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An Analysis of the Size Selectivity of Solute Partitioning, Diffusion, and
Permeation across Lipid Bilayers

Samir Mitragotri, Mark E. Johnson, Daniel Blankschtein, and Robert Langer
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA

ABSTRACT The lipid bilayers of cell membranes are primarily responsible for the low passive transport of nonelectrolytes
across cell membranes, and for the pronounced size selectivity of such transport. The size selectivity of bilayer permeation
has been hypothesized to originate from the hindered transport of solutes across the ordered-chain region. In this paper, we
develop a theoretical description that provides analytical relationships between the permeation properties of the ordered-
chain region of the lipid bilayer (partition and diffusion coefficients) and its structural properties, namely, lipid chain density,
free area, and order parameter. Emphasis is placed on calculating the size selectivity of solute partitioning, diffusion, and
overall permeability across the ordered-chain region of the lipid bilayer. The size selectivity of solute partitioning is evaluated
using scaled-particle theory, which calculates the reversible work required to create a cavity to incorporate a spherical solute
into the ordered-chain region of the lipid bilayer. Scaled-particle theory is also used to calculate the work required to create
a diffusion path for solutes in the interfacial region of the lipid bilayer. The predicted size dependence of the bilayer
permeability is comparable to that observed experimentally. The dependence of solute partition and diffusion coefficients on
the bilayer structural parameters is also discussed.

INTRODUCTION

The barrier properties of biological membranes, such as thand Anderson, 1994b). Although these equations have been
blood-brain barrier, the skin, and cell membranes, to solutsuccessfully used in the analysis of transport properties of
transport arise from the remarkably low permeability of thevarious membranes, experimental and theoretical analyses
lipid bilayers comprising these membranes (Stein, 1986)clearly show that solute partitioning into bilayers differs in
Several attempts have been made to develop relationshipsany respects from that into bulk hydrocarbons. Specifi-
between the permeation properties of lipid bilayers, that iscally, the solute partition coefficient into bilayers exhibits a
solute partitioning and diffusion, and the physicochemicalstrong dependence on the local lipid microstructure, a fea-
properties of the permeating solutes, such as size and liure that cannot be accounted for based on partition coeffi-
pophilicity (Leib and Stein, 1969; Xiang and Anderson, cients in bulk fluids (Marqusee and Dill, 1986; Xiang, 1993;
1994a). Attempts have also been made to relate the transpotiang and Anderson, 1993). The dependence of the parti-
properties of lipid bilayers to their structural properties, tion coefficient on local lipid chain microstructure was
such as surface lipid density (Xiang and Anderson, 1997)demonstrated by the lattice calculations of Marqusee and
Such relationships among solute permeability, bilayer strucpill (1986), who showed that the highly-ordered structure of
tural parameters, and solute physicochemical parametetge lipid chains near the interface results in the steric ex-
may potentially help in predicting the rates of drug delivery pulsion of solutes from this region. As a result, solute
across membranes, as well as assist in the development gértition coefficients into lipid bilayers exhibit spatial vari-
physicochemical enhancers capable of increasing menmations with a minimum near the interface and a maximum
brane permeability. In spite of their potential value, suchnear the center of the bilayer. Experimental measurements
relationships are not available in the current literature.  of hexane partition coefficients have supported this hypoth-
Early studies aimed at developing structure—transport reesis (White et al., 1981). More insight on solute partitioning
lationships were focused on relating solute partitioning intointo lipid bilayers has been gained through molecular dy-
bilayers to that into simpler isotropic liquids, for example, namic (MD) simulations which have provided detailed in-
octanol (Diamond and Katz, 1974; Johnson, 1996). Thesgrmation about the local microstructure within the bilayer
studies led to the development of phenomenological equgiang and Anderson, 1993; Marrink and Berendsen, 1994,
tions to predict bilayer partition coefficients using various 1996). These simulations confirmed that the ordered-chain
solvents, including octanol, olive oil, hexadecane, and deregion (a few-A-thick region of highly-ordered lipid chains
cadiene (Johnson, 1996; Diamond and Katz, 1974; Xiangear the bilayer interface) results in the steric expulsion of
solutes, and plays an important role in determining the
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Early models describing bilayer permeability attributed thecients as

entire size dependence of bilayer permeation to solute dif-

fusion in the lipid bilayers and not to solute partitioning. 1 ® dz
Empirical equations relating diffusion coefficients to solute R= P Ky,(2)Dy(2)’ (2)
size were developed to explain the experimentally observed 0

size selectivity of lipid bilayer permeation (Leib and Stein,Where P is the lipid bilayer permeability, the suffib

1969). However, recent MD simulations have shown that . .
4 e - . ~denotes parameters corresponding to the bilayer ordered-

the size dependence of solute diffusion coefficients in bi-_, . . : . )
) . . chain region,z is the distance along the bilayer normal

layers, although stronger than that in an isotropic hydrocar; 7 T -
. : . . (perpendicular to the plane containing the lipid head
bon, is weaker than that estimated using the empirica roups), and is the ordered-chain region thickness. In the
models (Marrink and Berendsen, 1996). In addition, the? PS), g )

simulations also showed that the size dependence of Iip|c1D"0.V\.ling sectilo'ns, we describg thg calculat?o.n of the solute

bilayer permeation may be attributed to both partitioning a$ artition coefficientk,,(2) and diffusion coefficienDy(2).

well as diffusion in the ordered-chain region of the lipid

bilayer, although their relative roles in determining the golute partition coefficient into the lipid

overall size selectivity are still unknown. Attempts have ordered-chain region K, (z)

also been made to theoretically clarify the relative roles of - o

partitioning and diffusion in determining size selectivity 1h€ partition coefficient of a solute from an aqueous phase

(Xiang, 1993), however, the quantitative dependence of th#1t0 @ section of an ordered-chain region at a depi(2),

size selectivity of bilayer permeation on various bilayercan be described as

parameters is not fully understood. —Apo(2)
In this paper, we present a theoretical description that Kp(2) = exp<k_|f), (3)

relates solute partition and diffusion coefficients to the

solute size and to bilayer parameters, such as lipid densityhere Ap(2) is the change in the solute standard-state
and CD-order parameter. The primary objective of thischemical potential associated with its transfer from the
paper is to provide an analytical equation that allows Préaqueous phase into the ordered-chain region at a depth
diction of bilayer permeability based on the experimentallysrom the interfacek is the Boltzmann constant, afids the
measurable solute and bilayer parameters. The theoreticghsolute temperature. Xiang and Anderson (1993) have
description is primarily based on scaled-particle theorygescribed the change in the solute standard-state chemical
which relates the work required to create cavities in the lipidpotential associated with solute transfer into bilayers as the
bilayer (to allow partitioning and diffusion of solutes) to sym of two contributions: the work required to create a
lipid density, lipid order parameters, and solute radius. Acavity to incorporate the solute in the bilayer, and the
comparison of the theoretical predictions with experimentahange in the interactions of the solute with its surround-
results is also presented. ings, reflecting a change in the chemical microenvironment
of the solute at a deptlz. The standard-state chemical
potential u, of a solute dissolved in a solvent may be

THEORY described as

The permeation resistanéeof an isotropic membrane of
thicknessd to a solute is related to the solute diffusion

coefficient D, and the solute partition coefficier; as  \yhere w9 is the solute standard-state chemical potential in

Mo = pug + W+ Ap, 4)

(Xiang and Anderson, 1997) an ideal-gas reference staw, is the reversible work re-
d quired to create a cavity in the solvent to incorporate the
R (1)  solute from the ideal-gas state, ang®" is the change in

Do’ the solute standard-state chemical potential during its trans-

For a structurally-heterogeneous membrane, such as a ggr from the ideal-gas state to the solvent due to changes in

