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ABSTRACT A system-based model is proposed to describe and simulate the ultrasound signal backscattered by red blood
cells (RBCs). The model is that of a space-invariant linear system that takes into consideration important biological tissue
stochastic scattering properties as well as the characteristics of the ultrasound system. The formation of the ultrasound signal
is described by a convolution integral involving a transducer transfer function, a scatterer prototype function, and a function
representing the spatial arrangement of the scatterers. The RBCs are modeled as nonaggregating spherical scatterers, and
the spatial distribution of the RBCs is determined using the Percus-Yevick packing factor. Computer simulations of the model
are used to study the power backscattered by RBCs as a function of the hematocrit, the volume of the scatterers, and the
frequency of the incident wave (2–500 MHz). Good agreement is obtained between the simulations and theoretical and
experimental data for both Rayleigh and non-Rayleigh scattering conditions. In addition to these results, the renewal process
theory is proposed to model the spatial arrangement of the scatterers. The study demonstrates that the system-based model
is capable of accurately predicting important characteristics of the ultrasound signal backscattered by blood. The model is
simple and flexible, and it appears to be superior to previous one- and two-dimensional simulation studies.

INTRODUCTION

Although ultrasonography is a well-established noninvasive
technique for the diagnosis of circulatory diseases, it still
has a great potential for new developments. In particular,
the information contained in the signal backscattered by red
blood cells (RBCs) remains largely unexploited. Because of
the very dense suspension of scatterers in normal blood (Mo
and Cobbold, 1992), the characteristics of the ultrasound
signal backscattered by RBCs are determined by complex
wave interactions. Several studies were conducted to de-
velop theoretical models that could help in understanding
the nature of the backscattered ultrasonic signal (Angelsen,
1980; Mo and Cobbold, 1986, 1992; Twersky, 1987; Shung
and Thieme, 1993; Bascom and Cobbold, 1995). The back-
scattered power, one of the parameters that can be extracted
from the signal, was shown to be a function of the hemat-
ocrit, the size of the scatterers, and the frequency of the
incident wave. These models also demonstrated the impor-
tant role of the spatial arrangement of the scatterers in
determining the ultrasonic backscattered power. Despite of
the progress made in this field of research, there are still
several aspects that need to be clarified, such as the behavior
of the backscattered power at high frequencies (.40 MHz)
or the effect of the spatial arrangement of the scatterers.

To better understand the scattering process by blood,
simulation models were also developed. Routh et al. (1987)

modeled the RBCs by a set of identical, parallel slabs,
randomly positioned. The slab thickness was kept constant,
but the average distance between slabs was adjusted so as to
model different hematocrits. The backscattered power as a
function of the frequency and the hematocrit was studied.
The results for this one-dimensional (1D) model suggested
a square law dependence between the backscattered power
and the frequency, and a maximum backscattered power at
;35% hematocrit. These results were in agreement with the
1D Rayleigh scattering theory, except for its prediction of
an artifactual second peak near 90% hematocrit.

Following this study, another approach was used to
model the reflection of ultrasound by a chain of randomly
spaced elements, fixed at both ends (Gough et al., 1988).
Routh et al. (1989) also studied the reflection by a chain of
scatterers arranged in the steps of a 1D random walk, fixed
at one end. In both studies, the power as a function of the
hematocrit was evaluated, and the results were comparable
to those obtained in their previous study (Routh et al.,
1987). Mo et al. (1994) later studied the relationship be-
tween the backscattered power and the hematocrit by adapt-
ing the model of Routh et al. (1987). The simulation model
was modified to allow random boundary conditions. The
backscattered power increased at low hematocrits, peaked
around 35% hematocrit, and decreased at higher hemat-
ocrits. The artifactual second peak at 90% hematocrit was
not observed with this model, which is in agreement with
the experimental results presented in the study.

However, it is known that the backscattered power from
nonaggregating RBCs does not peak at 35% hematocrit and
does not follow a second power frequency dependence.
Instead, experimental results showed a peak of the back-
scattered power around 15% hematocrit (Shung, 1982;
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Yuan and Shung, 1988b) and a fourth power frequency
dependence when Rayleigh scattering conditions are satis-
fied (Shung et al., 1976; Yuan and Shung, 1988a). To
overcome these limitations, Zhang et al. (1994) extended
the 1D approach to a two-dimensional (2D) model. The
highest hematocrit that could be modeled for this 2D sim-
ulation was 46%. The backscattered power as a function of
the hematocrit peaked at 35% hematocrit in 1D and at 22%
hematocrit in 2D. The validity of the Born approximation as
well as the influence of the variation of the scatterer size and
acoustical impedance were also studied. No results were
presented on the frequency dependence of the backscattered
power. Currently, neither 1D nor 2D simulation models can
reproduce the experimental results obtained as a function of
the hematocrit and frequency. Zhang et al. (1994) concluded
that a 3D simulation model should provide better results.

In the present study, a system-based approach is proposed
to model the backscattering of ultrasound by nonaggregat-
ing RBCs. It is based on an earlier model developed by
Bamber and Dickinson (1980) for ultrasound image forma-
tion of living tissues and later expanded by Meunier and
Bertrand (1995) to study tissue dynamics. This system-
based model is adapted here to simulate the ultrasonic signal
backscattered by blood. In this system-based model, the
characteristics of the RBCs are defined in 3D, which should
alleviate some limitations of the simulation models de-
scribed previously. Furthermore, as will be shown later, the
model explicitly considers the spatial arrangement of the
scatterers, an important parameter affecting the backscat-
tered signal. The choice of this model was governed by its
flexibility in defining the transducer and tissue characteristics.
The possibility of adapting the model to the study of moving
RBCs was another motivation (Meunier and Bertrand, 1995).

The first part of this manuscript describes the main prop-
erties of the ultrasonic signal backscattered by blood and a
summary of the different theoretical modeling approaches
proposed in the literature. The system-based model is de-
tailed in the second part of the manuscript. The model is
used to study the effect of the spatial arrangement of the
scatterers on the backscattered signal, and the hypothesis
stating that the power of the backscattered signal is propor-
tional to the variance of the local RBC concentration. More
specifically, this simulation model was used to study the
backscattered power as a function of the hematocrit, the
volume of the scatterers, and the incident wave frequency.
The Results and Discussion are presented in the last sec-
tions. In the last part of the Discussion, a new approach to
modeling the spatial arrangement of the scatterers is pro-
posed. This approach is based on the renewal point process
theory.

