
of the shock, followed by a slower increase in the electro-
poration conductance throughout the duration of the shock.
This qualitative description of the time course ofN agrees
with the model’s predictions (Fig. 4B), but Vm has more
complicated behavior experimentally. This discrepancy
may be due to changes in the radii of pores during the shock,
a feature not presently included in the model of electropo-
ration. In experiments, the maximum electroporation con-
ductanceG decreased by an order of magnitude within the
first millisecond postshock, and resealing was not complete
after 2 s (the longest time interval measured). These results
are also consistent with the predictions of this modeling
study, in whichG at the poles decreased by 85% in the first
postshock millisecond because of the non-ohmic nature of
the pores, and complete resealing to preshock conditions
requires 20 s. A similar time course for electroporation was
reported for green algae cells (Neumann et al., 1992).

Second, Kinosita’s group tested the saturation of the
transmembrane potential with shock strength and found
that, for sufficiently large shocks, increasing the field
strength did not increaseVm. This observation is consistent
with the modeling results indicating that larger shocks cre-
ate more pores, shunting the excess stimulus current across
the membrane and limitingVm to approximately 1 V
throughout the electroporated region (Fig. 5). Knisley found
a similar relationship in his study of rabbit myocytes (Knis-
ley, 1994), in which larger shocks produced a more pro-

FIGURE 7 Time course of (A) Vm and (B) N at the depolarized pole of
the cell after a 400-V/cm, 1-ms shock. The vertical line in panelA is theVm

trace during the shock, which appears very short on a time scale of many
seconds.Vm slowly repolarizes to its rest potential of280 mV over a
period of 20 s, the time required for the pores to completely reseal andN
to return to its preshock value throughout the cell.
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nounced decay inVm such that the transmembrane potential
at the end of a 20-ms shock was approximately equal for all
field strengths. This saturation ofVm appears to be a phe-
nomenon that is independent of tissue geometry, because it
was also observed in both experimental and modeling stud-
ies of voltage-clamped lipid bilayers (Freeman et al., 1994),
one-dimensional fibers (DeBruin and Krassowska, 1998;
Krassowska, 1995; Zhou et al., 1996), and two-dimensional
sheets (Aguel et al., 1999).

Third, Kinosita and coworkers observed a disappearance
of the rest potential consistent with the modeling results
(Table 2). Other researchers (Knisley and Grant, 1995;
Teruel and Meyer, 1997) also found that the intrinsic rest
potential did not play an important role in the electropora-
tion process. These two experimental studies eliminated the
intrinsic Vrest by altering the extracellular ionic concentra-
tions, but the results were the same as those observed with
a negative rest potential.

Finally, Kinosita’s group estimated the electroporation
conductanceG based on their experimental data and re-
ported a maximumG of 4.33 103 mS/cm2. The distribution
of the electroporation conductance around the cell was
bimodal, with the largest value ofG at either pole and a
small value near the equator. The modeling study produced
similar results, with a maximumG of 2.23 103 mS/cm2 and
a pore density distribution with a qualitatively similar shape
(Fig. 4B). Both model and experiment found that approxi-
mately two-thirds of the cell are significantly electroporated
with an electric field strength of 400 V/cm. Kinosita and
coworkers also calculated the maximum fractional area of
the membrane occupied by the pores to be 1024 to 1023,
consistent with the experimentally and theoretically deter-
mined values for artificial lipid bilayers reported in the
literature (Chernomordik et al., 1983; Freeman et al., 1994).
This modeling study predicts that the fractional area of the
example cell occupied by pores is 23 1025, again in
agreement with the experimental results.

Comments

The steep dependence of the pore creation rate (Eq. 8) on
the transmembrane potential is inherent to the electropora-
tion process and cannot be avoided by choosing different
electroporation parameters. For example, manipulatinga
and No within a physiologically valid range (a, 92 cm22

ms21 [Glaser et al., 1988] to 200 cm22 ms21 [DeBruin and
Krassowska, 1998];No, 1.53 104 to 1.53 106 cm22 [Benz
and Hancock, 1981; Chernomordik and Chizmadzhev,
1989; Rosenberg and Jendrasiak, 1968]) will not signifi-
cantly alter the dependence, because the rate of change of
the pore density is not strongly affected by either of these
parameters. In comparison, dN/dt is exponentially depen-
dent onVep, but altering that parameter will change the
value of the critical transmembrane potentialVcr, which is
determined by experimental data for a particular cell type.

