
An Analysis of the Size Selectivity of Solute Partitioning, Diffusion, and
Permeation across Lipid Bilayers

Samir Mitragotri, Mark E. Johnson, Daniel Blankschtein, and Robert Langer
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA

ABSTRACT The lipid bilayers of cell membranes are primarily responsible for the low passive transport of nonelectrolytes
across cell membranes, and for the pronounced size selectivity of such transport. The size selectivity of bilayer permeation
has been hypothesized to originate from the hindered transport of solutes across the ordered-chain region. In this paper, we
develop a theoretical description that provides analytical relationships between the permeation properties of the ordered-
chain region of the lipid bilayer (partition and diffusion coefficients) and its structural properties, namely, lipid chain density,
free area, and order parameter. Emphasis is placed on calculating the size selectivity of solute partitioning, diffusion, and
overall permeability across the ordered-chain region of the lipid bilayer. The size selectivity of solute partitioning is evaluated
using scaled-particle theory, which calculates the reversible work required to create a cavity to incorporate a spherical solute
into the ordered-chain region of the lipid bilayer. Scaled-particle theory is also used to calculate the work required to create
a diffusion path for solutes in the interfacial region of the lipid bilayer. The predicted size dependence of the bilayer
permeability is comparable to that observed experimentally. The dependence of solute partition and diffusion coefficients on
the bilayer structural parameters is also discussed.

INTRODUCTION

The barrier properties of biological membranes, such as the
blood–brain barrier, the skin, and cell membranes, to solute
transport arise from the remarkably low permeability of the
lipid bilayers comprising these membranes (Stein, 1986).
Several attempts have been made to develop relationships
between the permeation properties of lipid bilayers, that is,
solute partitioning and diffusion, and the physicochemical
properties of the permeating solutes, such as size and li-
pophilicity (Leib and Stein, 1969; Xiang and Anderson,
1994a). Attempts have also been made to relate the transport
properties of lipid bilayers to their structural properties,
such as surface lipid density (Xiang and Anderson, 1997).
Such relationships among solute permeability, bilayer struc-
tural parameters, and solute physicochemical parameters
may potentially help in predicting the rates of drug delivery
across membranes, as well as assist in the development of
physicochemical enhancers capable of increasing mem-
brane permeability. In spite of their potential value, such
relationships are not available in the current literature.

Early studies aimed at developing structure–transport re-
lationships were focused on relating solute partitioning into
bilayers to that into simpler isotropic liquids, for example,
octanol (Diamond and Katz, 1974; Johnson, 1996). These
studies led to the development of phenomenological equa-
tions to predict bilayer partition coefficients using various
solvents, including octanol, olive oil, hexadecane, and de-
cadiene (Johnson, 1996; Diamond and Katz, 1974; Xiang

and Anderson, 1994b). Although these equations have been
successfully used in the analysis of transport properties of
various membranes, experimental and theoretical analyses
clearly show that solute partitioning into bilayers differs in
many respects from that into bulk hydrocarbons. Specifi-
cally, the solute partition coefficient into bilayers exhibits a
strong dependence on the local lipid microstructure, a fea-
ture that cannot be accounted for based on partition coeffi-
cients in bulk fluids (Marqusee and Dill, 1986; Xiang, 1993;
Xiang and Anderson, 1993). The dependence of the parti-
tion coefficient on local lipid chain microstructure was
demonstrated by the lattice calculations of Marqusee and
Dill (1986), who showed that the highly-ordered structure of
the lipid chains near the interface results in the steric ex-
pulsion of solutes from this region. As a result, solute
partition coefficients into lipid bilayers exhibit spatial vari-
ations with a minimum near the interface and a maximum
near the center of the bilayer. Experimental measurements
of hexane partition coefficients have supported this hypoth-
esis (White et al., 1981). More insight on solute partitioning
into lipid bilayers has been gained through molecular dy-
namic (MD) simulations which have provided detailed in-
formation about the local microstructure within the bilayer
(Xiang and Anderson, 1993; Marrink and Berendsen, 1994,
1996). These simulations confirmed that the ordered-chain
region (a few-Å-thick region of highly-ordered lipid chains
near the bilayer interface) results in the steric expulsion of
solutes, and plays an important role in determining the
overall permeability of lipid bilayers. Although the simula-
tions have been helpful in understanding many aspects of
bilayer solute permeation, the general dependence of bilayer
permeability on the interfacial structure of the lipid bilayers
is not yet well understood.

Attempts have also been made to develop analytical
models to explain the size selectivity of bilayer permeation.
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Early models describing bilayer permeability attributed the
entire size dependence of bilayer permeation to solute dif-
fusion in the lipid bilayers and not to solute partitioning.
Empirical equations relating diffusion coefficients to solute
size were developed to explain the experimentally observed
size selectivity of lipid bilayer permeation (Leib and Stein,
1969). However, recent MD simulations have shown that
the size dependence of solute diffusion coefficients in bi-
layers, although stronger than that in an isotropic hydrocar-
bon, is weaker than that estimated using the empirical
models (Marrink and Berendsen, 1996). In addition, the
simulations also showed that the size dependence of lipid
bilayer permeation may be attributed to both partitioning as
well as diffusion in the ordered-chain region of the lipid
bilayer, although their relative roles in determining the
overall size selectivity are still unknown. Attempts have
also been made to theoretically clarify the relative roles of
partitioning and diffusion in determining size selectivity
(Xiang, 1993), however, the quantitative dependence of the
size selectivity of bilayer permeation on various bilayer
parameters is not fully understood.

In this paper, we present a theoretical description that
relates solute partition and diffusion coefficients to the
solute size and to bilayer parameters, such as lipid density
and CD-order parameter. The primary objective of this
paper is to provide an analytical equation that allows pre-
diction of bilayer permeability based on the experimentally
measurable solute and bilayer parameters. The theoretical
description is primarily based on scaled-particle theory,
which relates the work required to create cavities in the lipid
bilayer (to allow partitioning and diffusion of solutes) to
lipid density, lipid order parameters, and solute radius. A
comparison of the theoretical predictions with experimental
results is also presented.

THEORY

The permeation resistanceR of an isotropic membrane of
thicknessd to a solute is related to the solute diffusion
coefficient Do and the solute partition coefficientKo as
(Xiang and Anderson, 1997)

R5
d

DoKo
. (1)

For a structurally-heterogeneous membrane, such as a bi-
layer, both the diffusion and the partition coefficients of the
solute, and, hence, the permeation resistance, exhibit spatial
variations. Furthermore, MD simulations of solute perme-
ation have indicated that the maximum permeation resis-
tance is typically offered by the ordered-chain region of the
lipid bilayer (a few-Å-thick region of highly-ordered lipid
chains near the bilayer interface) (Marrink and Berendsen,
1994, 1996). Experimental measurements of permeation
resistance have also supported this hypothesis (Dix et al.,
1978). In that case, Eq. 1 may be generalized to relateR to
spatially-dependent solute diffusion and partition coeffi-

cients as

R5
1

P
5 E

o

d dz

Kb~z!Db~z!
, (2)

where P is the lipid bilayer permeability, the suffixb
denotes parameters corresponding to the bilayer ordered-
chain region,z is the distance along the bilayer normal
(perpendicular to the plane containing the lipid head
groups), andd is the ordered-chain region thickness. In the
following sections, we describe the calculation of the solute
partition coefficientKb(z) and diffusion coefficientDb(z).