. . ) . o
layer, both the diffusion and the partition coefficients of the''S w(;teractlrc:ns with the surrlcl)undlngsh Note tlthlf hde— I
solute, and, hence, the permeation resistance, exhibit spatfnds On the nature, as well as on the range, of the solute
variations. Furthermore, MD simulations of solute perme-ntéractions with its surroundings. Accordingly;.™" may

ation have indicated that the maximum permeation resis&/SC depend on the location (depth) of the solute in the
tance is typically offered by the ordered-chain region of thePilayer. Using Eq. 4 to describe solute partitioning from
lipid bilayer (a few-A-thick region of highly-ordered lipid Water into a bilayer at a depth one obtains

chains near the bilayer interface) (Marrink and Berendsgn, Apg(@) = Wy(2) — W, + Aps(2), (5)
1994, 1996). Experimental measurements of permeation

resistance have also supported this hypothesis (Dix et alwhere Wy(2) is the reversible work required to create a
1978). In that case, Eq. 1 may be generalized to ré®dte  cavity to incorporate the solute in the bilayer at a depii,

spatially-dependent solute diffusion and partition coeffi-is the reversible work required to create a cavity to incor-
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porate the solute in the aqueous environment,sugl"(z2)  Calculation of W,(r, 2)

is the change in the solute standard-state chemical potentiﬂ1 . : . .
S ) . . e work required to introduce a spherical solute of radius,

due to changes in its microenvironment during the transfer

from water into the bilayer at a depthUsing Eq. 5 in Eq. f, into the (_)rdered-cham region can be egtlmated using a
3. one obtains two-dimensional (2D) model of the lipid chains. Underlying

such a model is the assumption that the work required to
~Wy(2) — A (2) + W, create a cavity to incorporate the solute is due solely to the

Ky(2) = exp< KT ) (6) lateral (2D) expansion of the bilayer against the lateral
pressure generated by the lipid chains. This assumption is

To compare solute partition coefficients from water into reasonable for solute partitioning into the ordered-chain
bilayers with those from water into isotropic solvents, an ex-égion because the lipid chains in this region are highly
pression similar to Eq. 6 can be derived to describe solordered and densely packed. Accordingly, the lateral dis-
ute partitioning from water into an isotropic solvent. Placement of the lipid chains is likely to be geometrically

Specifically, (and hence energetically) more favorable compared to any
other displacement modes. For the purpose of calculating

W, — Apd + W, W(r, 2) in the ordered-chain region, the lipid chains are
Ko = ex;{ kT ) 7) modeled as a series of connected cylinders each having a

hard-core radiu® and length (approximately equal to the
whereW, is the reversible work required to create a cavity|ength of a C—C bond) (see FigA). Hence, the number of
to incorporate the solute in the isotropic solvent, and™,  rods comprising the lipid chain is equal to the number of
is the change in the solute standard-state chemical potentig)-C bonds in the lipid tail. As will be shown later, the lipid

due to changes in its microenvironment during the transfenead group does not enter into the calculations. The cylinder
from water to the isotropic solvent. Several attempts have

been made to identify solvents that mimic the chemical

microenvironment in the lipid bilayer (Johnson, 1996; Di- on
amond and Katz, 1974; Xiang and Anderson, 1994b). Ex- A i
amples of these solvents include octanol, decadiene, hexa-

decane, and olive oil. It is unlikely that a single solvent can |
accurately represent the local chemical microenvironment

in the entire ordered-chain region. However, for simplicity,

we assume thaf\pi"(2) is relatively insensitive to the

precise location in the ordered-chain region, and therefore,

can be represented by that corresponding to a single solvent

that mimics the average chemical microenvironment of the

ordered-chain region. Although this assumption oversimpli-

fies the chemical microenvironment in the ordered-chain Segment of a Lpid Chain

region, we will show that it is a reasonable assumption that Bilayer Normal
facilitates the evaluation of the size selectivity of bilayer Longitud inal Axis
permeation. Assuming thafu3",(2) is comparable to za?ﬁafa;ofmZEPfgyzgh:a[;jgj' of the kih Cylinder
Apst, and combining Egs. 6 and 7, one obtains (Xiang, Head Groups Solute
1993) - 5
k
W)+ W, s
Ke(2) = Keexp — 57 |- (8) —
2R / cosby

Depth =z 4
Numerous theoretical calculations, as well as simulations, Lr/ v
have been performed to evaluate the work of cavity forma- PPt ==+t

tion in isotropic fluids W, (Helfand et al., 1961; Hummer et

al., 1996). In contrast, in the case of lipid bilayers, such Lipid  Chain

(,\:Aalcqlalflonz éely p;lmarllilggg SgnUIatloan] (Xla}ngi,r]_1993, FIGURE 1 @) Model lipid chain used in our study, showing three C-C
arrnk an erendsen, ) ur emphasis in this papesregments, each modeled as a cylinder of raRiasd lengtH. (B) Section

is on deV(?lOping an":"-lytical eq_ugtio!ns tha_t rela@%(z)_ ~of alipid chain oriented at an angé (with respect to the bilayer normal),
to the physical properties of the lipid bilayer, including lipid which is located between depthandz + L. Also shown is a cross section

chain density and CD-order parameter, using scaled-particlef this lipid chain on a plane located aparallel to the lipid head groups.

theory as described below. To highlight the fact m%(z)’ The cross section of the lipid cylinder is an ellipse with a major axis
. R/cos6, and a minor axiRR. Also shown is a solute having a radiugr <

Wo, Kb(z)’ andKO all dEpend on solute radius, hereafter, L) located next to the lipid chain. The cross section of the solute in the

we denote these a®ir, 2), Wy(r), Ky(r, 2, and K(r), plane located at parallel to that formed by the lipid head groups is a circle

respectively. with a radiusr.
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describing a C—C bond is designed around it such that th#éhe lipid chains may be related -y through the tetrahe-
longitudinal axis of the cylinder coincides with the normal dral geometry of the C—C bonds in a lipid chain. As a first
to the plane containing the Ghbonds (Salmon et al., 1987). step in relating) to S-p, ¢ was expanded in a Taylor series
The angle between the longitudinal axis of #ik cylinder in cos6, around6, = 0 (truncated after the first term in
and the bilayer normal is denoted By (0 = 6, = #/2), and  cos#,), and averaged, term by term, over all chain orienta-
varies from cylinder to cylinder. Consider a section of lipid tions to obtain the approximate expression

chains having an areA and thicknesd. at a depthz, as

shown in Fig. 1B. Figure 1B also shows a solute of radius =~ 2= (cosb). (10)

r nextto alipid chain. Consider the cross-section of the lipidro|iowing similar steps¢ was found to be

chain in a plane parallel to that formed by the head groups

located at a deptlz. In this projection, lets, denote the &= V@(l + ). (11
fraction of cylinders making an angie, with the bilayer . .
normal. Accordingly, this cross-section contaiNs, el- -(l:]r:r]sqsli)ing;yaslcoiggz;an' in turn, be related t&p as
lipses, each having a major axi®/cos#,, and a minor axis, "

R (see Fig. 1B), whereN is the total number of disks in the (cos6) = ¥> — Sep. (12)
areaA (that is, the disk density ip = N/A). With this

description of the lipid chains, the wol,(r, 2) required to ~ Therefore, Egs. 10 and 11 can be rewritten, respectively, as
create a cavity to accommodate a solute of radiaan be

calculated using scaled-particle theory (see the Appendix). Y~ %2+ So, (13)

The resulting expression is given by £~ (¥ + Sop) T2 + Seo). (14)

BWL(r, 2) = —In(ay) + 2(1-a)¢ (r) Eqg. 9, in combination with Egs. 13 and 14, allows the
aP(l+ ) \R (9)  prediction of the work required to introduce a circular cavity

11— ¢ £ £ 2 (corresponding to the cross-section of a spherical solute)
+ < 4 + = 1)() into a plane located in the ordered-chain region at a depth