This steep dependence of dN/dt on Vm has two conse-
quences. First, at equilibrium,Vm is the square root of a

logarithmic function ofN, implying that Vm is almost in-
sensitive to changes inN. This relationship explains the
saturation phenomena observable in Fig. 5, where increas-
ing the shock strength from 150 V/cm to 400 V/cm in-
creasedN by a factor of 8.2, but leftVm in the electroporated
regions unchanged. Second, the increase inN is a very fast
process, and the creation of pores is complete within about
1 ms (Fig. 3). This feature of the model does not necessarily
contradict the experimental results that show electropora-
tion occurs on a millisecond time frame (Hibino et al., 1993)
and the critical transmembrane potentialVcr decreases with
shock duration (Hibino et al., 1993). Instead, it is possible
that the slow (millisecond) change in membrane conduc-
tance observed experimentally is due to an increase in the
radii of the pores, a feature not represented in this model of
electroporation. Likewise, the decrease inVcr for longer
pulses may be due to an increase in the pore radius, which
increases the current through each pore and decreasesVm

below Vcr. Including the effects of pore radius requires a
substantial addition to the model that will be the subject of
a future study.

Although the model of an electroporating cell success-
fully reproduced the experimental data published by Ki-
nosita and coworkers (Hibino et al., 1991, 1993; Kinosita et
al., 1988, 1991, 1992), it does have additional limitations.
First, the model is a simplified description of the extremely
complex processes occurring in a cell membrane. Important
biophysical elements such as the stretching of cells exposed
to an electric field (Isambert, 1998) are not captured. Sec-
ond, the value of the electroporation parameterVep was
chosen to give a criticalVm for electroporation of61 V
(value reported by Kinosita’s group), but the values of other
parameters were estimated from experiments performed on
artificial lipid bilayers and therefore may not be wholly
applicable to sea urchin eggs. Third, the macroscopic model
of electroporation describes only primary pores, those
formed as a direct result of large transmembrane potentials.
Secondary pores, which are thought to be a later stage of
development that provides transport routes for macromole-
cules including DNA (Weaver and Chizmadzhev, 1996), are
beyond the scope of this model. Finally, the pores have been
shown experimentally to be cation selective (Weaver and
Chizmadzhev, 1996), but that feature is not included in this
model of electroporation.

Despite these limitations, the only significant difference
between the experimental results from Kinosita and co-
workers and the modeling results reported here concerns the
asymmetry of the electroporation process. The majority of
Kinosita’s studies show that the transmembrane potential is
symmetric around an electroporated cell (Hibino et al.,
1991; Kinosita et al., 1988, 1992), but the most recent
experiments indicate that there may be a transient asymme-
try in Vm when the shock is first applied (Hibino et al.,
1993). More studies of the transmembrane potential are
needed, but many researchers have reported an asymmetry
in the uptake of marker molecules with entry predominately
at the hyperpolarized end of the cell (Djuzenova et al., 1996;
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Gabriel and Teissie, 1997; Knisley and Grant, 1995; Mehrle
et al., 1985, 1989; Rossignol et al., 1983; Tekle et al., 1990;
Teruel and Meyer, 1997). Several studies attribute this
asymmetry in uptake to the rest potential, because the neg-
ative value is thought to bias electroporation toward the
hyperpolarized pole (Djuzenova et al., 1996; Gabriel and
Teissie, 1997; Mehrle et al., 1985, 1989; Tekle et al., 1990).
The findings of this modeling study imply that this hypoth-
esis is only valid when the induced potential is very near the
critical value for electroporation (Figs. 5 and 6). All the
experimental studies quoted here use electric fields that far
exceed the critical value, and, in those cases, the model
predicts thatVrestwill cause only a very minor asymmetry in
the transmembrane potential and the pore density. Thus,
these modeling results rule outVrest as a cause of the
asymmetric uptake of marker molecules.