THEORETICAL BACKGROUND

Scattering from one particle

An important parameter characterizing the ultrasonic signal
backscattered by a single scatterer is the differential scat-

tering cross section (s), which is the power scattered per
solid angle per unit incident intensity (Shung and Thieme,
1993). Because RBCs are much smaller than the acoustical
wavelength (for the range of frequencies usually used in
medicine, 2–30 MHz), ultrasound scattering by nonaggre-
gating RBCs follows the Rayleigh scattering theory (Ray-
leigh, 1945). This theory implies that the incident wave is
scattered in all directions and that the scattering cross sec-
tion is proportional to the fourth power of the incident wave
frequency and to the square of the scatterer volume, a
behavior that does not depend on the geometry of the
scatterer (Rayleigh, 1945; Morse and Ingard, 1968). For
weak scatterers, i.e., with density and compressibility that
only differ slightly from the surrounding medium, and for
arbitrary shape, the differential scattering cross section at an
angleu is given by (Shung and Thieme, 1993; Lucas and
Twersky, 1987)

s~u! 5
k4Vs

2

16p2US1 2
ke

k0
D 2 S1 2

r0

re
Dcos~u!U2

, (1)

wherek is the wavenumber,Vs is the volume of the scat-
terer,r0 andre are the densities (g/cm3) of the surrounding
medium and of the scatterer, respectively, andk0 andke are
their respective compressibilities (cm2/dyne). The wave-
number is defined ask 5 2p/l 5 2pf/c, wherel is the
wavelength,f is the frequency of the propagating wave, and
c is the speed of sound in the medium, which is equal to (k0 z
r0)

21/2 cm/s (Lucas and Twersky, 1987).
It is generally assumed that Rayleigh scattering occurs

when ka , p/10, wherea is the radius of the scatterer
(Shung and Thieme, 1993). Beyond that limit, the behavior
of the backscattered power by a single particle becomes
dependent on the scatterer’s geometry. For a scatterer radius
much larger than the wavelength, exact solutions of the
backscattered power exist for specific geometries such as a
sphere (Morse and Ingard, 1968; Ishimaru, 1978). The char-
acteristics of the power backscattered by a scatterer of
arbitrary density and compressibility, whose radius is in the
same range as the wavelength, still need to be studied (Kuo
and Shung, 1994). The better understanding of ultrasound
backscattering by blood in the non-Rayleigh region is rele-
vant for ultrasonic imaging devices, operating at high fre-
quencies, that are currently being developed to study mi-
crocirculation, for example (Turnbull et al., 1995;
Christopher et al., 1997; Ferrara et al., 1996).

Scattering intensity from a random distribution of
small particles

For a low volume concentration (hematocrit) of randomly
positioned scatterers, the total backscattered power approx-
imates the sum of echoes from all scatterers and is therefore
proportional to the number of scatterers. However, for a
dense suspension of scatterers, uncorrelated scatterer posi-
tions can no longer be assumed, even under nonaggregating
conditions. Because of its finite size, a particle will prevent
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others from occupying any position within a certain dis-
tance, and thus significant positioning correlation can exist.
Under these conditions, the power of the backscattered
signal is a function of the scatterer spatial arrangement and
is not simply proportional to the number of scatterers.

The backscattering coefficient (BSC) is, by definition, the
average backscattered power per steradian from a unit vol-
ume of blood, insonated by a plane wave of unit intensity
(Shung and Thieme, 1993). In Mo and Cobbold (1992), the
BSC was given by

BSC5 sbs~H/V!W, (2)

wheresbs is the differential scattering cross section defined
in Eq. 1 foru 5 180°,H is the hematocrit,V is the average
volume of the scatterers, andW is the packing factor. The
packing factor is a measure of the orderliness in the spatial
arrangement of the particles. It expresses the acoustic inter-
ference between all echoes. It was derived from the follow-
ing statistical mechanics structure factor for symmetrical
pair-distributed functions (Twersky, 1975, 1987):

W~k, ~r̂ i 2 r̂o!! 5 1 1 rE @g~Rp! 2 1#ejk(r̂i2r̂o)zRpdR, (3)

wherek is the wavenumber;r̂ i and r̂o are, respectively, unit
vectors in the direction of the incident wave and in the
direction of observation;r is the density of particles,
[g(Rp) 2 1] is the total correlation function, whereg(Rp) is
the radial distribution function;Rp is the separation of pairs;
j is =21; and *dR is the corresponding volume integral
(i.e.,*** dx dy dz). This expression (Eq. 3) was obtained by
considering an incident plane wave. The radial distribution
function, g(Rp), represents the probability of finding two
particles separated by a distanceRp in the volume.

The packing factor is the low-frequency limit of this
structure factor (i.e.k3 0) and is thus given by (Twersky,
1975, 1987)

W5 1 1 rE@g~Rp! 2 1#dR. (4)

The packing factor can also be expressed as a function of
the variance of the local scatterer concentration (Twersky,
1987), i.e.,

W5 ~1/n#!var~n!, (5)

where n# is the average number of scatterers within all
elemental blood volumes (voxels), and var(n) is the variance
in the mean number of scatterers within each elemental
voxel averaged over space and time. (In the definition of a
voxel, the thickness of the volume parallel to the propaga-
tion plane wave is less thanl/10.) The Percus-Yevick
approximation model describing the pair-correlation for
identical, randomly positioned spherical particles can be
used to expressW as a function of the hematocrit (Twersky,

1975):

W5
~1 2 H!4

~1 1 2H!2 . (6)

This factor approaches 1 at a very low hematocrit because
the positions of RBCs are then almost perfectly uncorre-
lated. It decreases as the hematocrit increases, until it
reaches 0 at 100% hematocrit.

The average number of scatterers per voxel isn# 5 H z
Ve/V 5 r z Ve, whereVe represents the voxel size andr is
defined in Eq. 3. Hence using Eqs. 5 and 2, the backscat-
tering coefficient can also be expressed as

BSC5 sbsvar~n!/Ve . (7)

This last equation shows that the backscattered power
should be proportional to the variance of the local scatterer
concentration. Interestingly, Eq. 7 indicates that a null vari-
ance situation, i.e., where the number of scatterers within
each voxel is constant, should lead to a backscattered power
of 0, independently of the hematocrit. This phenomenon is
called crystallographic scattering, and it can be explained by
a perfect destructive interference pattern (Shung and Thi-
eme, 1993).