Solute partition coefficient into the lipid
ordered-chain region Kb(z)

The partition coefficient of a solute from an aqueous phase
into a section of an ordered-chain region at a depthz, Kb(z),
can be described as

Kb~z! 5 expS2Dmo~z!

kT D, (3)

where Dmo(z) is the change in the solute standard-state
chemical potential associated with its transfer from the
aqueous phase into the ordered-chain region at a depthz
from the interface,k is the Boltzmann constant, andT is the
absolute temperature. Xiang and Anderson (1993) have
described the change in the solute standard-state chemical
potential associated with solute transfer into bilayers as the
sum of two contributions: the work required to create a
cavity to incorporate the solute in the bilayer, and the
change in the interactions of the solute with its surround-
ings, reflecting a change in the chemical microenvironment
of the solute at a depthz. The standard-state chemical
potential mo of a solute dissolved in a solvent may be
described as

mo 5 mo
ig 1 W1 Dmsur, (4)

wheremo
ig is the solute standard-state chemical potential in

an ideal-gas reference state,W is the reversible work re-
quired to create a cavity in the solvent to incorporate the
solute from the ideal-gas state, andDmsur is the change in
the solute standard-state chemical potential during its trans-
fer from the ideal-gas state to the solvent due to changes in
its interactions with the surroundings. Note thatDmsur de-
pends on the nature, as well as on the range, of the solute
interactions with its surroundings. Accordingly,Dmsur may
also depend on the location (depth) of the solute in the
bilayer. Using Eq. 4 to describe solute partitioning from
water into a bilayer at a depthz, one obtains

Dmo~z! 5 Wb~z! 2 Wa 1 Dma2b
sur ~z!, (5)

where Wb(z) is the reversible work required to create a
cavity to incorporate the solute in the bilayer at a depthz, Wa

is the reversible work required to create a cavity to incor-
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porate the solute in the aqueous environment, andDma2b
sur (z)

is the change in the solute standard-state chemical potential
due to changes in its microenvironment during the transfer
from water into the bilayer at a depthz. Using Eq. 5 in Eq.
3, one obtains

Kb~z! 5 expS2Wb~z! 2 Dma2b
sur ~z! 1 Wa

kT D. (6)

To compare solute partition coefficients from water into
bilayers with those from water into isotropic solvents, an ex-
pression similar to Eq. 6 can be derived to describe sol-
ute partitioning from water into an isotropic solvent.
Specifically,

Ko 5 expS2Wo 2 Dma2o
sur 1 Wa

kT D, (7)

whereWo is the reversible work required to create a cavity
to incorporate the solute in the isotropic solvent, andDma2o

sur

is the change in the solute standard-state chemical potential
due to changes in its microenvironment during the transfer
from water to the isotropic solvent. Several attempts have
been made to identify solvents that mimic the chemical
microenvironment in the lipid bilayer (Johnson, 1996; Di-
amond and Katz, 1974; Xiang and Anderson, 1994b). Ex-
amples of these solvents include octanol, decadiene, hexa-
decane, and olive oil. It is unlikely that a single solvent can
accurately represent the local chemical microenvironment
in the entire ordered-chain region. However, for simplicity,
we assume thatDma2b

sur (z) is relatively insensitive to the
precise location in the ordered-chain region, and therefore,
can be represented by that corresponding to a single solvent
that mimics the average chemical microenvironment of the
ordered-chain region. Although this assumption oversimpli-
fies the chemical microenvironment in the ordered-chain
region, we will show that it is a reasonable assumption that
facilitates the evaluation of the size selectivity of bilayer
permeation. Assuming thatDma2b

sur (z) is comparable to
Dma2o

sur and combining Eqs. 6 and 7, one obtains (Xiang,
1993)

Kb~z! 5 KoexpS2Wb~z! 1 Wo

kT D. (8)

Numerous theoretical calculations, as well as simulations,
have been performed to evaluate the work of cavity forma-
tion in isotropic fluids,Wo (Helfand et al., 1961; Hummer et
al., 1996). In contrast, in the case of lipid bilayers, such
calculations rely primarily on simulations (Xiang, 1993;
Marrink and Berendsen, 1996). Our emphasis in this paper
is on developing analytical equations that relateWb(z)
to the physical properties of the lipid bilayer, including lipid
chain density and CD-order parameter, using scaled-particle
theory as described below. To highlight the fact thatWb(z),
Wo, Kb(z), andKo all depend on solute radius,r, hereafter,
we denote these asWb(r, z), Wo(r), Kb(r, z), and Ko(r),
respectively.

Calculation of Wb(r, z)

The work required to introduce a spherical solute of radius,
r, into the ordered-chain region can be estimated using a
two-dimensional (2D) model of the lipid chains. Underlying
such a model is the assumption that the work required to
create a cavity to incorporate the solute is due solely to the
lateral (2D) expansion of the bilayer against the lateral
pressure generated by the lipid chains. This assumption is
reasonable for solute partitioning into the ordered-chain
region because the lipid chains in this region are highly
ordered and densely packed. Accordingly, the lateral dis-
placement of the lipid chains is likely to be geometrically
(and hence energetically) more favorable compared to any
other displacement modes. For the purpose of calculating
Wb(r, z) in the ordered-chain region, the lipid chains are
modeled as a series of connected cylinders each having a
hard-core radiusR and lengthl (approximately equal to the
length of a C–C bond) (see Fig. 1A). Hence, the number of
rods comprising the lipid chain is equal to the number of
C–C bonds in the lipid tail. As will be shown later, the lipid
head group does not enter into the calculations. The cylinder

FIGURE 1 (A) Model lipid chain used in our study, showing three C–C
segments, each modeled as a cylinder of radiusR and lengthl. (B) Section
of a lipid chain oriented at an angleuk (with respect to the bilayer normal),
which is located between depthszandz1 L. Also shown is a cross section
of this lipid chain on a plane located atz parallel to the lipid head groups.
The cross section of the lipid cylinder is an ellipse with a major axis
R/cosuk and a minor axisR. Also shown is a solute having a radiusr (r ,
L) located next to the lipid chain. The cross section of the solute in the
plane located atzparallel to that formed by the lipid head groups is a circle
with a radiusr.
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describing a C–C bond is designed around it such that the
longitudinal axis of the cylinder coincides with the normal
to the plane containing the CH2 bonds (Salmon et al., 1987).
The angle between the longitudinal axis of thekth cylinder
and the bilayer normal is denoted byuk (0 # uk # p/2), and
varies from cylinder to cylinder. Consider a section of lipid
chains having an areaA and thicknessL at a depthz, as
shown in Fig. 1B. Figure 1B also shows a solute of radius
r next to a lipid chain. Consider the cross-section of the lipid
chain in a plane parallel to that formed by the head groups
located at a depthz. In this projection, letsk denote the
fraction of cylinders making an angleuk with the bilayer
normal. Accordingly, this cross-section containsNsk el-
lipses, each having a major axis,R/cosuk, and a minor axis,
R (see Fig. 1B), whereN is the total number of disks in the
areaA (that is, the disk density isr 5 N/A). With this
description of the lipid chains, the workWb(r, z) required to
create a cavity to accommodate a solute of radiusr can be
calculated using scaled-particle theory (see the Appendix).
The resulting expression is given by

bWb~r, z! 5 2ln~af! 1
2~1 2 af!j

afc~1 1 c! S r

RD
1

1

cS1 2 j/c

af
1

j

2caf
2 1

j

2c
2 1DS r

RD
2

,

(9)

whereb 5 1/kT, af is the free area per lipid molecule atz
and is given by

af 5 1 2 pR2rc, c 5 O
k51

N sk

cosuk
,

and

j 5 ~1 1 c!O
k51

N

skÎ1

2 S1 1
1

cos2 uk
D .

Strictly speaking, Eq. 9 is only applicable in cases where
considerations of only a single layer of lipid segments is
required, that is, when the solute radiusr is smaller than the
length of the lipid segment,l ; 1.54 Å. This follows from
the fact that ifr . l, then structural parameters (density and
orientation) of the adjacent lipid segment also need to be
considered in the calculations (see also the Appendix).
However, as will be shown later, Eq. 9 still provides a
reasonable estimate of the work of cavity formation for
solutes having a radius greater than;1.54 Å. To actually
use Eq. 9,c and j must be evaluated in terms of the
measurable lipid order parameters. The most commonly
used lipid order parameter is the CD-order parameter,SCD,
given by SCD 5 ^P2(cosbPD)&, where bPD is the angle
between the C–H bond vector (that is, the normal to the
plane defined by the C–H bonds) and the bilayer normal
(Jansson et al., 1992),P2 is the second-order Legendre
polynomial, and the averaging is performed over all lipid
chains having a certain segmental position. The angleuk of

the lipid chains may be related tobPD through the tetrahe-
dral geometry of the C–C bonds in a lipid chain. As a first
step in relatingc to SCD, c was expanded in a Taylor series
in cosuk arounduk 5 0 (truncated after the first term in
cosuk), and averaged, term by term, over all chain orienta-
tions to obtain the approximate expression

c < 2 2 ^cosuk&. (10)

Following similar steps,j was found to be

j < Îc~1 1 c!. (11)

The quantity ^cosuk& can, in turn, be related toSCD as
(Jansson et al., 1992)

^cosuk& 5 1⁄2 2 SCD. (12)

Therefore, Eqs. 10 and 11 can be rewritten, respectively, as

c < 3⁄2 1 SCD, (13)

j < ~3⁄2 1 SCD!1/2~5⁄2 1 SCD!. (14)

Eq. 9, in combination with Eqs. 13 and 14, allows the
prediction of the work required to introduce a circular cavity
(corresponding to the cross-section of a spherical solute)
into a plane located in the ordered-chain region at a depthz
from the bilayer surface.