+ )
ANCT 20 2y R from the bilayer surface.
wherep = 1/KT, & is the free area per lipid molecule at
and is given by Calculation of W(r)
N The lipid chains in an isotropic solvent (for example, octa-
& =1— 7Ry, y= cosf.’ nol) are more disordered, and, therefore, may displace in all
k

k=1 three dimensions to accommodate the partitioning solute.
Hence, the work of cavity formatior\V,(r), required to
introduce a solute into an isotropic solvent needs to be
N estimated using a three-dimensional (3D) model. Cavity
E=1+9) s 25 (1 T co; ; ) for.matic_)n in is_,otropic solvents has be(_en gtudied e_xtens.ively
1 k using simulations as well as a combination of simulations
and theoretical approaches (Hummer et al., 1996). To be
Strictly speaking, Eq. 9 is only applicable in cases whereconsistent with our previous analysis of the lipid chains in a
considerations of only a single layer of lipid segments ispilayer, we will use a simple hard-sphere model to calculate
required, that is, when the solute radiuis smaller than the  the work of cavity formation in liquids using scaled-particle
length of the lipid segment,~ 1.54 A. This follows from  theory (Helfand et al., 1961; Reiss et al., 1959). The work
the fact that ifr > I, then structural parameters (density andw,(r) required to insert a spherical solute of raditisto the
orientation) of the adjacent lipid segment also need to bésotropic solvent, modeled as a collection of hard spheres of
considered in the calculations (see also the Appendix)radiusR, can be described as (Lebowitz et al., 1965)
However, as will be shown later, Eq. 9 still provides a
reasonable estimate of the work of cavity formation forBW () = —In(v;) + 3(1—w) (r)
solutes having a radius greater thar.54 A. To actually ? ! Vi R (15)
use Eq. 9,y and ¢ must be evaluated in terms of the 5 5
measurable lipid order parameters. The most commonly + (3(1 — v + 91— w) )(r) + Bfmap
used lipid order parameter is the CD-order paramé&es, Vi 2vf Ra 3 '
given by Sop = (P,(cosBpp)), Where Bpp is the angle
between the C-H bond vector (that is, the normal to the
plane defined by the C—H bonds) and the bilayer normalvherey is the fraction of free volumes = 1 — 47R3p,/3),
(Jansson et al.,, 1992R, is the second-order Legendre py, is the hard-sphere density, aRds the pressure. Eq. 15
polynomial, and the averaging is performed over all lipidis derived by combining Eqgs. 2.7 and 2.8 of Lebowitz et al.
chains having a certain segmental position. The afglef  (1965), and then applying the resulting equation to a single-

and
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component system. Under normal pressured (atmo- free-volume pocket until it finds another large pocket to
sphere), the contribution of the last term in Eq. 15 isjump into. The solute diffusion coefficient then simply
negligible for cavities considered in this study< 4 A),  depends on the availability of a free-volume pocket into
and, hence, it is excluded in all further equations. Eq. 15 isvhich the solute can jump. In our approach, we assume that
a 3D-equivalent of Eq. 9. This analogy is clear from aa spherical solute of radiuscan move through a distanee
comparison of the coefficients of thé, r*, andr? terms in  at an anglew with respect to the bilayer normal only if a
Egs. 9 and 15. For example, the coefficientrdf 3(1 —  continuous spherocylindrical path of lengths free of the
V)Vt in Eq. 15 is analogous to the coefficientrdf 2(1 —  solvent molecules, that is, if a spherocylindrical free-vol-
a)élagh(1 + ), in Eq. 9. The analogy is even clearer if the yme pocket of radius and lengthe exists (see Fig. 2) in

lipid chains were aligned along the bilayer normal (in thatihat girection. A similar approach has been used by Han and
casef = 0, W["_Ch yieldsy = 1 and¢ = 2), for which the  or feld (1993) to describe diffusion in crowded protein
coefficient ofrl in Eqg. 9 becomes 2(+ a)/a;, which is g4 ions and by Xiang (1999) to describe diffusion in lipid
similar to ther™ term in Eq. 15. The parameterin Eq. 15 ;.0 05 The diffusion coefficient of a spherical solute of

is analogous to the parametgrin Eq. 9 and the factors 3 ; : :
X L . . . adiusr along the bilayer normal, (correspondingadc= 0),
and 2, respectively, indicate the dimensionality of Egs. 1gcan then be written as

and 9. Note that the pressure—volume term in Eq. 15 does
not appear in Eq. 9 because this equation describes a 2D
system.

D(r) = D*(r)f [p.(r, &) N P(r)] de, 7

€

Calculation of Ky(r, z)/K(r
where D*(r) is the solute diffusion coefficient within a
free-volume pocketp, (r, ) N P(r) de is the conditional
probability density that a spherocylindrical path of radius
and length between ande + de exists in the direction of
diffusion (in our case, in the direction along the bilayer
Ky(r, 2) , normal), ance* is the critical path length required for solute
K(r) exp(A + Br + Cr?), (16)  diffusion. The parametee* denotes the critical length
through which the solute must traverse for it to be displaced
where across the entire interfacial region. The parameteac-
counts for the fact that, if the solute displacement is too
A= |n<af) B = <3(1 —v) -~ (1-a)2¢ ) small, the solute may not move substantially over a large
Vi)' ViR, a(l + PR/ length scale. In other words, a certain critical displacement
is required to achieve measurable diffusion. This issue
is further discussed in the section, Estimation of Model
31-v) 91-w? 1-—&y Parameters.. . N .
C= ( = + AR - Vare The conditional probability densityp, (r, €) N P(r) de,
! f can be related to the work required to create a spherocylin-
é é 1 ) drical cavity of radiusr and lengthe in the ordered-chain

It is now possible to calculate the solute partition coefficient
in the ordered-chain region of the lipid bilayer relative
to that in an isotropic solvent using Egs. 8, 9, and 15.
Specifically,

and

- 2073 R - 20°R + 1/;7R2 region base(_j_on scaled-particle theory (Han and Herzfeld,
1993). Specifically,
Eq. 16, along with Egs. 13 and 14, relates the relative
partition coefficient of a solute of radiusat a given depth Jw

zin the ordered-chain regio(r, 2)/K.(r) to the free area p.(r,e) NP(r) de]

per lipid chaina;, the CD-order parametek-p, the lipid - _ (18)
chain radiusR, the fraction of free volume in the model plaver

isotropic solvent;, and the hard-sphere radius of a solvent = exp(—BIWL(r, €*, 2) — Wy(r, 2T},
moleculeR,,. Eq. 16 is discussed further in the Results and

Discussion section. where Wy(r, 2) is the work required to create a circular

cavity of radiusr (corresponding to a cross-section of a
spherical solute on the plane parallel to that formed by the
lipid head groups) at a depthin the bilayer (given in Eq.

9), andW(r, €*, 2) is the work required to create a cavity of
Solute diffusion in lipid bilayers has been described in termgadiusr and lengthe* in a direction normal to the bilayer

of hops between free-volume pockets (Vaz et al., 1985; Vaplane beginning at a depth Eq. 18 thus relates the solute
and Almeida, 1991). The solute is assumed to rattle in aiffusion coefficient to the geometric parameters character-

Solute diffusion across the ordered-chain
region D(r, 2)
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izing the solute and the lipid chains. Similarly, the proba- A Bilayer Normal
bility of cavity formation for solute diffusion in an isotropic tf“gj‘:dg;:'n g
liquid is given by

rpL(r, €) N P(r) de

*

(19)

€ . .
isotropic

= exp{—B[V\/g(r, E*) - WO(I’)]},

whereW,(r) is the work required to create a spherical cavity
of radiusr in the isotropic liquid (given in Eq. 15), and

. . . . Lipid Chain iy ;
WY(r, ) is the work required to create a cavity of radius Pd HRH
and lengthe* in the same isotropic solvent in any direction. Bilayer Normal
The ratio of the diffusion coefficients in the bilayer and in B 4 Longiiiinal »Axs
i I 1 I ne (at a h z) Paralle of the kth Cylinder
thg isotropic liquid,Dy(r, 2/D(r), can now be calculated e ‘Formzngy Al U::d‘ ° Y
using Egs. 17, 18, and 19 as Head Groups / Solute
B
Db(r1 Z) 2

AN\

D, — AR, €, 2 (20)