Several studies compared the theoretical BSC as a func-
tion of the hematocrit (Eq. 2) with experimental observa-
tions (Shung, 1982; Shung et al., 1984; Lucas and Twersky,
1987; Berger et al., 1991). With the packing factor given by
Eq. 6, it was found that the experimental and theoretical
curves did not match perfectly because the packing of RBCs
certainly differs from that of rigid spheres. To overcome this
problem, a new packing factor was introduced to take into
consideration the effect of the shape of the scatterers, the
nature of the flow, and the polydispersity in the size of the
scatterers. The equation describing the new packing factor is
(Berger et al., 1991)

W5
~1 2 H!2

@1 1 ~d1 2 1!H#2

3 H~1 2 H!2 1 ~1 2 H!H
4d1d2

1 1 5d2
1

H2d1
2d2

1 1 4d2
J ,

(8)

where H is the hematocrit,d1 considers the shape and
correlation among scatterers, andd2 represents the variance
in the particle size. For a suspension of identical rigid
spheres, the parametersd1 andd2 are, respectively, 3 and 0,
and Eq. 8 becomes equivalent to Eq. 6.

METHODS

Simulation model

The system-based model uses the Born approximation, which implies that
the scattered echoes are weak compared to the incident signal. It is then
possible to assume that the impulse response of the system is space-
invariant within a small region (Meunier and Bertrand, 1995). The Born
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approximation also implies that it is possible to use the principle of
superposition to represent the wave scattered by a collection of particles by
adding their respective contribution. The radio frequency (RF) signal
received by the ultrasound transducer translated in the (x, z) plane can be
modeled as

RF3d~x, y, z! 5
­2

­y2 T3d~x, y, z! ^ Z3d~x, y, z!, (9)

where T3d(x, y, z) represents the system three-dimensional (3D) point
spread function (PSF), andZ3d(x, y, z) describes the acoustical impedance
of the scatterers. In Eq. 9,x andz are, respectively, along the lateral and
elevation directions, andy is in the direction of propagation of the ultra-
sonic wave. The RF signal in Eq. 9 is determined by the transducer transfer
function, T3d(x, y, z), convoluted by the fluctuations of the tissue imped-
ance, i.e., (­2/­y2) Z3d(x, y, z). It is assumed that the incident acoustic wave
is not modified by the small inhomogeneities encountered in the volume.
Because multiple reflections are neglected, the backscattered RF signal is
thus the sum of the acoustic responses from each point in the sample
volume. The complete mathematical development leading to this equation
can be found in Meunier and Bertrand (1995).

The RF signal required for one-dimensional analysis corresponds to one
line of the whole 3D RF signal, and it can be obtained by evaluating Eq.
9 at z 5 0 andx 5 0. More specifically,

RF~y! 5 RF3d~0, y, 0!

5
­2

­y2 EEEZ3d~m, n, v!T3d~2m, y 2 n, 2 v!dm dn dv.

(10)

Assuming a separable PSF, i.e.,T3d(x, y, z) 5 Tx(x)Ty(y)Tz(z), RF(y)
becomes

RF~y! 5
­2

­y2 Ty~y! ^ Z~y!, (11)

whereZ(y) is the projection of the 3D acoustical impedance function (Z3d),
weighted by the PSF over thex-z plane, i.e.,

Z~y! 5 EEZ3d~x, y, z!Tx~2x!Tz~2z!dx dz. (12)

The impedance functionZ3d is determined by the fluctuations in density
and compressibility of the medium. It can be made to represent a homo-
geneous medium of mean impedanceZ0 that embeds the scatterers with
acoustical impedanceZ0 1 DZ (Meunier and Bertrand, 1995). This mean
impedanceZ0 can be ignored because of the second derivative operator of
the model. Furthermore, the impedance function can be simplified by
assuming that all scatterers are identical in shape and echogenicity. It is
then possible to represent the RBCs by a single scatterer prototypeC3d(x,
y, z) that is repeated at each cell position (xn, yn, zn). The 3D impedance
function can then be written as

Z3d~x, y, z! 5 O
n51

M

Zn~x, y, z!

5 O
n51

M

C3d~x 2 xn, y 2 yn, z2 zn!,

(13)

whereM is the number of scatterers. Equation 13 is equivalent to

Z3d~x, y, z! 5 C3d~x, y, z! ^ O
n51

M

d~x 2 xn, y 2 yn, z2 zn!

5 C3d~x, y, z! ^ N~x, y, z!, (14)

whereN(x, y, z) is called the microscopic density distribution. This function
is nonzero at the center position of every RBC. The size and echogenicity
of the RBCs are considered by the convolution ofN(x, y, z) with C3d(x, y,
z). It can be shown that the Fourier transform of the microscopic density
distribution is proportional to the structure factor described before in Eq. 3.
A system-based interpretation of the structure factor is given in the Ap-
pendix for the special case of ultrasound backscattering.

Using previous definitions and assuming that the PSF is constant over
the dimension of a scatterer in thex-z plane, the impedance function
defined in Eq. 12 can be written in terms of a convolution:

Z~y! 5 C~y! ^ N~y!, (15)

where

C~y! 5 EEC3d~x, y, z!dx dz, (16)

andN(y) is defined by

N~y! 5 O
n51

M

Tx~2xn!Tz~2zn!d~y 2 yn!. (17)

Consequently, from Eqs. 11 and 15, the RF signal received by the
transducer can be written as

RF~y! 5
­2

­y2 Ty~y! ^ C~y! ^ N~y!. (18)

The functionN(y) conveys information about the spatial arrangement of the
scatterers and is, by definition, nonzero at every scatterer location. It is a
projection on they axis of each scatterer’s echogenicity weighted by the
magnitude of the PSF at the scatterer’s position. A simpler interpretation of
N(y) is possible whenTx(x) and Tz(z) are constant over the width and
thickness of the sample volume. In this case,N(y)dy represents the number
of scatterers contained in the corresponding sliceydy of the sample volume.
In summary, the ultrasonic signal backscattered by blood can be computed
by the convolution of the transducer transfer function (Ty) with the scat-
terer prototype (C) and the functionN that represents the density distribu-
tion of the scatterers.