Calculation of Wo(r)

The lipid chains in an isotropic solvent (for example, octa-
nol) are more disordered, and, therefore, may displace in all
three dimensions to accommodate the partitioning solute.
Hence, the work of cavity formation,Wo(r), required to
introduce a solute into an isotropic solvent needs to be
estimated using a three-dimensional (3D) model. Cavity
formation in isotropic solvents has been studied extensively
using simulations as well as a combination of simulations
and theoretical approaches (Hummer et al., 1996). To be
consistent with our previous analysis of the lipid chains in a
bilayer, we will use a simple hard-sphere model to calculate
the work of cavity formation in liquids using scaled-particle
theory (Helfand et al., 1961; Reiss et al., 1959). The work
Wo(r) required to insert a spherical solute of radiusr into the
isotropic solvent, modeled as a collection of hard spheres of
radiusRh can be described as (Lebowitz et al., 1965)

bWo~r! 5 2ln~vf! 1
3~1 2 vf!

vf
S r

Rh
D

1 S3~1 2 vf!

vf
1

9~1 2 vf!
2

2vf
2 DS r

Rh
D2

1 b
4

3
pr3P,

(15)

wherevf is the fraction of free volume (vf 5 1 2 4pRh
3rh/3),

rh is the hard-sphere density, andP is the pressure. Eq. 15
is derived by combining Eqs. 2.7 and 2.8 of Lebowitz et al.
(1965), and then applying the resulting equation to a single-
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component system. Under normal pressures (;1 atmo-
sphere), the contribution of the last term in Eq. 15 is
negligible for cavities considered in this study (r , 4 Å),
and, hence, it is excluded in all further equations. Eq. 15 is
a 3D-equivalent of Eq. 9. This analogy is clear from a
comparison of the coefficients of ther0, r1, andr2 terms in
Eqs. 9 and 15. For example, the coefficient ofr1, 3(1 2
vf)/vf, in Eq. 15 is analogous to the coefficient ofr1, 2(1 2
af)j/afc(1 1 c), in Eq. 9. The analogy is even clearer if the
lipid chains were aligned along the bilayer normal (in that
case,uk 5 0, which yieldsc 5 1 andj 5 2), for which the
coefficient of r1 in Eq. 9 becomes 2(12 af)/af, which is
similar to ther1 term in Eq. 15. The parametervf in Eq. 15
is analogous to the parameteraf in Eq. 9 and the factors 3
and 2, respectively, indicate the dimensionality of Eqs. 15
and 9. Note that the pressure–volume term in Eq. 15 does
not appear in Eq. 9 because this equation describes a 2D
system.

Calculation of Kb(r, z)/Ko(r)

It is now possible to calculate the solute partition coefficient
in the ordered-chain region of the lipid bilayer relative
to that in an isotropic solvent using Eqs. 8, 9, and 15.
Specifically,

Kb~r, z!

Ko~r!
5 exp~A 1 Br 1 Cr2!, (16)

where

A 5 lnSaf

vf
D, B 5 S3~1 2 vf!

vfRh
2

~1 2 af!2j

afc~1 1 c!RD,
and

C 5 S3~1 2 vf!

vfRh
2 1

9~1 2 vf!
2

2vf
2 Rh

2 2
1 2 j/c

cafR
2

2
j

2c2af
2 R2 2

j

2c2R2 1
1

cR2D.
Eq. 16, along with Eqs. 13 and 14, relates the relative
partition coefficient of a solute of radiusr at a given depth
z in the ordered-chain regionKb(r, z)/Ko(r) to the free area
per lipid chainaf, the CD-order parameterSCD, the lipid
chain radiusR, the fraction of free volume in the model
isotropic solventvf, and the hard-sphere radius of a solvent
moleculeRh. Eq. 16 is discussed further in the Results and
Discussion section.

Solute diffusion across the ordered-chain
region Db(r, z)

Solute diffusion in lipid bilayers has been described in terms
of hops between free-volume pockets (Vaz et al., 1985; Vaz
and Almeida, 1991). The solute is assumed to rattle in a

free-volume pocket until it finds another large pocket to
jump into. The solute diffusion coefficient then simply
depends on the availability of a free-volume pocket into
which the solute can jump. In our approach, we assume that
a spherical solute of radiusr can move through a distancee
at an anglev with respect to the bilayer normal only if a
continuous spherocylindrical path of lengthe is free of the
solvent molecules, that is, if a spherocylindrical free-vol-
ume pocket of radiusr and lengthe exists (see Fig. 2A) in
that direction. A similar approach has been used by Han and
Herzfeld (1993) to describe diffusion in crowded protein
solutions and by Xiang (1999) to describe diffusion in lipid
bilayers. The diffusion coefficient of a spherical solute of
radiusr along the bilayer normal, (corresponding tov 5 0),
can then be written as

D~r! 5 D* ~r!E
e*

`

@p'~r, e! ù P~r!# de, (17)

where D*( r) is the solute diffusion coefficient within a
free-volume pocket,p'(r, e) ù P(r) de is the conditional
probability density that a spherocylindrical path of radiusr
and length betweene ande 1 de exists in the direction of
diffusion (in our case, in the direction along the bilayer
normal), ande* is the critical path length required for solute
diffusion. The parametere* denotes the critical length
through which the solute must traverse for it to be displaced
across the entire interfacial region. The parametere* ac-
counts for the fact that, if the solute displacement is too
small, the solute may not move substantially over a large
length scale. In other words, a certain critical displacement
is required to achieve measurable diffusion. This issue
is further discussed in the section, Estimation of Model
Parameters.

The conditional probability density,p'(r, e) ù P(r) de,
can be related to the work required to create a spherocylin-
drical cavity of radiusr and lengthe in the ordered-chain
region based on scaled-particle theory (Han and Herzfeld,
1993). Specifically,

FE
e*

`

p'~r, e! ù P~r! deG
bilayer

5 exp$2b@Wb
d~r, e*, z! 2 Wb~r, z!#%,

(18)

where Wb(r, z) is the work required to create a circular
cavity of radiusr (corresponding to a cross-section of a
spherical solute on the plane parallel to that formed by the
lipid head groups) at a depthz in the bilayer (given in Eq.
9), andWb

d(r, e*, z) is the work required to create a cavity of
radiusr and lengthe* in a direction normal to the bilayer
plane beginning at a depthz. Eq. 18 thus relates the solute
diffusion coefficient to the geometric parameters character-
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izing the solute and the lipid chains. Similarly, the proba-
bility of cavity formation for solute diffusion in an isotropic
liquid is given by

FE
e*

`

p'~r, e! ù P~r! deG
isotropic

5 exp$2b@Wo
d~r, e* ! 2 Wo~r!#%,

(19)

whereWo(r) is the work required to create a spherical cavity
of radius r in the isotropic liquid (given in Eq. 15), and
Wo

d(r, e*) is the work required to create a cavity of radiusr
and lengthe* in the same isotropic solvent in any direction.
The ratio of the diffusion coefficients in the bilayer and in
the isotropic liquid,Db(r, z)/Do(r), can now be calculated
using Eqs. 17, 18, and 19 as

Db~r, z!

Do~r!
5 exp@2b$Wb

d~r, e*, z!

2 Wb~r, z! 2 Wo
d~r, e* ! 1 Wo~r!%#.

(20)

The calculations ofWb(r, z) and Wo(r) have already been
described in the previous section (see Eqs. 9 and 15, re-
spectively). Below, we describe the calculations of
Wb

d(r, e*, z) andWo
d(r, e*).