Other factors must be considered to explain this experi-
mentally observed asymmetry. First, the lipid bilayer itself
may be asymmetric, in which case the polarity of the shock
would affect the local creation of pores (Genco et al., 1993).
Second, there may be interactions between the pores and the
ionic channels, proteins, and other structures in the mem-
brane that are not replicated by the model. Finally, electro-
poration may be influenced by different ionic concentra-
tions in intracellular and extracellular space (Djuzenova et
al., 1996; Knisley and Grant, 1995; Tekle et al., 1994). This
last hypothesis will be investigated theoretically in Part II of
this study, which focuses on the interaction between elec-
troporation and ionic concentrations (DeBruin and Kras-
sowska, 1999).

APPENDIX A: ORIGIN OF EQ. 8 GOVERNING
PORE DENSITY

This Appendix shows the connection between Eq. 8, used in this paper to
compute the pore density, and the existing theory of electroporation. It is
based on the results of a study by Neu and Krassowska (1999), who derived
Eq. 8 as an asymptotic limit of the Smoluchowski equation, generally
recognized in the literature as describing the biophysical mechanisms of
electroporation.

Neu and Krassowska assumed a relationship between the pore radius
and the pore energy that was proposed by Chizmadzhev and colleagues
(Abidor et al., 1979; Glaser et al., 1988). As shown in Fig. A1, the energy
E(r) of a pore with radiusr is the lesser of the two curves,

E~r! 5 EpS r

rp
D2

, (A1)

the energy of nonconducting (hydrophobic) pores, and

E~r! 5 2pgr 2 psr2 1 SCr D
4

, (A2)

the energy of conducting (hydrophilic) pores. In Eqs. A1–A2,r* andE* are
the minimum radius and energy barrier for the creation of conducting pores
(Fig. A1), g is the pore edge energy,s is the membrane surface tension,
and C is a constant. The third term in Eq. A2 represents the steric repulsion
between the lipid heads lining the pore (Israelachvili, 1992) and is respon-
sible for the increase in pore energy with shrinking radius (Weaver and
Chizmadzhev, 1996).

The pore energyE(r) in Fig. A1 corresponds to the situation when there
is no externally applied transmembrane potential. In the presence of a
transmembrane potentialVm, the pore energy, denoted byw(r), is given by

w~r! 5 E~r! 2 papVm
2 r 2, (A3)

where the term2papVm
2 r 2 is the capacitive contribution (Abidor et al.,

1979; Weaver and Mintzer, 1981). The coefficientap can be estimated
based on a continuum model as (Glaser et al., 1988; Powell and Weaver,
1986)

ap 5
1

2h
~kw 2 km!eo, (A4)

whereh is the membrane thickness,kw andkm are dielectric constants of
water and membrane, andeo is the permittivity of a vacuum.

Given the pore energy, electroporation is described mathematically by
the Smoluchowski equation (Barnett and Weaver, 1991; Freeman et al.,
1994; Pastushenko et al., 1979; Powell and Weaver, 1986; Weaver and
Mintzer, 1981). Ifn(r, t) denotes the pore density distribution function such
that at a given timet, the number of pores per unit area with radii between
r and r 1 dr is n(r, t)dr, thenn(r, t) is governed by the equation,

n

t
1 D



r S2 n

kT

w

r
2

n

rD 5 S~r!, (A5)

whereD is the diffusion coefficient of pores,k is the Boltzmann constant,
T is the absolute temperature, and S(r) is the source term that represents the
creation and destruction of pores. S(r) can be written as

S~r! 5 nch
Ur

kT
eU/kT 2 ndnH~r* 2 r!, (A6)

wherenc is the attempt rate density (Weaver and Mintzer, 1981),nd is the
frequency of lipid fluctuations (Glaser et al., 1988), andU denotes the pore
energy w of nonconducting pores (r , r* ). H(r), the Heavyside step
function, represents the fact that only nonconducting pores are destroyed.