-

-
2R/cosb+etang 2r

—W,(r, 2 — Wﬂ(r, €*) + W,y(r)}]. Lipid Chain744/ U £
\J

The calculations ofV,(r, 2 and W,(r) have already been
described in the previous section (see Egs. 9 and 15, re- ) ] o
. . . FIGURE 2 @) A schematic representation of a solute of radiudis-

spectlvely). Below, we describe the calculations Cncplacing through a distancewithin lipid chains oriented at an angéewith
Wi(r, €%, 2) andWy(r, €%). respect to the bilayer normal. Two lipid chains oriented at angjesd 6,
with respect to the bilayer normal are shown. The solute can displace
through a distance only if a continuous spherocylindrical path, as shown,
is free of lipid chains. B) A projection of a solute of radius diffusing
Calculation of WX, €, 2) along the bilayer normale{ = 0) through a distance next to a lipid
cylinder oriented at an angle, with respect to the bilayer normal. The
Figure 2B shows a section of a lipid chain oriented at an projection of the lipid chain on the planezis an ellipse with a major axis

angle 6, with respect to the bilayer normal and a solute of2R/cost + e tan6 and a minor axiR
radiusr diffusing along the normal. The work required to

create a spherocylindrical cavity of radiusand lengthe

along the normal is related to the excluded volume betweeghere

the solute spherocylinder and the lipid chain. Because, as

shown earlier, the lipid chains near the interfacial region are N &

modeled as a 2D fluid that can only expand laterally, the ¢ = > s + S5 tan6y |,
. o . coso, 2R

work of cavity formation is equal to that required to create k=1

a circular cavity in an elliptical hard-disk fluid with major

axisR/cos6, + etan 6, and minor axiRR (see Fig. B). The N 1 & 2

work of cavity formationWd(r, €*, 2) can then be calculated x=1+¢> SK\/g (l + (cosek +ogtan 6k> )

using the approach presented in the Appendix, which was k=1

used to arrive at Eq. 9. The resulting equation is identical to, — (1 — #R%pd), N is the number of disks, angd(= N/A)

Eq. 9 except that the term 1/cgin Eq. 9 is replaced by g the disk number density. Eq. 21 relates the work required

1/cosby + (€*/2R) tan6,. The resulting equation is to create a diffusion path within the lipid chains to bilayer
parameters, including chain (or disk) dengitychain radius
21— Ky (1 R, and average chain orientation, as well as to solute pa-
BWL(r, €, 2) = —In(k) + kb1 + ¢) (R) rameters, including its radiusand critical diffusion path

length €. The analogy between Egs. 9 and 21 is quite

1/1—xl¢ x2¢ x r\2 apparent. The parametets$, andy in Eq. 21, correspond,

+ ¢< K T2 T 26 )( > , respectively, to the parametexs ¢, andéin Eq. 9, and they
become equal wheet = 0. To calculatéNy(r, €, 2), ¢ and

(21)  x must be evaluated in terms of the experimentally measur-

R
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able order paramete®- in a manner similar to that de- where
scribed above. Specifically,

A,:In<:<>, o (102 (1-a)%

b=+ s (tant) (22) 2 “kp(1+ PR au(l+ PR
, 1 /11— xl¢ X2 x
and C_¢>R2< p + 2 +2¢—1)
X = b1+ ). (23) _1(1_§/¢+§/2¢,+§_ )
Egs. 22 and 23 are similar to Egs. 10 and 11, respectively, IR\ o a 2y ’

and they become equal wheh = 0. Because the values of

6, in the interfacial region are relatively small (averageand

value of about 30—35° (Huang et al., 1994)n 6,) may be )

approximated by taie,). To test the error introduced by this D = _ 31-w) (3(1 —v) + 9 —w) ) r

approximation, we generated one thousand value$,of aviR, 2v; AV R

randomly distributed between 0 and 30°. In that case,

tan(6,) is within 4% of (tan6,). For the same reason, Eq. 26 indicates that the relative solute diffusion coefficient

assuming thatcos6,) ~ cog#,) in Eq. 12 yields(6,) ~ in the lipid bilayer,D(r, 2)/Dy(r), depends on the free area

cos (¥2 — Sp). Using this result, it follows that per lipid chaing;, the CD-order parametek-p, the lipid

chain radiusR, the fraction of free volume in the model

(tan 6 ~ tar(f,) = tan(cos (Y2 — o). (24)  isotropic solventy, the solvent particle radiug,, and the

critical path for solute diffusiore*. Eq. 26 is discussed

further in the Results and Discussion section.

Egs. 22-24 can then be substituted in Eq. 21 to calculat
WE(r, €, 2).

Calculation of WE(r, &) Solute permeation across the lipid

. _ bilayer interface
Cotter (1977) has described the calculation of the work of

cavity formation in a solvent consisting of spherocylindrical The PermeabilityP,(r), across the ordered-chain region of
molecules. That analysis can be modified to calculate théh€ lipid bilayer, and hence approximately across the entire
work required to create spherocylindrical cavities of radiusiPid bilayer, relative to the permeabilityy(r) of a film of

r and lengthe* in a hard-sphere liquid to arrive at the @n isotropic fluid of the same thickness can now be

equation evaluated using Egs. 2, 8, and 20. Specifically,
)= _ 3@-w(r) 3d-w)fe Por) _ 1[° Do) KyD)
BW(r, €) = —In(v) + Vi (Rh) * 4v; <Rh> P,(r) Sfo Dy(r, 2) Ky(r, 2) z @7)
N (3(1 - V) N 91— vf)z)(r2 N re*)
™2 T A2 —BWA * 5
v 2 J\RT R _ exl-pud. <) f ol o 2]z
+ B(g e + wrze*>P. (25) °

Eq. 25 i_s.very similar to Eq. 1_5, exc_ept for the presence ofro solve Eq. 27, the evaluation 8%(r, €*, 2) at various

two additional terms that are linear & (due to the linear  gepthszis required. This, in turn, requires knowledge of the
increase of the cavity volume wite*). Once again, for 2 dependencies of the lipid densipyand of the CD-order
small cavities (< 4 A), the contribution of the last term parameterSep (see Eq. 9). Although the-dependence of
(the pressure—volume term) in Eq. 25 may be neglected. g has been measured experimentally (Seeling and Seel-
ing, 1974), as well as evaluated through simulations (Xiang,
1993), thez-dependence op can only be obtained by
simulations (Marrink and Berendsen, 1996). These values
It is now possible to calculate the ratio of diffusion coeffi- of p andS-y could then be used to numerically evaluate Eq.
cients,Dy(r, 2)/D4(r), by using Egs. 9, 21, 25, and 15 in Eq. 27. However, our main objective in this paper is to arrive at

Calculation of Dy(r, z)/D(r)

20. Specifically, analytical relationships that allow calculation®j(r)/P,(r)
.2 entirely based on the experimentally-measurable bilayer
Dy(r, z , , 2 - parameters. For this purpose, we propose the following
Do(r) eXpA’ + BT + C'r+ D'er), (26) approximations to calculatdf(r, e*, 2).
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Eq. 21, which relates\(r, €*, 2) to the lipid densityp Note also that wher* = 0, I' is equal to 1. Eq. 30 is
and the chain orientatiorts,, can be rewritten, after substi- expressed solely in terms of three bilayer parametera,,

tuting x = Vé(1 + ¢) from Eq. 23 as and aeau g|| of which can be measured experimentally
(White and King, 1985; Kumar, 1991). Numerous measure-
WAr. e 7) = — 21=w (1 ments exist in the literature for these three parameters
B b(rl €, Z) In(K) + T . . . .
Ry\¢® (White and King, 1985; Kumar, 1991; Seeling and Seeling,

) (28) 1974). For example, DPPC bilayers are characterized by
n (1 —e &2 L2 1)( rf) o ~ 0.033 chains/A (Seeling and Seeling, 1974; Xiang,
2k Ry 1993) andh,, ~ 20.4 A%/chain (Xiang and Anderson, 1997).