Calculation of Wb
d(r, e*, z)

Figure 2B shows a section of a lipid chain oriented at an
angleuk with respect to the bilayer normal and a solute of
radiusr diffusing along the normal. The work required to
create a spherocylindrical cavity of radiusr and lengthe
along the normal is related to the excluded volume between
the solute spherocylinder and the lipid chain. Because, as
shown earlier, the lipid chains near the interfacial region are
modeled as a 2D fluid that can only expand laterally, the
work of cavity formation is equal to that required to create
a circular cavity in an elliptical hard-disk fluid with major
axisR/cosuk 1 e tanuk and minor axisR (see Fig. 2B). The
work of cavity formationWb

d(r, e*, z) can then be calculated
using the approach presented in the Appendix, which was
used to arrive at Eq. 9. The resulting equation is identical to
Eq. 9 except that the term 1/cosuk in Eq. 9 is replaced by
1/cosuk 1 (e*/2R) tanuk. The resulting equation is

bWb
d~r, e*, z! 5 2ln~k! 1

2~1 2 k!x

kf~1 1 f! S r

RD
1

1

f S1 2 x/f

k
1

x/2f

k2 1
x

2f
2 1DS r

RD
2

,

(21)

where

f 5 O
k51

N

skS 1

cosuk
1

e*

2R
tanukD,

x 5 ~1 1 f!O
k51

N

skÎ1

2 S1 1 S 1

cosuk
1

e*

2R
tanukD2D,

k 5 (1 2 pR2rf), N is the number of disks, andr (5 N/A)
is the disk number density. Eq. 21 relates the work required
to create a diffusion path within the lipid chains to bilayer
parameters, including chain (or disk) densityr, chain radius
R, and average chain orientation, as well as to solute pa-
rameters, including its radiusr and critical diffusion path
length e*. The analogy between Eqs. 9 and 21 is quite
apparent. The parametersk, f, andx in Eq. 21, correspond,
respectively, to the parametersaf, c, andj in Eq. 9, and they
become equal whene* 5 0. To calculateWb(r, e*, z), f and
x must be evaluated in terms of the experimentally measur-

FIGURE 2 (A) A schematic representation of a solute of radiusr dis-
placing through a distancee within lipid chains oriented at an anglev with
respect to the bilayer normal. Two lipid chains oriented at anglesu1 andu2

with respect to the bilayer normal are shown. The solute can displace
through a distancee only if a continuous spherocylindrical path, as shown,
is free of lipid chains. (B) A projection of a solute of radiusr diffusing
along the bilayer normal (v 5 0) through a distancee next to a lipid
cylinder oriented at an angleuk with respect to the bilayer normal. The
projection of the lipid chain on the plane atz is an ellipse with a major axis
2R/cosu 1 e tanu and a minor axisR.
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able order parameterSCD in a manner similar to that de-
scribed above. Specifically,

f 5 c 1
e*

2R
^tanuk& (22)

and

x 5 Îf~1 1 f!. (23)

Eqs. 22 and 23 are similar to Eqs. 10 and 11, respectively,
and they become equal whene* 5 0. Because the values of
uk in the interfacial region are relatively small (average
value of about 30–35° (Huang et al., 1994)),^tanuk& may be
approximated by tan̂uk&. To test the error introduced by this
approximation, we generated one thousand values ofuk

randomly distributed between 0 and 30°. In that case,
tan̂ uk& is within 4% of ^tanuk&. For the same reason,
assuming that̂cosuk& ' coŝuk& in Eq. 12 yields^uk& '
cos21(1⁄2 2 SCD). Using this result, it follows that

^tanuk& < tan̂ uk& 5 tan~cos21~1⁄2 2 SCD!!. (24)

Eqs. 22–24 can then be substituted in Eq. 21 to calculate
Wb

d(r, e*, z).

Calculation of Wo
d(r, e*)

Cotter (1977) has described the calculation of the work of
cavity formation in a solvent consisting of spherocylindrical
molecules. That analysis can be modified to calculate the
work required to create spherocylindrical cavities of radius
r and lengthe* in a hard-sphere liquid to arrive at the
equation

bWo
d~r, e* ! 5 2ln~vf! 1

3~1 2 vf!

vf
S r

Rh
D 1

3~1 2 vf!

4vf
Se*

Rh
D

1 S3~1 2 vf!

vf
1

9~1 2 vf!
2

2vf
2 DS r2

Rh
2 1

re*

2Rh
2D

1 bS43 pr3 1 pr2e*DP. (25)

Eq. 25 is very similar to Eq. 15, except for the presence of
two additional terms that are linear ine* (due to the linear
increase of the cavity volume withe*). Once again, for
small cavities (r, 4 Å), the contribution of the last term
(the pressure–volume term) in Eq. 25 may be neglected.

Calculation of Db(r, z)/Do(r)

It is now possible to calculate the ratio of diffusion coeffi-
cients,Db(r, z)/Do(r), by using Eqs. 9, 21, 25, and 15 in Eq.
20. Specifically,

Db~r, z!

Do~r!
5 exp~A9 1 B9r 1 C9r2 1 D9e* !, (26)

where

A9 5 lnSk

af
D, B9 5

~1 2 k!2x

kf~1 1 f!R
2

~1 2 af!2j

afc~1 1 c!R
,

C9 5
1

fR2 S1 2 x/f

k
1

x/2f

k2 1
x

2f
2 1D

2
1

cR2 S1 2 j/c

af
1

j/2c

af
2 1

j

2c
2 1D,

and

D9 5 2
3~1 2 vf!

4vfRh
2 S3~1 2 vf!

2vf
1

9~1 2 vf!
2

4vf
2 D r

Rh
2.

Eq. 26 indicates that the relative solute diffusion coefficient
in the lipid bilayer,Db(r, z)/Do(r), depends on the free area
per lipid chainaf, the CD-order parameterSCD, the lipid
chain radiusR, the fraction of free volume in the model
isotropic solventvf, the solvent particle radiusRh, and the
critical path for solute diffusione*. Eq. 26 is discussed
further in the Results and Discussion section.

Solute permeation across the lipid
bilayer interface

The permeabilityPb(r), across the ordered-chain region of
the lipid bilayer, and hence approximately across the entire
lipid bilayer, relative to the permeabilityPo(r) of a film of
an isotropic fluid of the same thicknessd, can now be
evaluated using Eqs. 2, 8, and 20. Specifically,

Po~r!

Pb~r!
5

1

dE
0

d Do~r!

Db~r, z!

Ko~r!

Kb~r, z!
dz

5
exp@2bWo

d~r, e* !#

d E
0

d

exp@bWb
d~r, e*, z!# dz.

(27)

To solve Eq. 27, the evaluation ofWb
d(r, e*, z) at various

depthsz is required. This, in turn, requires knowledge of the
z-dependencies of the lipid densityr and of the CD-order
parameterSCD (see Eq. 9). Although thez-dependence of
SCD has been measured experimentally (Seeling and Seel-
ing, 1974), as well as evaluated through simulations (Xiang,
1993), thez-dependence ofr can only be obtained by
simulations (Marrink and Berendsen, 1996). These values
of r andSCD could then be used to numerically evaluate Eq.
27. However, our main objective in this paper is to arrive at
analytical relationships that allow calculation ofPb(r)/Po(r)
entirely based on the experimentally-measurable bilayer
parameters. For this purpose, we propose the following
approximations to calculateWb

d(r, e*, z).
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Eq. 21, which relatesWb
d(r, e*, z) to the lipid densityr

and the chain orientationsuk, can be rewritten, after substi-
tuting x 5 =f(1 1 f) from Eq. 23 as

bWb
d~r, e*, z! 5 2ln~k! 1

2~1 2 k!

k S r

RÎf
D

1 S1 2 a

k
1

a

2k2 1
a

2
2 1DS r

RÎf
D2

,

(28)

wherea 5 (1 1 f)/=f. Note thatk depends onr as well
as onSCD. We now assume that the average lipid density in
the ordered-chain region is equal to the surface lipid density
s (that is, tos 5 rz50), a parameter that can be measured
experimentally. In addition, molecular simulations have
shown that, although the CD-order parameter exhibits
strong variations with depthz, it plateaus near the interfacial
region at a value denoted bySCD

plateau. Hence, we assume that
the average CD-order parameter in the interfacial region can
be represented bySCD

plateau. A typical value of SCD
plateau for

dipalmitoyl phosphatidyl choline (DPPC) bilayers is20.2
(Seeling and Seeling, 1974) corresponding to an average
chain tilt angle of about 45°. As we will show later, Eq. 28,
after modifications corresponding to these assumptions,
provides an accurate description of the work of cavity
formation in the ordered-chain region. Substituting this
value into Eqs. 22–24, and evaluatingk (with a typical
value ofe* 5 1.1 Å [see Estimation of Model Parameters]
and R 5 2.48 Å [see Estimation of Model Parameters])
yields a 5 2.04. By takinga 5 2, Eq. 28 can now be
simplified as

^bWb
d~r, e* !&int

5 2ln~kint! 1 2S1 2 kint

kint
D r

R*
1 S 1

kint
2 2

1

kint
DS r

R*D
2

,

(29)

where^bWb
d(r, e* &int is the average work of cavity formation

in the ordered-chain region,R* 5 R=fplateau, fplateauis the
f value calculated usingSCD 5 SCD

plateau, andkint is the value
of k in the ordered-chain region. By substitutingkint 5 (1 2
sahG), where s is the surface lipid density,ah 5
pR2cplateau5 the cross sectional area of a lipid chain (the
minimum area occupied by a lipid chain at the surface), and
G 5 fplateau/cplateau, wherecplateauis thec value calculated
usingSCD 5 SCD

plateau, Eq. 29 can be rewritten as

^bWb
d~r, e* !&int 5 2ln~1 2 sahG! 1 2S sÎpahG

1 2 sahG
Dr

1S sp

~1 2 sahG!2Dr2
(30)

where

G 5
fplateau

c plateau5 1 1
e*

2RStan cos21~1⁄2 2 SCD
plateau!