The Smoluchowski equation (Eq. A5), used with constants typical for
electroporation, contains several small parameters. Their presence facili-
tates the use of singular perturbation to perform a rigorous simplification of
Eq. A5, and such an asymptotic reduction (Neu and Krassowska, 1999)
transformed the Smoluchowski equation into an ordinary differential equa-

FIGURE A1 The energy of a pore as a function of radius at the trans-
membrane potentialVm 5 0 mV. The dashed and solid lines show the
energy of hydrophobic and hydrophilic pores, respectively. To better
illustrate the relationship between the two pore types, the plot shows the
pore energies only for small pore radii.
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tion (ODE). This ODE describes the dynamics of the pore densityN(t),
which is related to the pore distribution functionn(r, t) by

N~t! ; E
r
*

`

n~r, t! dr. (A7)

The asymptotic ODE forN(t) has the form

dN

dt
5 KS1 2

N

Neq
D . (A8)

In the quasistatic case,K andNeq are given by Eqs. 77–78 of the paper by
Neu and Krassowska,

K 5 a exp@~Vm/Vep!
2#, (A9)

Neq 5 No exp@q~Vm/Vep!
2#. (A10)

Substituting Eqs. A9 and A10 into Eq. A8 yields Eq. 8 used in the main
body of this paper.

The paper of Neu and Krassowska relates the coefficients of Eqs.
A8–A10 to constants appearing in the expressions for pore energy (Eqs.
A1–A3) and in the Smoluchowski equation (Eq. A5–A6) (Neu and Kras-
sowska, 1999):

a 5
nd

r*
2

uw9pu
U9p 1 uw9pu

e2E
*, (A11)

Vep 5
1

r*
ÎkT

pap
, (A12)

No 5
1

U9* 1 uw9* u
nd

r*
2D Î2p

w0m
e2Em, (A13)

q 5 Srm

r*
D2

. (A14)

Eqs. A8–A14 are the dimensional versions of Eqs. 68–78 from Neu and
Krassowska. EnergiesE, w, andU are in units ofkT, andU9p, w9p, andw0m
denote derivatives with respect tor evaluated atr* and rm.

In application to a single cell, the following simplifications were made.
First, the formulation given above represents a quasistatic limit, i.e., it is
assumed that the pore distribution functionn adjusts instantaneously to
temporal variations in pore energy. As argued in the original study (Neu
and Krassowska, 1999), this approximation is valid when the changes in
Vm occur on a time scale of at least 5ms. Here, cellular polarization has a
time constant of 1.1ms, so the quasistatic approximation introduces an
error. However, since this assumption affects only the coefficientNo, one
can expect only a modest difference between solutions using the quasistatic
and time dependent versions of the asymptotic ODE.

Second, the model used here suppresses the dependence ofa andNo on
the transmembrane potential and treats them as constants. This simplifica-
tion is acceptable because the dependence of dN/dt on Vm is dominated by
the exponential exp[(Vm/Vep)

2]. In comparison, the dependence onVm

througha andNo is much weaker and is unlikely to be detectable exper-
imentally. The radius at the minimum pore energyrm also depends onVm,
but it changes very little forVm between 0 mV and the critical valueVcr

(Neu and Krassowska, 1999). Hence,rm and, consequently,q are constant.
In principle, Eqs. A11–A14 can be used to determine values for the

parameters of the model. However, this method would use several molec-
ular-level constants whose values are known only up to an order of
magnitude (Barnett and Weaver, 1991). Alternatively, the four parameters
can be determined experimentally. Glaser et al. (1988) performed specially

designed voltage-clamp experiments on artificial lipid bilayers that yielded
estimates fora andVep. The single cell model adopted Glaser’s value for
a, but decreasedVep from 460 to 258 mV so thatVcr ' 1 V, the value
reported by Kinosita and coworkers for unfertilized sea urchin eggs (Hi-
bino et al., 1991, 1993; Kinosita et al., 1988, 1991, 1992).No was
computed by dividing the measured background conductivity of a lipid
bilayer by the conductance of a single pore (Benz and Hancock, 1981;
Chernomordik and Chizmadzhev, 1989; Rosenberg and Jendrasiak, 1968).
Finally, q was chosen based on the experimental estimates of Glaser and
coworkers forr* (0.3–0.5 nm) andrm (0.6–1.0 nm) (Glaser et al., 1988).