2
B Substituting Eq. 30 in Eq. 27, the permeabilRy(r), across
wherea = (1 + ¢)/V¢. Note thatk depends op as well the ordered-chain region of the lipid bilayer (denoted here-

as onSep. We nowassume that the average “p'd. o!ensny Matter asPi"(r) to emphasize the averaging performed in the
the ordered-chain region is equal to the surface lipid dens'%rdered—chain region, as shown in Eq. 29), relative to the

(erx(tgilitrrllz,nttgﬁ - Iﬁ Z:a(\)()j, d?[iopr?rarwglteeél}g ar‘t ;?: u?;ignniaiu;\?gpermeabiIityPO(r) of a film of an isotropic fluid of the same
P y. ' thicknesss, can be written as

shown that, although the CD-order parameter exhibits
strong variations with depth it plateaus near the interfacial P (r)

i lateau b
region at a value denoted I§2*°®" Hence, we assume that

the average CD-order parameter in the interfacial region carll:)"(r)

be represented bga®a! A typical value of a2 for — o
dipalmitoyl phosphatidyl choli DPPC) bil 0.2 = — — Al - 2
ipalmitoyl phosphatidyl choline ( ) bilayers exp[ln(l oay ) 2(1_ aa,I)r <(1_ crahF)2>r]

(Seeling and Seeling, 1974) corresponding to an average
chain tilt angle of about 45°. As we will show later, Eq. 28, 31— (r 31— vy (e
after modifications corresponding to these assumptions, —{exp[ln(vf) e () o Y <)
provides an accurate description of the work of cavity Vi Ry Wi R
formation in the ordered-chain region. Substituting this B A2 /2 *
value into Egs. 22-24, and evaluatirg(with a typical _(3(1 v + 91 - w) )(r+l’e)]} (31)
value ofe* = 1.1 A [see Estimation of Model Parameters] Vi 2 R 2R,

andR = 2.48 A [see Estimation of Model Parameters]) Because interfacial transport is the rate-limiting step in

yields e« = 2.04. By takinge: = 2, Eq. 28 can now be trans-bilayer transport, the interfacial permeabilRy'(r)

simplified as should approximately represent the solute bilayer perme-
(BWE(r, €)ing ability. Following similar steps, the interfacial partition
(29)  coefficient K{'(r) relative to that in an isotropic solvent
Gk + 2<1 - Kint) r ( 1 1 )( r )2 Ko(r) (given in Eq. 8) can be written as
= - K|n Dx 2 T D 1
' Kint R* Kﬁn Kint/ \R* int
Kg'(r)

where(BW(r, €*);. is the average work of cavity formation K(r)
in the ordered-chain regioR* = R\ ¢$Paieau gplateavig the

¢ value calculated using-p = 2° andx;,, is the value o\may, o

of k in the ordered-chain region. By substituting, = (1 — = exp[ln(l — oay) — 2<1_\Uah>f - ((]__(Tah)z>f2}

oa ), where o is the surface lipid densitya, =

mRAYPIeA = the cross sectional area of a lipid chain (the 31—V [r

minimum area occupied by a lipid chain at the surface), and —{exp[ln(vf) i <Rh>

[ = gplaeayyplaeat whereyPa s they value calculated !

using Sep = P& Eq. 29 can be rewritten as 31-v) 91—w?\/r)\2
P oo

fma,l
(BWEr, € )i = =IN(1 = oy l) + Z(%>r

Note that the interfacial partition coefficient of the lipid
bilayer is not to be confused with the overall bilayer parti-

+ (‘mz)ﬂ (30) tion coefficient that is measured experimentally. The overall

(1 - oal) bilayer partition coefficient is much higher than the ordered-

where chain partition coefficient due to the higher free volume
fraction near the center of the bilayer into which the solute

pPiaeau €* (tan cosi(¥. — ey can partition. Finally, using an approach similar to that used

I'= Wu: 1+ ZR( (% + ey ) to arrive at Eq. 31, an expression for the diffusion coeffi-

cient in the ordered-chain regidi{"'(r), relative to that in
Note thatl’ contains the entire* dependence of Eq. 30. an isotropic solvenD(r) (given in Eq. 20), can also be
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derived ments exist in the literature far anda,, (White and King,

. 1985; Kumar, 1991). The reported valuesoofor egg PC
Dy'(r) 1-oal’ omal oma, bilayers is about 0.027 chains/Acorresponding to an area
D ¥ 1-oa,) “\1-oal 1-oa)" per lipid molecule of 73+ 2 A? (White, 1976). The

closed-packed area for egg PC corresponds approximately
_( am o )rz] to the area per lipid chain when the chains are tightly
(1-0a,)? (1-o0a,)? packed. We chose aa, value of 25 & per lipid chain
following the model of Stigter and Dill (1988). The plateau
+{exp[—3(1 — V) <€*> CD-order parameter value for egg PC bilayers is not avail-

v, R, able in the literature, and was assumed to be similar to that
, for DPPC bilayers. The reported value of the plateau CD-
_(3(1 -V 91-wv) )(rf*ﬂ} order parameter for DPPC bilayers+€.2 (Xiang, 1993).
(33)

Vi + 2V 2R? Numerous theoretical and computational studies have
been performed to arrive at the appropriate hard-sphere radii
Eqgs. 31-33 are the key equations of this paper. They relat®,, corresponding to various isotropic hydrocarbons. The
respectively, the interfacial permeability, partition coeffi- choice of R, depends on the choice of solvent used to
cient, and diffusion coefficient of a lipid bilayer to a given represent the isotropic fluid. Since we used octanol as a
solute, relative to those of isotropic solvents, to the expermodel isotropic solvent (due to the availability &f(r)
imentally measurable lipid bilayer parameters, including thevalues for this solvent [see Table 1]), we calcula®drom
surface lipid densityr, the cross-sectional area of the lipid the van der Waals volume of octane (closest hydrocarbon to
moleculea,,, and the CD-order parametégp. octanol). We calculated the radius of the solvent molecules
from their van der Waals volume assuming a spherical
molecular structure. The van der Waals volume for octane
Estimation of model parameters was obtained from the literature (Bondi, 1964), &dvas

The predictions of Eq. 31 were tested for egg phosphatidyfalculated to be 2.7 A. The densify, for octane was
choline (PC) bilayers, because a large set of permeabi”tpbtained from the International Critical Table 0.698
data exists for this model bilayer system. To use the modegm/cc at 25°C. The fraction of free volume in octapevas
equations, information is required on the following param-then calculated using the relation = 1 — 47R3p,/3.
eters: the surface lipid density, the closed-packed area of Although the choice oR, and p,, affects the magnitude of
lipids at the surfacey,, the CD-order parameter near the PR(r)/P.(r), it does not affect the general characteristics of
surfacePa®@ the solvent hard-sphere radiRg, the frac-  the dependence om, &, and Sp. In other words, the
tion of free volume in an isotropic solvent (discussed later inprecise choice oR,, and p,, does not affect the general
this section)v, and the solute radius Numerous measure- conclusions of the model calculations.

TABLE 1 Values of molecular weights, permeabilities, octanol-water partition coefficients, molecular radii, and
diffusion coefficients of several solutes

Partition*
Molecular Permeability Coefficient Radius D, X 1C°

No. Compound Weight (cml/s) (Komw) A) (crréls) Reference

1 Water 18 3.4¢10°° 41x 102 1.6 0.72 de Gier, 1993

2 Formamide 45 7. 10°° 6.2x 102 2.1 0.54 Pozansky et al., 1975

3 Ethandiol 62 8.8x 10°° 1.2x 102 2.4 0.43 de Gier, 1993

4 Urea 60 4.1 10°° 22x10°° 2.3 0.46 Pozansky et al., 1976

5 Acetamide 59 2.410°° 8.9x 1072 2.3 0.46 Pozansky et al., 1976

6 Propionamide 73 6.X10°° 8.9x 102 25 0.4 Pozansky et al., 1976

7 Glycerol 92 5.4 107 1.1x 1072 2.7 0.35 de Gier, 1993

8 Lactic acid 90 1.4¢10°° 2.4x 107t 2.7 0.35 Chakraborty and Deamer, 1992

9 Erythritol 122 7.5 108 1.2x 103 3.0 0.3 de Gier, 1993
10 Glucose 180 3.&x 10 50x 10 3.4 0.23 Aekson and Munns, 1989
11 Tryptophan 204 4.x 10710 9.1x 1072 35 0.24 Brunner et al., 1980
12 Phenylalanine 165 2810 1° 3.7x10°? 3.3 0.22 Brunner et al., 1980
13 Citric acid 192 3.x 10 1.9% 1072 35 0.24 Aekson and Munns, 1989
14 Fructose 180 4.8 10°1° 6.3x 1074 3.4 0.23 Brunner et al., 1980

The diffusion coefficient values were estimated using the Wilke—Change equation (Perry et al. 1973). The permeabilities and octanol-water partiti
coefficients were obtained from the literature. The molecular radii were calculated using methods described in Estimation of Model Paramétats. Not
only uncharged solutes, for which permeability and octanol-water partition coefficients are available in the literature, were included ia.the Tabl

* Partition coefficients were obtained from corresponding references and through Hansch and Leo (1979).
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The radius of the lipid chaifR was calculated frona,

(a, = mREYPIACY whereyPla®l~ 3/2 + plaeay gy psti-
tuting a, = 25 A2 and &= —0.2 yieldsR = 2.48 A.