~3⁄2 1 SCD
plateau!

D.
Note thatG contains the entiree* dependence of Eq. 30.

Note also that whene* 5 0, G is equal to 1. Eq. 30 is
expressed solely in terms of three bilayer parameters,s, ah,
and SCD

plateau, all of which can be measured experimentally
(White and King, 1985; Kumar, 1991). Numerous measure-
ments exist in the literature for these three parameters
(White and King, 1985; Kumar, 1991; Seeling and Seeling,
1974). For example, DPPC bilayers are characterized by
s ; 0.033 chains/Å2 (Seeling and Seeling, 1974; Xiang,
1993) andah ; 20.4 Å2/chain (Xiang and Anderson, 1997).
Substituting Eq. 30 in Eq. 27, the permeabilityPb(r), across
the ordered-chain region of the lipid bilayer (denoted here-
after asPb

int(r) to emphasize the averaging performed in the
ordered-chain region, as shown in Eq. 29), relative to the
permeabilityPo(r) of a film of an isotropic fluid of the same
thicknessd, can be written as

Pb
int~r!

Po~r!

5 expFln~1 2 sahG! 2 2S sÎpahG

1 2 sahG
Dr 2 S sp

~1 2 sahG!2Dr2G
4HexpFln~vf! 2

3~1 2 vf!

vf
S r

Rh
D 2

3~1 2 vf!

4vf
Se*

Rh
D

2S3~1 2 vf!

vf
1

9~1 2 vf!
2

2vf
2 DS r2

Rh
2 1

re*

2Rh
2DGJ. (31)

Because interfacial transport is the rate-limiting step in
trans-bilayer transport, the interfacial permeabilityPb

int(r)
should approximately represent the solute bilayer perme-
ability. Following similar steps, the interfacial partition
coefficient Kb

int(r) relative to that in an isotropic solvent
K0(r) (given in Eq. 8) can be written as

Kb
int~r!

Ko~r!

5 expFln~1 2 sah! 2 2S sÎpah

1 2 sah
Dr 2 S sp

~1 2 sah!
2Dr2G

4HexpFln~vf! 2
3~1 2 vf!

vf
S r

Rh
D

2S3~1 2 vf!

vf
1

9~1 2 vf!
2

2vf
2 DS r

Rh
D2GJ. (32)

Note that the interfacial partition coefficient of the lipid
bilayer is not to be confused with the overall bilayer parti-
tion coefficient that is measured experimentally. The overall
bilayer partition coefficient is much higher than the ordered-
chain partition coefficient due to the higher free volume
fraction near the center of the bilayer into which the solute
can partition. Finally, using an approach similar to that used
to arrive at Eq. 31, an expression for the diffusion coeffi-
cient in the ordered-chain regionDb

int(r), relative to that in
an isotropic solventDo(r) (given in Eq. 20), can also be
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derived

Db
int~r!

Do~r!
5 expFlnS1 2 sahG

1 2 sah
D 2 2SsÎpahG

12sahG
2

sÎpah

12sah
Dr

2 S sp

~12sahG!22
sp

~12sah!
2Dr2G

4HexpF23~1 2 vf!

4vf
Se*

Rh
D

2S3~1 2 vf!

vf
1

9~1 2 vf!
2

2vf
2 DSre*

2Rh
2DGJ.

(33)

Eqs. 31–33 are the key equations of this paper. They relate,
respectively, the interfacial permeability, partition coeffi-
cient, and diffusion coefficient of a lipid bilayer to a given
solute, relative to those of isotropic solvents, to the exper-
imentally measurable lipid bilayer parameters, including the
surface lipid densitys, the cross-sectional area of the lipid
moleculeah, and the CD-order parameterSCD.

Estimation of model parameters

The predictions of Eq. 31 were tested for egg phosphatidyl
choline (PC) bilayers, because a large set of permeability
data exists for this model bilayer system. To use the model
equations, information is required on the following param-
eters: the surface lipid densitys, the closed-packed area of
lipids at the surfaceah, the CD-order parameter near the
surfaceSCD

plateau, the solvent hard-sphere radiusRh, the frac-
tion of free volume in an isotropic solvent (discussed later in
this section)vf, and the solute radiusr. Numerous measure-

ments exist in the literature fors andah (White and King,
1985; Kumar, 1991). The reported values ofs for egg PC
bilayers is about 0.027 chains/Å2 (corresponding to an area
per lipid molecule of 736 2 Å2) (White, 1976). The
closed-packed area for egg PC corresponds approximately
to the area per lipid chain when the chains are tightly
packed. We chose anah value of 25 Å2 per lipid chain
following the model of Stigter and Dill (1988). The plateau
CD-order parameter value for egg PC bilayers is not avail-
able in the literature, and was assumed to be similar to that
for DPPC bilayers. The reported value of the plateau CD-
order parameter for DPPC bilayers is20.2 (Xiang, 1993).

Numerous theoretical and computational studies have
been performed to arrive at the appropriate hard-sphere radii
Rh corresponding to various isotropic hydrocarbons. The
choice of Rh depends on the choice of solvent used to
represent the isotropic fluid. Since we used octanol as a
model isotropic solvent (due to the availability ofKo(r)
values for this solvent [see Table 1]), we calculatedRh from
the van der Waals volume of octane (closest hydrocarbon to
octanol). We calculated the radius of the solvent molecules
from their van der Waals volume assuming a spherical
molecular structure. The van der Waals volume for octane
was obtained from the literature (Bondi, 1964), andRh was
calculated to be 2.7 Å. The densityrh for octane was
obtained from the International Critical Table5 0.698
gm/cc at 25°C. The fraction of free volume in octanevf was
then calculated using the relationvf 5 1 2 4pRh

3rh/3.
Although the choice ofRh andrh affects the magnitude of
Pb

int(r)/Po(r), it does not affect the general characteristics of
the dependence ons, ah, and SCD. In other words, the
precise choice ofRh and rh does not affect the general
conclusions of the model calculations.

TABLE 1 Values of molecular weights, permeabilities, octanol–water partition coefficients, molecular radii, and
diffusion coefficients of several solutes

No. Compound
Molecular

Weight
Permeability

(cm/s)

Partition*
Coefficient

(Ko/w)
Radius

(Å)
Do 3 105

(cm2/s) Reference

1 Water 18 3.43 1023 4.13 1022 1.6 0.72 de Gier, 1993
2 Formamide 45 7.83 1025 6.23 1023 2.1 0.54 Pozansky et al., 1975
3 Ethandiol 62 8.83 1025 1.23 1022 2.4 0.43 de Gier, 1993
4 Urea 60 4.13 1026 2.23 1023 2.3 0.46 Pozansky et al., 1976
5 Acetamide 59 2.43 1025 8.93 1022 2.3 0.46 Pozansky et al., 1976
6 Propionamide 73 6.13 1025 8.93 1022 2.5 0.4 Pozansky et al., 1976
7 Glycerol 92 5.43 1026 1.13 1022 2.7 0.35 de Gier, 1993
8 Lactic acid 90 1.43 1025 2.43 1021 2.7 0.35 Chakraborty and Deamer, 1992
9 Erythritol 122 7.53 1028 1.23 1023 3.0 0.3 de Gier, 1993

10 Glucose 180 3.03 10211 5.03 1024 3.4 0.23 Aekson and Munns, 1989
11 Tryptophan 204 4.13 10210 9.13 1022 3.5 0.24 Brunner et al., 1980
12 Phenylalanine 165 2.53 10210 3.73 1022 3.3 0.22 Brunner et al., 1980
13 Citric acid 192 3.13 10211 1.93 1022 3.5 0.24 Aekson and Munns, 1989
14 Fructose 180 4.03 10210 6.33 1024 3.4 0.23 Brunner et al., 1980

The diffusion coefficient values were estimated using the Wilke–Change equation (Perry et al. 1973). The permeabilities and octanol–water partition
coefficients were obtained from the literature. The molecular radii were calculated using methods described in Estimation of Model Parameters. Note that
only uncharged solutes, for which permeability and octanol–water partition coefficients are available in the literature, were included in the Table.
* Partition coefficients were obtained from corresponding references and through Hansch and Leo (1979).
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The radius of the lipid chainR was calculated fromah

(ah 5 pR2cplateau, wherecplateau' 3/2 1 SCD
plateau). Substi-

tuting ah 5 25 Å2 andSCD
plateau5 20.2 yieldsR 5 2.48 Å.