Implementation for computer simulations

To compute the ultrasonic signal backscattered by RBCs, the transducer
function, the scatterer prototype, and the spatial distribution of the scatter-
ers need to be defined.

Definition of the PSF (T)

As used by Meunier and Bertrand (1995), the PSF representing the system
response is a 3D Gaussian envelope modulated by a cosine function:

T3d~x, y, z! 5 expF21

2 Sx2

cx
2 1

y2

cy
2 1

z2

cz
2DGcosS4pfy

c D . (19)

In the above equation,cx, cy, andcz are the standard deviations of the 3D
Gaussian function representing the beamwidth, the transmitted pulse

2390 Biophysical Journal Volume 77 November 1999



length, and the beam thickness, respectively. The parameters 2f/c, in Eq.
19, represent the transducer spatial frequency, wheref is the ultrasonic
frequency andc is the speed of sound. In this paper, the PSF is modeled
with cx 5 0.43 mm,cy 5 0.21 mm, andcz 5 0.85 mm. It is easy to show
that the hypothesis of separability used above is valid for this PSF
definition. The functionTy(y) used for the 1D analysis corresponds to
T3d(0, y, 0).

Scatterer prototype (C)

In our simulations, the scatterer prototype was approximated by a sphere.
The functionC(y), which is the projection of the scatterer on they axis, can
be written in this case as

C~y! 5 p~a2 2 y2!, (20)

where the parametera corresponds to the radius of the sphere. Human
RBCs were approximated by spherical scatterers having a volume of 87
mm3 (Shung and Thieme, 1993), which corresponds to a radius of 2.75mm
(diameter of 5.5mm). For simulations performed to study the effect of the
scatterer volume on the backscattered power, the radiusa was changed
accordingly.

Simulations were also performed using the scatterer geometry defined
previously by Meunier and Bertrand (1995). In that study, scatterers were
modeled as 3D Gaussians. In the present study, this scatterer geometry was
used to assess the effect of the shape of the scatterer on the backscattered
power as a function of the frequency. The backscattered power is known to
be independent of the shape of the scatterer for Rayleigh scattering, but this
property may not be valid for non-Rayleigh scatterers. In 1D, the Gaussian
scatterer prototype can be expressed by

C~y! 5 2pÎsx
2 z sz

2 expS21

2
z
y2

sy
2D , (21)

where sx, sy, and sz are the standard deviations corresponding to the
scatterer size in thex, y, and z planes. The standard deviations of the
scatterer prototype were set to the radius of the sphere defined in Eq. 20
(sx 5 sy 5 sz 5 2.75 mm).

Spatial distribution (N)

One original aspect of this simulation model is the possibility of incorpo-
rating the effect of the 3D spatial distribution of the scatterers on the BSC.
Recall that the functionN(y) can be interpreted as the number of scatterers
contained in each sliceyn of thickness dy in the sample volume. If the
number of scatterers in a slice of thickness dy is large, then for randomly
positioned scatterers, the central limit theorem predicts thatN(y) is the
outcome of a normal stochastic process (Papoulis, 1991). Thus, the first-
order statistics ofN(y) requires specifying its mean and variance, which, in
our case, are given byn# 5 H z Ve/V and var(n) 5 n#W, respectively. The two
different definitions of the packing factor given by Eqs. 6 and 8 were used
in the definition of the functionN.

RF signal

As mentioned before, the ultrasound signal is computed by the convolution
of (­2/­y2) Ty(y), C(y), andN(y). The convolution of these functions in the
time domain is equivalent to a simple product of their Fourier transforms
in the spectral domain. The spectra of those functions, as defined previ-
ously, are presented in Fig. 1. The spectrum of the second derivative of the
PSF is shown in Fig. 1a, and the spectra of the two different scatterer
geometries, i.e., the sphere and the Gaussian, are shown in Fig. 1b. The
function representing the spectrum of the spatial arrangement of the scat-
terers (N) is illustrated in Fig. 1c. The spectrum is that of a white noise
whose expected power level is proportional to the variance of the number
of scatterers within each elemental voxel (var(n) 5 Ve(H/V)W), when

averaged over several realizations of the same statistical process. The
theoretical power spectrum of the functionN(y) is constant over all fre-
quencies, for the packing factor definitions given by Eq. 6 or 8. As shown
later in the Discussion, the microscopic density distribution may be more
accurately modeled as a function of the frequency by using the point
process theory.

As shown previously in Eq. 2, theoretical models suggest that the
backscattered power is equal tosbs (H/V)W. The backscattering cross
sectionsbs is considered by the second derivative of the transducer func-
tion (­2/­y2) Ty(y) operating on the cell prototype function (C). The spatial
distribution of the scatterers (N) reflects the acoustic interference associ-
ated with the presence of many scatterers and leads to the coefficient
(H/V)W of the theoretical model.

Comparison of the simulations with theory and
experimental results

The simulations were compared to the theoretical BSC given by Eqs. 1 and
2 and to experimental results obtained by Shung and collaborators (Shung
et al., 1984; Yuan and Shung, 1988a; Shung et al., 1993). The surrounding
medium considered in this work was an isotonic saline solution because

FIGURE 1 (a) Amplitude spectrum of the second derivative of the PSF
((­2/­y2)Ty(y)). Ty(y) is computed from Eq. 19, with the transducer fre-
quencyf 5 7.5 MHz. (b) Amplitude spectrum of the scatterer prototype
C(y) for a 5 2.75 mm. – z z –, The sphere prototype (Eq. 20); ——, the
Gaussian prototype (Eq. 21). The maximum value of the first function was
normalized with respect to that of the second one. (c) Amplitude spectrum
of the distributionN(y) at 40% hematocrit, computed using the packing
factor. – z z –, The simulation results averaged over 10 simulations. ——,
The theoretical spectrum, the amplitude of which is proportional to the
variance in the mean number of cells. The spatial frequency in cycles/mm
is also indicated on thex axis.
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RBCs washed and suspended in saline do not form aggregates. The
following values were used to compute the theoretical backscattering cross
section defined by Eq. 1 (u 5 180°): for human red cells,ke 5 34.1 3
10212 cm2/dyne andre 5 1.092 g/cm3; and for the isotonic saline solution,
k0 5 44.33 10212 cm2/dyne andr0 5 1.005 g/cm3.