The solute radir were calculated from their van der Waals
volumes, which were obtained from Bondi (1964). The
solutes considered in our analysis include: 1, water; 2,
formamide; 3, ethandiol; 4, urea; 5, acetamide; 6, propi->o
onamide; 7, glycerol; 8, lactic acid; 9, erythitol; 10, glucose; ="
11, tryptophan; 12, phenylalanine; 13, citric acid; and 14,5
fructose.

The critical free pathe* was used as a fitted parameter.
Fundamentallye* depends on the method used to measure
diffusion. For example, lower values ef correspond to
measurements of diffusion on a short length scale and vice
versa. Different methods of measuring diffusion coeffi-
cients in lipid bilayers operate at different length scales. For
example, methods such as fluorescent recovery after pho-
tobleaching measure diffusion coefficients on a length scal
of microns. In contrast, methods such as quasielastic neu-
tron scattering measure diffusion in a highly localized area
(~10 nm) (Vaz and Almeida, 1991). The values of diffusion
coefficients measured by these two methods vary by as
much as 100-fold. This difference in the measured diffusion
coefficients may be accounted for by changing the value offg

/
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€*. However, at this stage, it is not possible to a priori
predict the appropriate value ef. Accordingly, we chose
the value ofe* that best fits the data shown in Fig. 8,and

B, in the context of our theoretical description. Tdfevalue
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so deduced is 1.1 A for trans-bilayer diffusion across egg
PC bhilayers. This suggests that, on average, the solute needs g [
to jump through a distance of 1.1 A along the bilayer normal i
to cross the interfacial region at a rate that explains the oz e e ,
experimentally measured values of bilayer permeability. 0 g
This value ofe* is very close to the projected length of a
C—C bond along the bilayer normdl, (L = I{cos6,) =
1.54¢2 — $£5°) = 1.08 A). Note that, because octanol figure 3 @) Comparison of the predicted size dependence of the
may not be the best solvent model to describe isotropigelative permeability of several solutes across unilamellar egg PC lipo-
solute diffusion, the implications of the determined value ofsomes as a function of solute volumselid ling) with the experimentally
& need to be examined further. measured valuedilfed circles see Table 1). The model parameters used
o . for the predictions are discussed in Estimation of Model Parameters. The
_The permeabllltyPO(r) of afn octanol layer havmg a dashedplinecorresponds to the trend defined by the large solutes. The
thicknessd was calculated using a value BY, calculated  goted finecorresponds to a single exponential fit relating relative solute
using the Wilke—Chang equation (Perry and Green, 1973)ermeability to solute volumeBj Replot of the experimental data and
The value ofD0 varied by a factor of about three between theoretical predictions shown i) as a function of solute cross-sectional
the smallest (water) and the Iargest (tryptophan) molecul@rea. Thesolid line shows thg predictions of Eq. 31. Thikashed !ine
examined in this study. This size-dependencBgis much ~ cOrresponds to the trend defined by the large solutes. ddied line
. . corresponds to a single exponential fit relating relative solute permeability
weaker than that observed in the experimentally measureléJ solute cross-sectional area.
bilayer permeabilities. The octanol-water partition coeffi-
cients,K(r), were obtained from the literature (see Table
1). The thickness of the ordered-cham regiénwas as- RESULTS AND DISCUSSION
sumed to b 5 A (arepresentative thickness of the plateau
region inS-p). Note that solvents other than octanol could Eq. 31 offers an analytical relationship for the size-depen-
have been used in our calculations if the appropriate data (idence of the bilayer solute permeation in terms of several
particular,K,(r)) were available, and if the chemical struc- bilayer parameters, including surface lipid densiby
ture of the chosen solvent appropriately described the lipictlosed-packed area,, and CD-order parameté.p. We
bilayer interface. Both of these aspects about the solvertompared the predictions of Eq. 31 with the experimentally
suitability are discussed extensively in the literature (Dia-measured solute permeabilities across egg PC bilayers. It
mond and Katz, 1974; Xiang and Anderson, 1994b). should be noted that, although extensive experimental data

Solute Area (A2)
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exists for the permeation of small nonelectrolytes acrosswuthors hypothesized that the extra permeability of the small
lipid bilayers, care should be taken while comparing datasolutes is related to the existence of transient aqueous pores
from different studies, because experimental techniquem the bilayer, although the size and the physical basis for
may vary from study to study, leading to a variability in the the existence of such pores was not clarified. Eq. 31 shows
measured values. Nonetheless, such a comparison is feattiat this apparent two-region size-dependence simply re-
ble and is reported here to assess the validity of our modetults from the differential contribution of the terms appear-
Table 1 shows a compilation of literature data for theing in this equation. Specifically, for the larger solutes, the
magnitude of the permeability of various solutes across egwork of cavity formation can be described by the pressure-
PC liposomes. The Table also lists literature values of vamarea type work (the last term in the exponent appearing in
der Waals radii, molecular weights, octanol-water partitionthe numerator of Eq. 31), approximately given by ex),
coefficients, and diffusion coefficients in octanol (predictedwhereas that for smaller solutes is given by exp( Since
by the Wilke—Chang equation) for various solutes. FigureEq. 31 predicts that the size-dependence of relatively large
3 A shows the predicted size-dependence of the interfaciaolutes varies as expf?), we thought that it would be
(and hence, approximately bilayer) permeabilig}'(r)/  informative to replot the data in Fig. 8 as a function of
Po(r), of a single egg PC bilayer based on Eq. 3blid  solute cross-sectional area, rather than solute volume. This
line). The experimental permeability data is indicated by theis shown in Fig. 38, where the solid line corresponds to the
filled circles. The model predictions compare well with the predictions of Eq. 31, the dashed line corresponds to the
experimental observations. trend defined by the large solutes, which is now a straight
Some of the previous studies of bilayer permeability havdine on a semilog plot (see Eq. 31), and the dotted line
used exponential fits relating bilayer permeability to solutecorresponds to a single exponential fit relat®{g(r)/Py(r)
volume (or molecular weight) or to solute area to explainto solute cross-sectional area. Clearly, the three curves in
the experimentally observed permeation size-selectivityFig. 3B are in much closer agreement with each other than
We have, therefore, compared the predictions of Eq. 31 witlthose shown in Fig. 3. The dashed line still deviates
such exponential fits. First, we note that the curvilinearslightly from the solid line for solute cross-sectional areas
nature of the solid line in Fig. B clearly shows that the that are smaller than 15%Abecause the contribution of the
predictions of Eq. 31 differ from a single exponential fit exp(—r) term in Eq. 31 dominates for smatl values.
relating PI™(r)/P,(r) to solute volume (which would corre- However, the theoretical predictions, as well as experimen-
spond to a straight line in Fig. &, as shown by thelotted tal data in Fig. 38, suggest that a single exponential fit
line). The Figure also shows a dashed line corresponding teelating P"(r)/Py(r) to solute cross-sectional area provides
the trend defined by the large solutes, that is, a tangent to thee closer approximation to Eqg. 31 than a single exponential
solid line at a volume= 200 A3, Figure 3A reveals that the fit relating PI™(r)/P,(r) to solute volume (as shown in Fig.
dashed line deviates from the solid line for the small solute8 A). This also implies that the solute permeability across
(volume less than about 100°R which clearly indicates lipid bilayers should correlate better with solute cross-sec-
that the permeability of the small solutes is higher than thational area than with solute volume. This is clearly shown in
expected from the trend defined by the larger solutes. InFig. 4, A-C, where the normalized relative interfacial per-
deed, the values oPI™(r)/Py(r) for a solute having zero meability, [PI"'(r)/Po(NVIPI(r = 0)/Py(r = 0)], is plotted
volume, predicted by the solid line, dashed line, and dotteds functions of solute radius, cross-sectional area, and vol-
line in Fig. 3A, are 0.38~10 4, and~102, respectively. ume, respectively. The various lines correspond to the best
In general, for a zero-volume solute (that is, for a point-likefit under the constraint thatP[™(r)/Py(D)]/[PIM(r = 0)/
solute), P™(r)/Py(r) should be close to the ratio of free Py(r = 0)] = 1 whenr = 0. Fig. 4, A-C shows that the
volumes in the interfacial region and in an isotropic solvent,overall correlation of the normalized permeability with sol-
which is 0.47 (see Eg. 31 and the free volumes described inte cross-sectional area is much better than those with solute
the previous section). ThereforB"(r)/P,(r) for a point-  radius or solute volume, as judged by their correlation
like solute predicted by Eq. 31 is much closer to its expectedoefficients. A similar conclusion was reached by Xiang
value than that predicted by the exponential fits. Henceand Anderson (1998). The accuracy of the curve fits in Fig.
while the solid line describeB™(r)/Py(r) over the entire 4, A-C can be further seen in Fig. -C, where the
range of solute sizes examined in FigA3the other two calculated residuals (the difference between the experimen-
lines appear to grossly underpredief'(r)/Py(r) for the tally measured and predicted values using the corresponding
small solutes. exponential curve fits) are plotted. Figurdshows that the
The deviation of the size-dependence of the experimeneesiduals corresponding to the curve fit &t{(r)/Py(r)]/
tally measured bilayer permeability from a single exponen{P\"(r = 0)/P,(r = 0)], as a function of solute radius,
tial curve relating permeability to solute volume has indeeddecrease with increasing solute radius. In contrast, the re-
been reported in the past. Specifically, Walter and Gutsiduals corresponding to the curve fit relatif§'[(r)/Po(r)]/
knecht (1986) reported that solutes having moleculafP{™(r = 0)/Py(r = 0)] to solute volume increase with
weights smaller than 50 (which roughly corresponds to ancreasing solute volume. A systematic error in the residuals
solute volume of~70 A% permeate faster than expected in both cases indicates that neither represents the data fairly.
based on the permeability of large (MW 50) solutes. The In contrast, Fig. B shows that the residuals are randomly
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0))]