The solute radiir were calculated from their van der Waals
volumes, which were obtained from Bondi (1964). The
solutes considered in our analysis include: 1, water; 2,
formamide; 3, ethandiol; 4, urea; 5, acetamide; 6, propi-
onamide; 7, glycerol; 8, lactic acid; 9, erythitol; 10, glucose;
11, tryptophan; 12, phenylalanine; 13, citric acid; and 14,
fructose.

The critical free pathe* was used as a fitted parameter.
Fundamentally,e* depends on the method used to measure
diffusion. For example, lower values ofe* correspond to
measurements of diffusion on a short length scale and vice
versa. Different methods of measuring diffusion coeffi-
cients in lipid bilayers operate at different length scales. For
example, methods such as fluorescent recovery after pho-
tobleaching measure diffusion coefficients on a length scale
of microns. In contrast, methods such as quasielastic neu-
tron scattering measure diffusion in a highly localized area
(;10 nm) (Vaz and Almeida, 1991). The values of diffusion
coefficients measured by these two methods vary by as
much as 100-fold. This difference in the measured diffusion
coefficients may be accounted for by changing the value of
e*. However, at this stage, it is not possible to a priori
predict the appropriate value ofe*. Accordingly, we chose
the value ofe* that best fits the data shown in Fig. 3,A and
B, in the context of our theoretical description. Thee* value
so deduced is 1.1 Å for trans-bilayer diffusion across egg
PC bilayers. This suggests that, on average, the solute needs
to jump through a distance of 1.1 Å along the bilayer normal
to cross the interfacial region at a rate that explains the
experimentally measured values of bilayer permeability.
This value ofe* is very close to the projected length of a
C–C bond along the bilayer normal,L (L 5 l^cosuk& 5
1.54(1⁄2 2 SCD

plateau) 5 1.08 Å). Note that, because octanol
may not be the best solvent model to describe isotropic
solute diffusion, the implications of the determined value of
e* need to be examined further.

The permeabilityPo(r) of an octanol layer having a
thicknessd was calculated using a value ofDo calculated
using the Wilke–Chang equation (Perry and Green, 1973).
The value ofDo varied by a factor of about three between
the smallest (water) and the largest (tryptophan) molecule
examined in this study. This size-dependence ofDo is much
weaker than that observed in the experimentally measured
bilayer permeabilities. The octanol–water partition coeffi-
cients,Ko(r), were obtained from the literature (see Table
1). The thickness of the ordered-chain region,d, was as-
sumed to be 5 Å (arepresentative thickness of the plateau
region inSCD). Note that solvents other than octanol could
have been used in our calculations if the appropriate data (in
particular,Ko(r)) were available, and if the chemical struc-
ture of the chosen solvent appropriately described the lipid
bilayer interface. Both of these aspects about the solvent
suitability are discussed extensively in the literature (Dia-
mond and Katz, 1974; Xiang and Anderson, 1994b).

RESULTS AND DISCUSSION

Eq. 31 offers an analytical relationship for the size-depen-
dence of the bilayer solute permeation in terms of several
bilayer parameters, including surface lipid densitys,
closed-packed areaah, and CD-order parameterSCD. We
compared the predictions of Eq. 31 with the experimentally
measured solute permeabilities across egg PC bilayers. It
should be noted that, although extensive experimental data

FIGURE 3 (A) Comparison of the predicted size dependence of the
relative permeability of several solutes across unilamellar egg PC lipo-
somes as a function of solute volume (solid line) with the experimentally
measured values (filled circles, see Table 1). The model parameters used
for the predictions are discussed in Estimation of Model Parameters. The
dashed linecorresponds to the trend defined by the large solutes. The
dotted linecorresponds to a single exponential fit relating relative solute
permeability to solute volume. (B) Replot of the experimental data and
theoretical predictions shown in (A) as a function of solute cross-sectional
area. Thesolid line shows the predictions of Eq. 31. Thedashed line
corresponds to the trend defined by the large solutes. Thedotted line
corresponds to a single exponential fit relating relative solute permeability
to solute cross-sectional area.
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exists for the permeation of small nonelectrolytes across
lipid bilayers, care should be taken while comparing data
from different studies, because experimental techniques
may vary from study to study, leading to a variability in the
measured values. Nonetheless, such a comparison is feasi-
ble and is reported here to assess the validity of our model.
Table 1 shows a compilation of literature data for the
magnitude of the permeability of various solutes across egg
PC liposomes. The Table also lists literature values of van
der Waals radii, molecular weights, octanol–water partition
coefficients, and diffusion coefficients in octanol (predicted
by the Wilke–Chang equation) for various solutes. Figure
3 A shows the predicted size-dependence of the interfacial
(and hence, approximately bilayer) permeability,Pb

int(r)/
P0(r), of a single egg PC bilayer based on Eq. 31 (solid
line). The experimental permeability data is indicated by the
filled circles. The model predictions compare well with the
experimental observations.

Some of the previous studies of bilayer permeability have
used exponential fits relating bilayer permeability to solute
volume (or molecular weight) or to solute area to explain
the experimentally observed permeation size-selectivity.
We have, therefore, compared the predictions of Eq. 31 with
such exponential fits. First, we note that the curvilinear
nature of the solid line in Fig. 3A clearly shows that the
predictions of Eq. 31 differ from a single exponential fit
relatingPb

int(r)/P0(r) to solute volume (which would corre-
spond to a straight line in Fig. 3A, as shown by thedotted
line). The Figure also shows a dashed line corresponding to
the trend defined by the large solutes, that is, a tangent to the
solid line at a volume5 200 Å3. Figure 3A reveals that the
dashed line deviates from the solid line for the small solutes
(volume less than about 100 Å3), which clearly indicates
that the permeability of the small solutes is higher than that
expected from the trend defined by the larger solutes. In-
deed, the values ofPb

int(r)/P0(r) for a solute having zero
volume, predicted by the solid line, dashed line, and dotted
line in Fig. 3A, are 0.38,;1024, and;1022, respectively.
In general, for a zero-volume solute (that is, for a point-like
solute), Pb

int(r)/P0(r) should be close to the ratio of free
volumes in the interfacial region and in an isotropic solvent,
which is 0.47 (see Eq. 31 and the free volumes described in
the previous section). Therefore,Pb

int(r)/P0(r) for a point-
like solute predicted by Eq. 31 is much closer to its expected
value than that predicted by the exponential fits. Hence,
while the solid line describesPb

int(r)/P0(r) over the entire
range of solute sizes examined in Fig. 3A, the other two
lines appear to grossly underpredictPb

int(r)/P0(r) for the
small solutes.

The deviation of the size-dependence of the experimen-
tally measured bilayer permeability from a single exponen-
tial curve relating permeability to solute volume has indeed
been reported in the past. Specifically, Walter and Gut-
knecht (1986) reported that solutes having molecular
weights smaller than 50 (which roughly corresponds to a
solute volume of;70 Å3) permeate faster than expected
based on the permeability of large (MW. 50) solutes. The

authors hypothesized that the extra permeability of the small
solutes is related to the existence of transient aqueous pores
in the bilayer, although the size and the physical basis for
the existence of such pores was not clarified. Eq. 31 shows
that this apparent two-region size-dependence simply re-
sults from the differential contribution of the terms appear-
ing in this equation. Specifically, for the larger solutes, the
work of cavity formation can be described by the pressure-
area type work (the last term in the exponent appearing in
the numerator of Eq. 31), approximately given by exp(2r2),
whereas that for smaller solutes is given by exp(2r). Since
Eq. 31 predicts that the size-dependence of relatively large
solutes varies as exp(2r2), we thought that it would be
informative to replot the data in Fig. 3A as a function of
solute cross-sectional area, rather than solute volume. This
is shown in Fig. 3B, where the solid line corresponds to the
predictions of Eq. 31, the dashed line corresponds to the
trend defined by the large solutes, which is now a straight
line on a semilog plot (see Eq. 31), and the dotted line
corresponds to a single exponential fit relatingPb

int(r)/P0(r)
to solute cross-sectional area. Clearly, the three curves in
Fig. 3B are in much closer agreement with each other than
those shown in Fig. 3A. The dashed line still deviates
slightly from the solid line for solute cross-sectional areas
that are smaller than 15 Å2, because the contribution of the
exp(2r) term in Eq. 31 dominates for smallr values.
However, the theoretical predictions, as well as experimen-
tal data in Fig. 3B, suggest that a single exponential fit
relatingPb

int(r)/P0(r) to solute cross-sectional area provides
a closer approximation to Eq. 31 than a single exponential
fit relating Pb

int(r)/P0(r) to solute volume (as shown in Fig.
3 A). This also implies that the solute permeability across
lipid bilayers should correlate better with solute cross-sec-
tional area than with solute volume. This is clearly shown in
Fig. 4, A–C, where the normalized relative interfacial per-
meability, [Pb