APPENDIX B: SINGULAR PERTURBATION
APPROXIMATION TO EQS. 1–4

For the pore resealing phase, this study uses singular perturbation to
develop approximate, quasistationary equations governing the intracellular
and extracellular potentialsFi andFe. Once the shock has ceased and the
induced potential has been discharged,Vm assumes a nearly constant value
V* everywhere around the cell,

V* 5
glEl

gl 1 G*
< 20.178 mV, (B1)

whereG* 5 89.32 mS/cm2 is the average conductance of the electropo-
rated membrane as determined from simulations.G* is due to pores
remaining in the membrane after the shock, as they reseal with a time
constanttN 5 1.5 s (Eq. 11). Recognizing thattN is 106 times larger than
the cellular time constanttc 5 1.1ms (Eq. 9) motivates the use of singular
perturbation. The method used here is similar to the one proposed for an
excitable cell in an external electric field (Krassowska and Neu, 1994). The
first step is to convert the governing equations into nondimensional form
using the system of units shown in Table B1. Equations 1–3 remain
unchanged because they are invariant under scaling. Equation 4 for the
boundary conditions on the membraneS is written as

2n̂ z ¹Fi 5 2n̂ z ~m¹Fe!

5 «
Fm

t
1 kI ion 1 nIep onS, (B2)

wherem [ se/si, k [ glNo/aCm, andn [ dcG* /si areO(1) constants and
« [ tc/tN 5 dcaCm/siNo 5 1.43 1026 is a small parameter. The presence
of this small parameter in Eq. B2 allows the expansion of potentials in
powers of«. For Fi,

Fi~x, t, «! , fi
0 1 «fi

1 in the intracellular spaceVi,
(B3)

and similar expansions are written forFe and Fm. Substituting these
expansions into Eqs. 1 and B2 gives

¹2~fi
0 1 «fi

1! 5 0 in Vi, (B4)

TABLE B1 Singular perturbation scaling units

Parameter Unit Typical Value

x dc 5 2a 100 mm
t No/a 1.5 s
si, se si 4.55 mS/cm
Vm V* 20.178 mV
I ion gl(V* 2 Vrest) 15.9 mA/cm2

Iep G*V* 215.9 mA/cm2
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2n̂ z ¹~fi
0 1 «fi

1!

5 «


t
~fm

0 1 «fm
1 ! 1 kI ion 1 nIep onS.

(B5)

Since« ; 1026, only the leading order terms will be considered. The
contribution of the first-order terms is less than 0.1% as determined by
simulations. Collecting powers of« and discarding all but the leading order
terms results in a simplified system of equations governingfi

0,

¹2fi
0 5 0 in Vi, (B6)

2n̂ z ¹fi
0 5 kI ion 1 nIep onS. (B7)

Analogous equations can be derived for the extracellular potentialFe ;
fe

0,

¹2fe
0 5 0 in the extracellular spaceVe, (B8)

2n̂ z ~m¹fe
0! 5 kI ion 1 nIep onS, (B9)

fe
0~u, t! 5 0 (B10)

With I ion and Iep known from the previous time step, the system of
equations forfi

0 and fe
0 can be treated as a time-independent boundary

value problem. Eqs. B6–B10 are converted to spherical coordinates and
discretized inr and u using the finite difference method. The resulting
linear systems of equations is solved in each time step using Gaussian
elimination. The transmembrane potential is computed fromfi

0 andfe
0 and

used to updateN and calculateI ion andIep. The time step during resealing
is governed by the convergence requirements for Eq. 8 describing the rate
of change ofN. With tN 5 1.5 s the maximum time step is 100 ms, and a
20 s simulation (complete resealing) can be completed in 7 minutes, 44
seconds on a Sun Ultra 1. If, instead, the original problem (Eqs. 1–4) is
used, the computational time is estimated to be 1800 hours. The substantial
savings of the singular perturbation approximation make it feasible to
conduct investigations of the resealing process in an electroporated single
cell.
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