A r’=0.7 B r2=0.9

FIGURE 4 Replot of the experi-
mental data shown in Figure 3 (nor-
malized with respect to the solute
permeability corresponding to a sol-
ute withr = 0 as predicted by Eqg. 31,
that is, PE(r)/Po(n))/[PE(r = 0)/
Py(r = 0)]) as a function of &) solute
radius, B) cross-sectional area, and
(C) volume. Thesolid lines corre-
spond to exponential fits of the ex-
perimental data using the equation
[PE(r)/Po(NIPE(r = 0)/Pe(r = 0)] o |
= exp(~aG), whereG is either sol- I
ute radius, cross-sectional area, or
volume. °
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distributed around zero, thus implying that an exponentiaexp(—r) term to bilayer permeability dominates for small
fit relating [PI"(r)/Po(N]/[PI(r = 0)/Py(r = 0)] to solute  solutes. In other words, the work of cavity formation for
cross-sectional area fits the experimental data well. Amrelatively small solutes is proportional to the solute radius
interesting deviation from this conclusion involves therather than to the solute cross-sectional area. Hence, it
residual for the smallest solute in Fig.A;C (indicated by  appears that, although the overall solute permeability cor-
the arrows) which is closer to zero in Fig. B than in  relates well with solute cross-sectional area, this may not
Fig. 5,B or C. This suggests that, in the case of relatively hold true for small solutes. Accordingly, none of the single
small solutes, an exponential fit relating}]i(r)/Py(r)]/ exponential fits examined (either with respect to solute
[PIM(r = 0)/P,(r = 0)] to solute radius is more accurate than radius, cross-sectional area, or volume) may be able to
those relating it to solute cross-sectional area or solutexplain the experimental permeation data over a wide range
volume. A possible explanation for this finding follows of solute sizes (although the exponential fit as a function of
from Eq. 31, which shows that the contribution of the solute cross-sectional area is better than those as a function
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of solute radius or volume). In contrast, Eq. 31, which takesilayer was chosen to be 0.033 chairs(8orresponding to
into account the relationship between the work of cavitya chain area of 30 #chain) (Xiang, 1993), ana,, for a
formation and solute size, is applicable over a broad solut®PPC bilayer was calculated from the reported free area
size range. fractions in the ordered-chain regian (& = 1 — oa,) and

Several attempts have been made in the past to quantitasas found to be 20.7 A Figure 6 shows a comparison of
tively understand the origin of the size selectivity of bilayerthe predictions of Eq. 34f(ll line) with the simulations
permeation. The new aspect of our model is that it enablepen circle$. As can be seen, Eq. 34 predicts reasonably
us to analytically correlate bilayer permeability to importantwell the overall size-dependence @i™(r) for cavities
bilayer and solute properties based on a mechanisticallformed in the ordered-chain region. The agreement of our
sound description of solute partitioning and subsequenmodel predictions with the simulations data is excellent for
diffusion in bilayers. A few analytical equations already small solutesr( < 1.54 A corresponding to* < 2.4 A%);
exist in the literature to predict bilayer permeability. For however, the predictions are slightly lower than the simu-
example, an early model by Leib and Stein (1969) attributedations values for the larger solutes & 1.54 A). As
the size dependence of bilayer permeation entirely to diffuexplained earlier, the discrepancy between the predictions
sion, based on the assumption that diffusion in a bilayer i@nd the simulations for solutes having radii larger than
similar to that in a polymer membrane. Although this model~1.54 A is not surprising, because Eq. 9, on which Eq. 34
captured the relevant features of solute diffusion, it did nots based, is most accurate for solutes having a radthat
account for the contribution of partitioning to size selectiv-is smaller than the length of the lipid segment 1.54 A
ity. Recently, Xiang and Anderson (1997) proposed a free{see Calculation ofV,(r, z)). However, as can be seen from
area model to explain the permeability of acetic acid acros§ig. 6, Eq. 34 still provides a reasonable estimate of the
lipid bilayers. This analytical model attributed the size de-work of cavity formation for solutes having radii greater
pendence of bilayer permeation to partitioning and to dif-than~1.54 A.
fusion. Their model calculated the probability for the cre- The size selectivity of bilayer partitioning, and of bilayer
ation of a free area for solute partitioning and diffusion diffusion, depends on the surface lipid densitythe CD-
across a lipid bilayer. The model implicitly assumed that theorder paramete&-p, and the closed-packed lipid area
work required to create a cavity to incorporate a solute ofNote that these three parameters cannot be varied indepen-
radiusr is proportional ta?. As shown earlier, this assump- dently. Specifically, the parametessand S- are closely
tion, although valid for most solutes, may underestimate theelated (Nagle, 1993; De Young and K.A., 1990). Egs. 32
work of cavity formation required to incorporate relatively and 33, respectively, provide simple, yet fundamental, re-
small solutes. Furthermore, their model neglected the workations between the solute partitioning coefficient and dif-
required to create a cavity in isotropic solvents, and mayusion coefficient in the ordered-chain region and the bi-
therefore lead to an overestimation of the solute sizdayer structural characteristics. The predicted relative solute
selectivity. partition coefficient in the ordered-chain regiol"(r)/

The predictions of our model are also in general agreeK(r), decreases with increasing surface lipid density
ment with the simulations data available in the literature. AThis prediction reflects the fact that the probability of cavity
direct comparison of the predictions of Eq. 31 with simu-formation in the ordered-chain region decreases with in-
lation data is difficult because none of the simulations report
PI"(r)/P(r). However, a comparison of the simulations data
can be made with our model predictions regarding the
probability of cavity formation in the interfacial region,
p™(r) (given by Eq. 34 below, which is derived from Eq. 9

after substituting expressions farand ¢ similar to those
used in the derivation of Eq. 31). Specifically,
P™(r) = expl — BWh())ind =
[oX
e
_ _ _ U\/Wah
= exp(ln(l oay) 2(1 - Uah)r
— L 2 34
(1 _ O.ah)z re ( )
10-6 1 1 1
i . 0 5
We therefore compared the valuespS¥(r) predicted from v 2