The size of the sample volume in the direction of propagationy was
2.048 mm, and the resolution within the 3D volume was 0.5mm, corre-
sponding to a sampling frequency of 1.57 GHz. (The sampling frequency
is obtained by dividingc/2 by the spatial resolution of 0.5mm.) This
resolution was chosen to prevent significant aliasing for the RBC prototype
(C) and the PSF (Ty). This small resolution allows the modeling of each
RBC with many “scattering points.” The tissue is thus represented by a
large number of points, either within or outside each RBC. As mentioned
before, the surrounding medium has an acoustical impedanceZ0, while all
RBCs have the same impedance, characterized by the convolution of the
scatterer prototype function (C) with the position matrix (N). The voxel
size used for projecting the 3D volume into 1D was determined in thex-z
plane by the dimensions of the PSF. The width and thickness of the PSF
were estimated by twice the FWHM (full width half-maximum), which is
;2.35 multiplied by the standard deviation (c) (Meunier and Bertrand,
1995). Using the standard deviations defined previously, the width of the
voxel thus corresponded to 2 mm and the thickness to 4 mm. In the
simulations, 4096 voxels were used (2048mm/0.5mm), and the dimension
of the voxel (Ve) was 43 1023 mm3 (2 mm 3 4 mm 3 0.5 mm).

All simulations were performed with Matlab 4.2 (The MathWorks Inc.,
Natick, MA). The backscattered power of the simulated signal RF(y) was
obtained by computing the mean value of the square of the amplitude of
this signal. All simulations presented in the following section were com-
puted 100 times for statistical averaging. All results were expressed in
cm21steradian21 and were normalized with respect to the theoretical
values obtained from Eq. 2. The normalization constant was computed by
doing a linear regression of the backscattered powers over the range of
hematocrits, frequencies, and volumes considered (see Figs. 2–7).

RESULTS

A spherical scatterer prototypeC(y) was used in all simu-
lations, except when specified. Fig. 2 shows the relationship
between the BSC and the hematocrit for human RBCs at 7.5
MHz. The simulation results (circles) are presented along
with the theoretical BSC curve (solid line) obtained from
Eq. 2, and experimental results obtained from a stationary
erythrocyte suspension (triangles) (Shung et al., 1984). The
packing factor used for the theoretical curve and the simu-
lations was evaluated according to Eq. 6. As seen in this
figure, there is a good agreement between the simulation
and theoretical results. But, as also shown by Shung et al.
(1984) and Lucas and Twersky (1987) for the theoretical
data, neither of these results perfectly match the experimen-
tal data. The largest discrepancies are observed around the
peak of the BSC curve and at high hematocrit values. The
maximum power of the simulated and theoretical curves is
observed near 13% hematocrit, while the peak of the ex-
perimental data occurs at 16% hematocrit.

As mentioned previously, the packing factor defined by
Eq. 6 was derived for identical spheres. Equation 8 was
proposed to better reproduce experimental results obtained
for RBCs. Simulations were performed using this definition
of the packing factor, withd1 5 1.723 andd2 5 0. The
results obtained for these simulations are presented in Fig.
3. The maximum backscattering occurs at 16% hematocrit
for all types of data, and a better agreement between the

theoretical, simulation, and experimental results is observed
at high hematocrits. It is important to note that these values
of d1 andd2 are specific for these scatterer and static flow
characteristics. These values would be different under lam-
inar or turbulent flow conditions and in the presence of RBC
aggregation, because these conditions affect the spatial ar-
rangement of the scatterers.

All other simulations presented in the Results were done
with the packing factor expressed by Eq. 6. These simula-
tions were performed to study the properties of the back-
scattered signal in relation to the volume of the scatterers
and the frequency. Fig. 4 shows the BSC as a function of the
frequency of the propagating wave. The full line represents
the fourth-power dependence predicted by the theory (Eqs.
1, 2, and 6). The triangles correspond to experimental mea-
surements obtained by Yuan and Shung (1988a) at a hemat-
ocrit of 44%, using bovine whole blood, which is known to
form very few aggregates (Weng et al., 1996). The circles
and diamonds correspond to the simulation results. The
circles represent simulations performed with a spherical
scatterer prototype, and the diamonds represent those per-
formed with the Gaussian scatterer prototype. These simu-
lations were done at 40% hematocrit for frequencies ranging
from 2–500 MHz, the latter being well beyond frequencies
used for cardiovascular applications. Both curves are in
good agreement with the theoretical and experimental data
at low frequencies. But it can be seen in Fig. 4 that the
behaviors of the two simulated BSC curves differ at highka

FIGURE 2 Backscattering coefficient as a function of the hematocrit at
7.5 MHz.E, Simulation results, which are expressed in terms of mean6
one standard error (n 5 100 simulations). ——, The theoretical curve,
computed from Eqs. 1 and 2. The packing factor of Eq. 6 was used for the
simulations and theoretical results.�, Experimental results reproduced
from Shung et al. (1984).
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values. For the Gaussian scatterers, the backscattered power
decreases in the non-Rayleigh region, while for the spheri-
cal scatterers, the backscattered power rather oscillates
around a constant value. Neither of the two curves follows
the theoretical prediction for Rayleigh scattering at high
frequencies (above;40 MHz).

The backscattered power as a function of the volume of
the scatterers was also studied for a range of volume well
beyond that of normal human RBCs. These simulations
were performed to better understand the fundamental mech-
anisms of ultrasound backscattering. Figs. 5 and 6 show the
results obtained for scatterer volumes ranging between 4.2
mm3 and 220mm3, at a fixed scatterer number density
(n# /Ve 5 H/V 5 a constant). The results of Fig. 5 were
obtained for a cell concentration of 63 105 cells/mm3, and
Fig. 6 corresponds to a cell concentration of 403 105

cells/mm3. The circles correspond to the simulations, and
the triangles (Fig. 5) correspond to experimental results
obtained by Shung et al. (1993) for porcine, bovine, and
lamb RBCs. The full line represents the theoretical volume
square relationship multiplied by the packing factor (V2W).
This relationship is obtained from Eq. 2 (BSC5 sbs (H/
V)W, where the ratioH/V is a constant for a fixed number
density of RBCs, andsbs is proportional toV2). The hemat-
ocrit scale corresponding to the simulation conditions is also
indicated on thex axis. In both figures, a good agreement
was obtained between the theoretical curves and the simu-

lation results. In Fig. 5, the results also agreed well with
experimental data.