int(r)/P0(r)]/[Pb
int(r 5 0)/P0(r 5 0)], is plotted

as functions of solute radius, cross-sectional area, and vol-
ume, respectively. The various lines correspond to the best
fit under the constraint that [Pb

int(r)/P0(r)]/[Pb
int(r 5 0)/

P0(r 5 0)] 5 1 when r 5 0. Fig. 4, A–C shows that the
overall correlation of the normalized permeability with sol-
ute cross-sectional area is much better than those with solute
radius or solute volume, as judged by their correlation
coefficients. A similar conclusion was reached by Xiang
and Anderson (1998). The accuracy of the curve fits in Fig.
4, A–C can be further seen in Fig. 5,A–C, where the
calculated residuals (the difference between the experimen-
tally measured and predicted values using the corresponding
exponential curve fits) are plotted. Figure 5A shows that the
residuals corresponding to the curve fit of [Pb

int(r)/P0(r)]/
[Pb

int(r 5 0)/P0(r 5 0)], as a function of solute radius,
decrease with increasing solute radius. In contrast, the re-
siduals corresponding to the curve fit relating [Pb

int(r)/P0(r)]/
[Pb

int(r 5 0)/P0(r 5 0)] to solute volume increase with
increasing solute volume. A systematic error in the residuals
in both cases indicates that neither represents the data fairly.
In contrast, Fig. 5B shows that the residuals are randomly
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distributed around zero, thus implying that an exponential
fit relating [Pb

int(r)/P0(r)]/[Pb
int(r 5 0)/P0(r 5 0)] to solute

cross-sectional area fits the experimental data well. An
interesting deviation from this conclusion involves the
residual for the smallest solute in Fig. 5,A–C (indicated by
the arrows) which is closer to zero in Fig. 5A than in
Fig. 5, B or C. This suggests that, in the case of relatively
small solutes, an exponential fit relating [Pb

int(r)/P0(r)]/
[Pb

int(r 5 0)/P0(r 5 0)] to solute radius is more accurate than
those relating it to solute cross-sectional area or solute
volume. A possible explanation for this finding follows
from Eq. 31, which shows that the contribution of the

exp(2r) term to bilayer permeability dominates for small
solutes. In other words, the work of cavity formation for
relatively small solutes is proportional to the solute radius
rather than to the solute cross-sectional area. Hence, it
appears that, although the overall solute permeability cor-
relates well with solute cross-sectional area, this may not
hold true for small solutes. Accordingly, none of the single
exponential fits examined (either with respect to solute
radius, cross-sectional area, or volume) may be able to
explain the experimental permeation data over a wide range
of solute sizes (although the exponential fit as a function of
solute cross-sectional area is better than those as a function

FIGURE 5 Calculated residuals
(the difference between the predicted
values of [Pb

int(r)/P0(r)]/[Pb
int(r 5 0)/

P0(r 5 0)] from the fit and the ex-
perimental values) corresponding to
the data shown in Fig. 4.

FIGURE 4 Replot of the experi-
mental data shown in Figure 3 (nor-
malized with respect to the solute
permeability corresponding to a sol-
ute withr 5 0 as predicted by Eq. 31,
that is, [Pb

int(r)/P0(r)]/[Pb
int(r 5 0)/

P0(r 5 0)]) as a function of (A) solute
radius, (B) cross-sectional area, and
(C) volume. Thesolid lines corre-
spond to exponential fits of the ex-
perimental data using the equation
[Pb

int(r)/P0(r)]/[Pb
int(r 5 0)/P0(r 5 0)]

5 exp(2aG), whereG is either sol-
ute radius, cross-sectional area, or
volume.
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of solute radius or volume). In contrast, Eq. 31, which takes
into account the relationship between the work of cavity
formation and solute size, is applicable over a broad solute
size range.

Several attempts have been made in the past to quantita-
tively understand the origin of the size selectivity of bilayer
permeation. The new aspect of our model is that it enables
us to analytically correlate bilayer permeability to important
bilayer and solute properties based on a mechanistically
sound description of solute partitioning and subsequent
diffusion in bilayers. A few analytical equations already
exist in the literature to predict bilayer permeability. For
example, an early model by Leib and Stein (1969) attributed
the size dependence of bilayer permeation entirely to diffu-
sion, based on the assumption that diffusion in a bilayer is
similar to that in a polymer membrane. Although this model
captured the relevant features of solute diffusion, it did not
account for the contribution of partitioning to size selectiv-
ity. Recently, Xiang and Anderson (1997) proposed a free-
area model to explain the permeability of acetic acid across
lipid bilayers. This analytical model attributed the size de-
pendence of bilayer permeation to partitioning and to dif-
fusion. Their model calculated the probability for the cre-
ation of a free area for solute partitioning and diffusion
across a lipid bilayer. The model implicitly assumed that the
work required to create a cavity to incorporate a solute of
radiusr is proportional tor2. As shown earlier, this assump-
tion, although valid for most solutes, may underestimate the
work of cavity formation required to incorporate relatively
small solutes. Furthermore, their model neglected the work
required to create a cavity in isotropic solvents, and may
therefore lead to an overestimation of the solute size
selectivity.

The predictions of our model are also in general agree-
ment with the simulations data available in the literature. A
direct comparison of the predictions of Eq. 31 with simu-
lation data is difficult because none of the simulations report
Pb

int(r)/P0(r). However, a comparison of the simulations data
can be made with our model predictions regarding the
probability of cavity formation in the interfacial region,
pint(r) (given by Eq. 34 below, which is derived from Eq. 9
after substituting expressions forx and j similar to those
used in the derivation of Eq. 31). Specifically,

pint~r! 5 exp@2b^Wb~r!&int#

5 expSln~1 2 sah! 2 2S sÎpah

1 2 sah
Dr

2 S sp

~1 2 sah!
2Dr2. (34)

We therefore compared the values ofpint(r) predicted from
Eq. 34 with those obtained from the MD simulations of
DPPC bilayers reported by Xiang and Anderson (1993). Eq.
34 indicates that two parameters,s andah, are required to
predict pint(r). The surface lipid densitys for a DPPC

bilayer was chosen to be 0.033 chains/Å2 (corresponding to
a chain area of 30 Å2/chain) (Xiang, 1993), andah for a
DPPC bilayer was calculated from the reported free area
fractions in the ordered-chain regionaf, (af 5 1 2 sah) and
was found to be 20.7 Å2. Figure 6 shows a comparison of
the predictions of Eq. 34 (full line) with the simulations
(open circles). As can be seen, Eq. 34 predicts reasonably
well the overall size-dependence ofpint(r) for cavities
formed in the ordered-chain region. The agreement of our
model predictions with the simulations data is excellent for
small solutes (r , 1.54 Å corresponding tor2 , 2.4 Å2);
however, the predictions are slightly lower than the simu-
lations values for the larger solutes (r . 1.54 Å). As
explained earlier, the discrepancy between the predictions
and the simulations for solutes having radii larger than
;1.54 Å is not surprising, because Eq. 9, on which Eq. 34
is based, is most accurate for solutes having a radiusr that
is smaller than the length of the lipid segment,l 5 1.54 Å
(see Calculation ofWb(r, z)). However, as can be seen from
Fig. 6, Eq. 34 still provides a reasonable estimate of the
work of cavity formation for solutes having radii greater
than;1.54 Å.

The size selectivity of bilayer partitioning, and of bilayer
diffusion, depends on the surface lipid densitys, the CD-
order parameterSCD, and the closed-packed lipid areaah.
Note that these three parameters cannot be varied indepen-
dently. Specifically, the parameterss and SCD are closely
related (Nagle, 1993; De Young and K.A., 1990). Eqs. 32
and 33, respectively, provide simple, yet fundamental, re-
lations between the solute partitioning coefficient and dif-
fusion coefficient in the ordered-chain region and the bi-
layer structural characteristics. The predicted relative solute
partition coefficient in the ordered-chain region,Kb

int(r)/
Ko(r), decreases with increasing surface lipid densitys.
This prediction reflects the fact that the probability of cavity
formation in the ordered-chain region decreases with in-

FIGURE 6 Comparison of the model predictions ofpint(r) for various
solute cross-sectional areas (solid line based on Eq. 34) with simulations
data from the literature (Xiang, 1993) (open circles).
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creasing lipid density. The dependence ofKb
int(r)/Ko(r) on s

is much stronger for solutes having larger radii. Physically,
this suggests that the enhancement of the probability of
cavity formation due to an increase ins is larger for the
larger solutes. The dependence of the relative diffusion
coefficientDb

int(r)/Do(r) on s is qualitatively similar to that
of the relative partition coefficient ons.