Eq. 34 with those obtained from the MD simulations of Cavity Area (A')

DPI.DC-bllayers reported by Xiang and Anderson (]_'993)' EqFIGURE 6 Comparison of the model predictions @f(r) for various
34 indicates that two parametersanda, are required t0  solute cross-sectional arealid line based on Eq. 34) with simulations
predict p(r). The surface lipid densityr for a DPPC  data from the literature (Xiang, 1993)gen circle$.
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creasing lipid density. The dependence&¥(r)/K,(r) onc  CONCLUSIONS

is much stronger for solutes having larger radii. Physically . - e L
this suggests that the enhancement of the probability 0The size selectivity of solute partitioning into lipid bilayers

cavity formation due to an increase inis larger for the Voo, analyzed using scaled-particle theory. A 2D scaled-
v ge ... . particle theory description was used to calculate the revers-
larger solutes. The dependence of the relative diffusio

ffici int . litativelv simil h ble work required to create a circular cavity to introduce the
coefficientDy(1)/Do(r) on o s qualitatively similar to that g4y e into the interfacial region of the lipid bilayer. An

of the relative partition coefficient onr. o approximate equation was derived to relate the solute par-
Itis useful to quantify the relative contribution of the tition coefficient in the ordered-chain region to three exper-
diffusion and the partition coefficients to size selectivity by imentally measurable bilayer parameters: the surface lipid
introducing a quantityQ, defined as@ = [Dg'(r)/Dy(N)/  density, the closed-packed area of the lipids, and the CD-
[Ky'(r)/Ko(r)]. A value of Q = 1 indicates that hindrance to order parameter. Additional equations were derived to de-
diffusion and partitioning are comparable in determining thescribe solute diffusion in the ordered-chain region. The
size dependence of bilayer permeation. A valu€of 1  predicted permeabilities compare favorably with the exper-
indicates that the solute experiences more difficulty in parimentally measured bilayer permeabilities, although it
titioning into the ordered-chain region as compared to dif-should be kept in mind that specific interactions between the
fusing across it. In other word"(r)/K.(r) has a larger solute and the bilayer were not accounted for in the model
contribution in determining the size dependence of bilayepresented in this paper. Finally, the extension of the theory
permeation as compared to that IDE“(r)/DO(r). Figure 7 presented here to biological systems, such as cell mem-
shows the predicted values @ffor the egg PC bilayer data branes, should be feasible, although it will require informa-
shown in Fig. 3 as a function of solute volume. Figure 7tion about the structural parameters characterizing the bi-
shows thaQ may be greater or less than unity depending or@yers comprising cell membranes. Nevertheless, the
solute size, thus suggesting that the relative contribution ofPPlicability of the general principles of bilayer permeation
diffusion and partitioning may vary with solute size and resulting from the trans-bilayer transport description pre-

with other bilayer parameters. This also suggests that it [SENt€d i this paper may be useful in understanding trans-
not possible to make general statements about the quantitBQrt processes in biological membranes.

tive relative roles of diffusion and partitioning in determin-

ing the size selectivity of bilayer permeation. This is anAPPENDIX

important conclusion, because it suggests that the relativ€onsider the formation of a spherical cavity within a single layer of lipid
importance of partitioning and diffusion in bilayer perme- chains in a bilayer. Since the lipid chains are modeled as a 2D system, the
ation should be evaluated on a case by case basis. AIthou%ﬁ’”‘ of cavity formation to accommodate a spherical solute of radias

. tal . |ati dat ilable t ssumed to be equal to that corresponding to the formation of a circular
no experimental or simufations data are avallable to asse%ﬁvity of radiusr in a plane containing elliptical cross-sections of the lipid

our model predictions fo@Q, the predictions regarding the chains. This assumption is valid for solutes having a raditist is less
relative roles of partitioning and diffusion in bilayer perme- than the thickness of a lipid segment. In the event that part of the solute

ation are quite novel and could be tested by future eXp(:’,rii_ntersects with the adjacent lipid segment, considerations of the density and
. . ordering of the lipid segments in the adjacent chain layer are required. Note
ments or simulations.

that the lipid density and lipid chain order parameters vary with depth in
the lipid bilayer.

To calculate the work of cavity formation in a system of hard ellipses,
an equation of state for a mixture of hard ellipses is required and is
discussed first. Using scaled-particle theory, the wivk required to
introduce an ellips& having major axisxR and minor axis\R, where«
and A are scaling parameters, in a mixture of ellipses can be obtained
by generalizing the equations of Cotter (1977) for spherocylinders.
Specifically,

exp(—pW) =1 —p X sS + Fs(a, A, p), (A1)

i=1

wherep is the lipid disk densityB = 1/KT, S, is the area from which the
center of ellipsek is excluded when it moves around ellipséhaving a
major axisR/cos6,, and a minor axif) without loosing contact with it.
The first two terms in Eq. Al, that is, + p 2L ; §S,, account for the
excluded-area interactions of ellipgevith all the other ellipses, whereas
the third termF%, accounts for multibody interactions (Cotter, 1977). For
o 50 100 150 200 infinitesimally small solutes (for whichy = A = 0), the terms accounting

Solute Volume (A%) for multibody interactions must vanish, that is,

Fs aFs
FIGURE 7 Predicted dependence @Qf on solute volume at constant (F'é)a:,\zo = (6 = N =0
values ofo, 0.027 A% S5, —0.2; &, 25 A% ande*, 1.1 A. A/ y=r=0 a=\=0
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(Cotter, 1977). In contrast, for infinitely large solutes (for whieh= A = equation of state for a mixture of hard ellipses is then given by
), W, must reduce to a pressure-area type work. These considerations
suggest thatVj, may be described approximately by the equation (Cotter, . 1 1- f/lb + g/lb + I3 1
1977), P = Ry \1 — pnR%y  2(1 — pnR2Y)> 24 '
A8
BWk = COO + Cloa + C01)\ + a)\RZBP, (A2) )
where

whereP is the 2D pressure, and the coefficie@s, can be described by
(Cotter, 1977) N

(A3) }

a(l+m)Wk)
a=A=0 and

=M m)y-—>
Clm (I m) (aala)\m

These coefficients can be calculated by substituting Eq. A2 in Eq. Al after
a formal expression fdg, is known. BecausEk, as well as its derivatives, N @ 1
vanish ata = A = 0, the actual evaluation d¥5 is not necessary. The &= (1 + W) E S 2(1 + 00529>
central quantity of interest IS, the area from which the center of ellipse k=1 k
i is excluded by ellips&. S, was calculated using an approach similar to
that of Boublik (1974). Consider two ellipsdésandk, having areas§ and Eqg. A8 indicates that the pressure of a multicomponent hard-ellipse system
S. and perimeterk, andL,. S, (averaged over all the orientationstofiith depends on three parameters: the densityinor axisR, and the param-
respect td) can be obtained following the approach developed by Kihara€ters related to the eccentricifyand §. Note that Eq. A8 reduces to the
(1963). Specifically, well-known equation of state for hard circular disks (Helfand et al., 1961)
after substitutingy = 1 and¢ = 2.
LiLy The work required to introduce a spherical solute of radius the
SK=S+S+ o (A4) ordered-chain regioniV(r, 2), can be calculated by substitutiag= A =
™ r/Rin Eg. A6, and using Eq. A8 to describe the pressiralong with
) ) ) ) substituting analytical expressions for the ar&,= wR?cos6, and
Hence, the excluded area when an elligdeving a major axiR and a perimeterl; = 27RV/% + 1/(2 co€ 6,), of ellipsei, and representing the

minor axis AR is introduced into a system consisting of ellipsegach summations byy and¢ as shown above. The resulting expression is given
having an areaS, and perimeterL;, is given by (noting thatL, = in Eq. 9 in the main text.

27RV/(o? + A?)/2 andS, = 7R%a)

Sk =S + 7R + LR\(o” + A9)/2. (A5)  we are grateful to Professor Tian-Xiang Xiang for providing his simulation
data. This work was supported by a National Institutes of Health grant
Substituting Eg. A5 in Eq. Al, and then substituting the resulting expres#GM 44884.
sion in Eq. A3, the coefficient€,,, can be evaluated. Substituting the
resulting values o, in Eq. A2 then yields
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