Finally, a last series of simulations was done to better
determine the relationship between the backscattered power
and the size of the scatterers at a constant hematocrit (vol-
ume concentration) of 40%, which implies a constant value
of the packing factor for nonaggregating RBCs. The simu-
lation results are presented in Fig. 7. The full line obtained
from Eqs. 1 and 2 shows a linear dependence between the
backscattering coefficient and the volume of the scatterers
(BSC5 sbs (H/V)W, whereH andW are constant, andsbs

is proportional toV2). The simulation results are in good
agreement with the theory for the range of volumes consid-
ered. The cell concentration corresponding to the range of
volumes is also given on thex axis.

DISCUSSION

Analysis of the results

The results, which are in very good agreement with the
theory and experimental data, confirm the validity of this
model for simulation of the ultrasonic signal backscattered

FIGURE 3 Backscattering coefficient as a function of the hematocrit at
7.5 MHz.E, Simulation results, which are expressed in terms of mean6
one standard error (n 5 100 simulations). ——, The theoretical curve,
computed from Eqs. 1 and 2. The packing factor of Eq. 8 was used for the
simulations and theoretical results.�, Experimental results reproduced
from Shung et al. (1984). Because all results were normalized with respect
to the theoretical curve, the scaling of they axis on this figure and that in
Fig. 2 are different.

FIGURE 4 Backscattering coefficient as a function of the frequency at
40% hematocrit.E, Simulation results using a spherical scatterer proto-
type;{, simulation results using a Gaussian scatterer prototype. Both are
expressed in terms of mean6 one standard error (n 5 100 simulations).
——, The theoretical fourth-power frequency dependence.�, Experimen-
tal results reproduced from Yuan and Shung (1988a). The normalization
constant of the simulation and experimental results was computed for
frequencies between 2 and 20 MHz. The parameterska corresponding to
the frequency scale are also indicated on thex axis, wherek is the
wavenumber anda is the radius of the scatterers.
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by RBCs. The system-based approach provided more accu-
rate modeling than previous simulation models (Routh et
al., 1987, 1989; Gough et al., 1988; Mo et al., 1994; Zhang
et al., 1994). One of the reasons why our results provided a
better agreement with the experimental observations is that
the geometry of the scatterers was defined in 3D (spherical
or Gaussian scatterers), while in previous 1D and 2D sim-
ulation models, slabs (Routh et al., 1987, 1989; Gough et
al., 1988; Mo et al., 1994; Zhang et al., 1994) and cylinders
(Zhang et al., 1994) were used. Moreover, the spatial ar-
rangement was defined to represent the characteristics of
scatterers suspended in a 3D volume, by using the appro-
priate packing factor.

As mentioned before, theoretical modeling showed the
importance of the spatial arrangement of the scatterers on
the backscattered power. In the present simulation model,
the spatial distribution of the scatterers was modeled by
considering the packing factor theory (see Figs. 2 and 3).
More specifically, the backscattered power was shown to be
proportional to the local variance of the scatterers (var(n) 5
n#W). It is known from the literature that the spatial arrange-
ment of the scatterers depends on the scatterer and flow
characteristics. The flexibility of the system-based model
allows the properties of the backscattered signal to be mod-
eled for different characteristics of the flow and scatterers,

by simply using the appropriate packing factor. However,
the definition of the packing factor as a function of these
characteristics needs to be further investigated.

The theoretical model used to compare our simulation
results (Eqs. 1 and 2) is based on the Rayleigh scattering
theory. The results of Fig. 4 are in agreement with this
theory, which suggests a fourth-power dependence at least
up to 30 MHz (Shung et al., 1993; Kuo and Shung, 1994)
(the limit of Rayleigh scattering is usually approximated by
ka5 p/10 (Ishimaru, 1978; Shung and Thieme, 1993)). For
ka , p/10, the simulations provided a 3.9 power depen-
dence. Very interestingly, the simulation results of Fig. 4
obtained for spherical scatterers are in agreement with the-
oretical results obtained using the T-matrix method for
spherical scatterers and biconcave scatterers mimicking
RBCs (Kuo and Shung, 1994) at high frequencies. The
different behavior obtained for the two scatterer prototypes
can be explained by the fact that the Gaussian geometry is
not limited in space, as opposed to the spherical geometry.
The discontinuity at the sphere boundary produces a win-
dow effect that creates oscillations in the spectrum of the
scatterer prototype at high frequencies, as shown in Fig. 1b.
The behavior of the backscattered power at high frequencies
is thus mostly affected by the shape of the cell, as opposed
to Rayleigh scattering, which is independent of the geom-
etry of the scatterer.

FIGURE 5 Backscattering coefficient at 7.5 MHz as a function of the
volume of the scatterers for a constant scatterer concentration of 63 105

cells/mm3. E, Simulation results, which are expressed in terms of mean6
one standard error (n 5 100 simulations). ——, The theoretical volume
square relationship multiplied by the packing factor.�, Experimental
results reproduced from Shung et al. (1993). The hematocrits correspond-
ing to the volume scale are also indicated on thex axis.

FIGURE 6 Backscattering coefficient at 7.5 MHz as a function of the
volume of the scatterers for a constant scatterer concentration of 403 105

cells/mm3. E, Simulation results, which are expressed in terms of mean6
one standard error (n 5 100 simulations). ——, The theoretical volume
square relationship multiplied by the packing factor. The hematocrits
corresponding to the volume scale are also indicated on thex axis.
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The experimental results presented in Fig. 5 were ob-
tained by Shung et al. (1993) at a cell concentration of 63
105 cells/mm3, scatterer volumes up to 90mm3 (maximum
hematocrit5 5.5%), and an ultrasound frequency of 7.5
MHz. From these results, the BSC was found to be propor-
tional to the square of the volume of the scatterers, which is
in agreement with the theory for this low scatterer density.
For instance, the packing factor of Eq. 6 is higher than 0.65
for hematocrits below 5.5%, which provided results close to
the volume square relationship (W ' 1, so the BSC is
proportional toV2 for a constant number density of scatter-
ers). However, an increase in the volume of a fixed number
of scatterers also results in an increase in the hematocrit,
which affects the value of the packing factor. Even if the
relationship between the BSC and the volume of the scat-
terers can be predicted from the theoretical equations, the
literature is not clear on this topic (Shung et al., 1993). So,
it should be made clear that the relationship between the
BSC and the volume of the scatterers, for Rayleigh scatter-
ing, is V2W at a fixed number density of scatterers. As
shown in Fig. 6, the influence of the packing factor domi-
nates over that of the volume square relationship at hema-
tocrits higher than;22%. This effect is very important at
high hematocrit values and leads to a decrease in the back-

scattering coefficient. The last simulations presented in Fig.
7 were done for different scatterer volumes at a constant
hematocrit. In this case, the BSC is not affected by the
packing factor, and it is linearly related to the volume of the
scatterers.