It is useful to quantify the relative contribution of the
diffusion and the partition coefficients to size selectivity by
introducing a quantityQ, defined as (Q 5 [Db

int(r)/Do(r)]/
[Kb

int(r)/Ko(r)]. A value ofQ 5 1 indicates that hindrance to
diffusion and partitioning are comparable in determining the
size dependence of bilayer permeation. A value ofQ . 1
indicates that the solute experiences more difficulty in par-
titioning into the ordered-chain region as compared to dif-
fusing across it. In other words,Kb

int(r)/Ko(r) has a larger
contribution in determining the size dependence of bilayer
permeation as compared to that ofDb

int(r)/Do(r). Figure 7
shows the predicted values ofQ for the egg PC bilayer data
shown in Fig. 3 as a function of solute volume. Figure 7
shows thatQ may be greater or less than unity depending on
solute size, thus suggesting that the relative contribution of
diffusion and partitioning may vary with solute size and
with other bilayer parameters. This also suggests that it is
not possible to make general statements about the quantita-
tive relative roles of diffusion and partitioning in determin-
ing the size selectivity of bilayer permeation. This is an
important conclusion, because it suggests that the relative
importance of partitioning and diffusion in bilayer perme-
ation should be evaluated on a case by case basis. Although
no experimental or simulations data are available to assess
our model predictions forQ, the predictions regarding the
relative roles of partitioning and diffusion in bilayer perme-
ation are quite novel and could be tested by future experi-
ments or simulations.

CONCLUSIONS

The size selectivity of solute partitioning into lipid bilayers
was analyzed using scaled-particle theory. A 2D scaled-
particle theory description was used to calculate the revers-
ible work required to create a circular cavity to introduce the
solute into the interfacial region of the lipid bilayer. An
approximate equation was derived to relate the solute par-
tition coefficient in the ordered-chain region to three exper-
imentally measurable bilayer parameters: the surface lipid
density, the closed-packed area of the lipids, and the CD-
order parameter. Additional equations were derived to de-
scribe solute diffusion in the ordered-chain region. The
predicted permeabilities compare favorably with the exper-
imentally measured bilayer permeabilities, although it
should be kept in mind that specific interactions between the
solute and the bilayer were not accounted for in the model
presented in this paper. Finally, the extension of the theory
presented here to biological systems, such as cell mem-
branes, should be feasible, although it will require informa-
tion about the structural parameters characterizing the bi-
layers comprising cell membranes. Nevertheless, the
applicability of the general principles of bilayer permeation
resulting from the trans-bilayer transport description pre-
sented in this paper may be useful in understanding trans-
port processes in biological membranes.

APPENDIX

Consider the formation of a spherical cavity within a single layer of lipid
chains in a bilayer. Since the lipid chains are modeled as a 2D system, the
work of cavity formation to accommodate a spherical solute of radiusr is
assumed to be equal to that corresponding to the formation of a circular
cavity of radiusr in a plane containing elliptical cross-sections of the lipid
chains. This assumption is valid for solutes having a radiusr that is less
than the thickness of a lipid segment. In the event that part of the solute
intersects with the adjacent lipid segment, considerations of the density and
ordering of the lipid segments in the adjacent chain layer are required. Note
that the lipid density and lipid chain order parameters vary with depth in
the lipid bilayer.

To calculate the work of cavity formation in a system of hard ellipses,
an equation of state for a mixture of hard ellipses is required and is
discussed first. Using scaled-particle theory, the workWk required to
introduce an ellipsek having major axisaR and minor axislR, wherea
and l are scaling parameters, in a mixture of ellipses can be obtained
by generalizing the equations of Cotter (1977) for spherocylinders.
Specifically,

exp~2bWk! 5 1 2 r O
i51

n

siSik 1 F2
k~a, l, r!, (A1)

wherer is the lipid disk density,b 5 1/kT, Sik is the area from which the
center of ellipsek is excluded when it moves around ellipsei (having a
major axisR/cosui, and a minor axisR) without loosing contact with it.
The first two terms in Eq. A1, that is, 12 r (i51

n siSik, account for the
excluded-area interactions of ellipsek with all the other ellipses, whereas
the third term,F2

k, accounts for multibody interactions (Cotter, 1977). For
infinitesimally small solutes (for which,a 5 l 5 0), the terms accounting
for multibody interactions must vanish, that is,

~F2
k!a5l50 5 S­F2

k

­a D
a5l50

5 S­F2
k

­l D
a5l50

5 0FIGURE 7 Predicted dependence ofQ on solute volume at constant
values ofs, 0.027 Å22; SCD, 20.2; ah, 25 Å2; ande*, 1.1 Å.
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(Cotter, 1977). In contrast, for infinitely large solutes (for whicha 5 l 5
`), Wk must reduce to a pressure-area type work. These considerations
suggest thatWk may be described approximately by the equation (Cotter,
1977),

bWk 5 C00 1 C10a 1 C01l 1 alR2bP, (A2)

whereP is the 2D pressure, and the coefficientsClm can be described by
(Cotter, 1977)

Clm 5 ~l! m!!21S­~l1m!Wk

­al­lm D
a5l50

. (A3)

These coefficients can be calculated by substituting Eq. A2 in Eq. A1 after
a formal expression forSik is known. BecauseF2

k, as well as its derivatives,
vanish ata 5 l 5 0, the actual evaluation ofF2

k is not necessary. The
central quantity of interest isSik, the area from which the center of ellipse
i is excluded by ellipsek. Sik was calculated using an approach similar to
that of Boublik (1974). Consider two ellipses,i andk, having areasSi and
Sk and perimetersLi andLk. Sik (averaged over all the orientations ofk with
respect toi) can be obtained following the approach developed by Kihara
(1963). Specifically,

Sik 5 Si 1 Sk 1
LiLk

2p
. (A4)

Hence, the excluded area when an ellipsek having a major axisaR and a
minor axislR is introduced into a system consisting of ellipsesi, each
having an areaSi, and perimeterLi, is given by (noting thatLk 5
2pR=(a2 1 l2)/2 andSk 5 pR2al)

Sik 5 Si 1 pR2al 1 LiRÎ~a2 1 l2!/2. (A5)

Substituting Eq. A5 in Eq. A1, and then substituting the resulting expres-
sion in Eq. A3, the coefficientsClm can be evaluated. Substituting the
resulting values ofClm in Eq. A2 then yields

bWk 5 2lnS1 2 r O
i

siSiD
1

~r/2!Oi siLi

~1 2 r Oi siSi!
~aR1 lR! 1 palR2bP.

(A6)

Therefore, the work required to introduce an ellipse of major axisR/cosuk,
and minor axisR is obtained by substitutingl 5 1 anda 5 1/cosuk in Eq.
A6, including substituting analytical expressions for the area,Si 5 pR2/
cosui, and perimeterLi 5 2pR=1⁄2 1 1/(2 cos2 ui), of ellipse i. In that
case, Eq. A6 reduces to

bWk 5 2lnS1 2 rpR2 O
i

si

cosuiD
1

prR2 Oi siÎ1⁄2@1 1 ~1/cos2 ui!#

@1 2 rpR2 Oi ~si/cosui!# S 1

cosuk
1 1D

1
pR2

cosuk
bP. (A7)

The pressure,P, can now be calculated using the relation, (­P/­r)s1, s2. . . 5
1 1 r(­W# /­r)s1, s2. . . (Cotter, 1977), whereW# 5 (k Wk. The resulting

equation of state for a mixture of hard ellipses is then given by

bP 5
1

pR2c S 1 2 j/c

1 2 rpR2c
1

j/c

2~1 2 rpR2c!2 1
j

2c
2 1D,

(A8)

where

c 5 O
k51

N sk

cosuk

and

j 5 ~1 1 c!O
k51

N

sk Î1

2S1 1
1

cos2 uk
D.

Eq. A8 indicates that the pressure of a multicomponent hard-ellipse system
depends on three parameters: the densityr, minor axisR, and the param-
eters related to the eccentricityc andj. Note that Eq. A8 reduces to the
well-known equation of state for hard circular disks (Helfand et al., 1961)
after substitutingc 5 1 andj 5 2.

The work required to introduce a spherical solute of radiusr in the
ordered-chain region,Wb(r, z), can be calculated by substitutinga 5 l 5
r/R in Eq. A6, and using Eq. A8 to describe the pressureP along with
substituting analytical expressions for the area,Si 5 pR2/cosui, and
perimeterLi 5 2pR=1⁄2 1 1/(2 cos2 ui), of ellipsei, and representing the
summations byc andj as shown above. The resulting expression is given
in Eq. 9 in the main text.
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