A new approach to modeling the variance in the
spatial arrangement of the scatterers

The results presented in this article were all obtained using
the packing factor of Eq. 6 or 8 to model the variance in the
spatial arrangement of the scatterers (var(n) 5 n#W 5 Ve

(H/V)W). We introduce here a new approach, inspired by
the renewal process theory (Papoulis, 1991), to model the
function N(y). This approach was not used in the simula-
tions presented in this article because it is currently being
developed in 1D only. Despite this fact, interesting obser-
vations can be made at this point, as presented below.

The positions of a high density of scatterers are not
completely random because of their finite size. For instance,
two cells cannot occupy the same space. This phenomenon
can be modeled by a particular point process, where the
output is a series of pulses randomly positioned. In the case
of scattering by RBCs, an event (pulse) represents a point at
the cell location. The sequence of random intervals describ-
ing the distance between two adjacent pulses is called a
renewal process (Papoulis, 1991). The distance between two
pulses of a renewal point process is often represented by a
random variable with an exponential probability density
distribution. For cells of finite size, there is a null probabil-
ity that two pulses are closer than the diameter of the cell,
i.e., 2a. The probability density that another cell is present
at a distancet can be expressed by the exponential density
function,

f~t! 5 0, t , 2a

f~t! 5
1

m
exp~2~t 2 2a!/m!, t . 2a,

(22)

wherem is the mean of the density distribution, andm 1 2a
is the mean distance between two pulses. The Fourier trans-
form of this density distribution is expressed by

F~jv! 5
exp~22jva!

1 1 jvm
. (23)

The power spectral density of the point process can be
shown to be equal to (Shwedyk et al., 1977)

F~jv! 5 aS1 1 2 ReS F~jv!

1 2 F~jv!DD, (24)

wherea represents the average pulse density that is equal to
1/(2a 1 m). This equation can also be written asF(jv) 5

FIGURE 7 Backscattering coefficient at 7.5 MHz as a function of the
scatterer volume, for a constant hematocrit of 40%.E, Simulation results,
which are expressed in terms of mean6 one standard error (n 5 100
simulations). ——, The theoretical linear volume relationship. The cell
concentration corresponding to the range of volumes considered is also
given on thex axis.
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a[1 1 C(jv)], where

C~jv! 5 2 ReH F~jv!

1 2 F~jv!J
5

2~cos~2va! 2 vm sin~2va! 2 1!

2 1 v2m2 2 2 cos~2va! 1 2vm sin~2va!
.

(25)

In 1D, the hematocrit is equivalent to the ratio of the cell
diameter to the average distance between two cells (center
position to center position), i.e.,H 5 2a/(2a 1 m). For 2a 5
5.5 mm andH 5 10%, 40%, and 70%, the power spectral
densityF(jv) is shown in Fig. 8. It can be seen that at 10%
hematocrit, the power spectrum is almost constant over all
frequencies. On the other hand, at 40% and 70% hemat-
ocrits, important oscillations can be observed with a domi-
nant peak located at;100 MHz. At 70% hematocrit, the
oscillations of the power spectrum are higher, but the low-
frequency limit is lower than that observed at 40% and 10%
hematocrits. Unlike the power spectrum ofN(y) shown in
Fig. 1c, which does not depend on the frequency, the
renewal process theory suggests that there is a frequency
dependence in the range of frequencies considered.

As shown below, even if the power spectra obtained from
the two described approaches seem different (Figs. 1c and
8), their low-frequency limits are equivalent (the mean
amplitude in Fig. 1c is slightly different from the low
frequency limit of Fig. 8 because the former is modeled in
3D, whereas the latter is developed in 1D). Fig. 1c illus-

trates the power spectrum of the functionN based on the
packing factor. The mean amplitude of this spectrum is
equal to (H/V)W 5 var(n)/Ve (see Eqs. 2 and 7). In 1D, the
packing factor (W) obtained from the Percus-Yevick pair
correlation equation is equal to (12 H)2 (Twersky, 1987).
ThusW, expressed as a function ofa andm, can be written
asW 5 m2/(2a 1 m)2. Moreover, since the cell concentra-
tion in 1D (H/2a) is equal to 1/(2a 1 m), the coefficient
(H/V)W is given bym2/(2a 1 m)3. From Eq. 24 withv 3
0, the power density spectrum gives the same result, i.e.,

lim
v30

$F~jv!% 5
m2

~2a 1 m!3 . (26)

Thus we showed here that the modeling ofN(y) based on the
point process theory is equivalent to the packing factor
approach, at low frequencies. Furthermore, considering that
limv3`{ F(jv)} 5 1/(m 1 2a), the packing factor can be
expressed as the ratio of limv30{ F(jv)}/lim v3`{ F(jv)}.

To better understand the effect of these two modeling
approaches on the backscattered power, simulations as a
function of the frequency were performed in 1D. The results
are presented in Fig. 9 for a hematocrit of 40%. Both curves
were obtained using the PSFT(y) of Eq. 19 and the sphere

FIGURE 8 Power spectrum of the distributionN(y) computed using the
point process approach for hematocrits of 10%, 40%, and 70%. The
low-frequency limit of the power spectrum isH(1 2 H)2/2a, which is equal
to 14.73 at 10% hematocrit, 26.18 at 40% hematocrit, and 11.45 at 70%
hematocrit.

FIGURE 9 Backscattering coefficient as a function of the frequency at
40% hematocrit. ——, The theoretical fourth-power frequency depen-
dence.E, 1D simulation results obtained by using the packing factor
method to computeN(y); {, the results obtained with the point process
approach. Both results were computed using the spherical scatterer proto-
type, and they are expressed in terms of mean6 one standard error (n 5
100 simulations). The parameterska corresponding to the frequency scale
are also indicated on thex axis, wherek is the wavenumber anda is the
radius of the scatterers.
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as the cell prototype function (Eq. 20). The diamonds cor-
respond to the simulations performed with the point process
theory, and the circles correspond to the packing factor
approach (var(n) 5 Ve(H/V)W, with W 5 (1 2 H)2 in 1D).
The results obtained from the two different definitions of
N(y) are very similar. Even if the functionN obtained using
the new approach oscillates at high frequencies, the oscil-
lations of the backscattered power forka. p/10 are mostly
determined by the cell function (C) defined in Eq. 20.

Theoretical predictions

The current model predicts that for perfectly ordered scat-
terers (null variance), the backscattered power is effectively
null, except for some frequencies. It is well known that
regularly spaced scatterers result, in the frequency domain,
in a set of regularly spaced impulses. Thus, the backscat-
tered power is null, unless the repetition frequency of the
pulses falls within the system bandwidth. It can easily be
shown that the repetition frequency, in Hz, is equal tofrep5
ca/2, wherec is the sound velocity in the medium anda is
the average pulse density. Thus, the backscattering is almost
zero, unless the frequency of the transducerf is a multiple of
frep. Of course, for scatterers the size of a RBC, the repeti-
tion frequency is very high (i.e., over 100 MHz), and the
backscattered power is zero for scatterers separated by the
same distance and a transducer frequency below 100 MHz.

Future work

In the present study, all simulations were done using iden-
tical scatterers. It is possible and it would be interesting to
improve this model to allow polydispersity in scatterer
sizes. Furthermore, nothing was done to avoid the overlap
of very close scatterers. Previous simulation models did
implement the modeling of nonoverlapping RBC positions
(Zhang et al., 1994; Lim et al., 1996). For a given spatial
distribution of the scatterers, mean number and variance, the
overlap of the scatterers should not affect the results be-
cause the transducer cannot resolve individual scatterers. It
would also be interesting to introduce the hypothesis of the
hybrid approach, which suggests the voxel as the scattering
unit (Lim et al., 1996). In this case, it would not be neces-
sary to define every single scatterer in the sample volume
when applying the system-based model presented in this
study. It would also be relevant to allow for the motion of
RBCs, a property that can be included in the model
(Meunier and Bertrand, 1995). Finally, it may be of interest
to model the point process approach in 2D or 3D, especially
for studying high frequencies.

CONCLUSION

The results presented in this study contribute to a better
understanding of the basic mechanisms of ultrasound back-
scattering and demonstrate that the system-based model is

valid, flexible, and efficient in simulating the ultrasonic
signal backscattered by RBCs suspended in a saline solu-
tion. This model can be used to simulate Rayleigh as well as
non-Rayleigh scattering, as opposed to most theoretical
models developed in the literature (Angelsen, 1980; Mo and
Cobbold, 1986, 1992; Twersky, 1987; Bascom and Cob-
bold, 1995), which are limited to the case of Rayleigh
scattering. The model confirms that the backscattered signal
power is proportional to the variance of the local RBC
concentration, although it is still not well known how the
size distribution, the shape, and the flow conditions affect
this variance. The results also demonstrate that the back-
scattered power is proportional to the square of the volume
of the scatterers weighted by the packing factor, at a con-
stant scatterer number density. On the other hand, the power
was shown to be linearly proportional to the volume of the
scatterers when the hematocrit (volume concentration) is
kept constant. A new approach to modeling the spatial
arrangement of the scatterers suggests a frequency depen-
dence of this function. This approach is promising but is
currently being developed only in 1D. In future studies, it
would also be interesting to model RBC aggregation and
flow turbulence, which are expected to affect the variance in
the spatial distribution of the scatterers.

APPENDIX: A SYSTEM-BASED INTERPRETATION
OF THE STRUCTURE FACTOR

The structure factorW(k, (r̂ i 2 r̂o)), defined in Eq. 3, can be written, for
backscattering measurements, in which caser̂ i 5 2r̂o, as

W~k̃! 5 1 1 rE @g~Rp! 2 1#e2j k̃ RpdR, (A1)

wherek̃ 5 2k.
In this case, the structure factor can be interpreted as being a line of the

3D Fourier transform of the total correlation function [g(Rp) 2 1], the line
being in the direction of the incident wave. This can easily be seen by
considering a particular case, that of an incident plane wave in they
direction of a Cartesian coordinate system (x, y, z). Indeed with this, Eq. A1
becomes

W~k̃! 5 1 1 rEEE @g~x, y, z! 2 1#e2j (k̃ y) dx dy dz. (A2)

Thus, it can be seen that the structure factor is proportional to a 1D Fourier
transform of the projection, on the propagation axis, of the 3D total
correlation function. By the Fourier slice theorem, this 1D Fourier trans-
form is a line of the 3D spectrum of [g(Rp) 2 1].

The structure factor can also be described in terms of the microscopic
density distributionN, which is a set of Dirac pulses representing the
scatterers’ spatial distribution:

N~x, y, z! 5 O
i51

M

d~x 2 xi, y 2 yi, z2 zi!, (A3)

where (xi, yi, zi) are the coordinates of theith scatterer, andM is the number
of scatterers. Letr i be the location of theith scatterer; the Fourier transform
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of this function is equal to

N~k̃! } O
i51

M

exp~2jk̃r i!. (A4)

The following demonstration is intended to show that

W~k̃! }
1

M
^N~k̃!N~2k̃!&, (A5)

which is equivalent to

W~k̃! }
1

M KO
i

O
j

e2jk̃ ~ri2rj!L (A6)

5
1

MKO
i5j

e2jk̃(ri2rj)L 1
1

MKO
iÞj

e2jk̃(ri2rj)L .

The first term of this last equation is equal to 1. ConsideringRp 5 r i 2 r j,
the second term is an average of a sum over all pairs of particles of the
function exp(2jk̃Rp). Like any average, it can be rewritten as an integral of
exp(2jk̃Rp) with the probability that two particles are located atr i andr j,
which is given byr2[g(Rp) 2 1]. Thus A6 becomes

W~k̃! 5 1 1
1

M
r2O

i
Edr iE @g~Rp! 2 1#e(2j k̃ Rp)dR (A7)

5 1 1 rE@g~Rp! 2 1#e(2j k̃ Rp)dR.

This last equation is equivalent to Eq. A2. For more details on this topic,
refer to Friedman (1985) or http://www.plmsc.psu.edu/;www/matsc597c-
1997/systems/Lecture3/node2.html.
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