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ABSTRACT A system-based model is proposed to describe and simulate the ultrasound signal backscattered by red blood
cells (RBCs). The model is that of a space-invariant linear system that takes into consideration important biological tissue
stochastic scattering properties as well as the characteristics of the ultrasound system. The formation of the ultrasound signal
is described by a convolution integral involving a transducer transfer function, a scatterer prototype function, and a function
representing the spatial arrangement of the scatterers. The RBCs are modeled as nonaggregating spherical scatterers, and
the spatial distribution of the RBCs is determined using the Percus-Yevick packing factor. Computer simulations of the model
are used to study the power backscattered by RBCs as a function of the hematocrit, the volume of the scatterers, and the
frequency of the incident wave (2-500 MHz). Good agreement is obtained between the simulations and theoretical and
experimental data for both Rayleigh and non-Rayleigh scattering conditions. In addition to these results, the renewal process
theory is proposed to model the spatial arrangement of the scatterers. The study demonstrates that the system-based model
is capable of accurately predicting important characteristics of the ultrasound signal backscattered by blood. The model is
simple and flexible, and it appears to be superior to previous one- and two-dimensional simulation studies.

INTRODUCTION

Although ultrasonography is a well-established noninvasivenodeled the RBCs by a set of identical, parallel slabs,
technique for the diagnosis of circulatory diseases, it stilrandomly positioned. The slab thickness was kept constant,
has a great potential for new developments. In particularbut the average distance between slabs was adjusted so as to
the information contained in the signal backscattered by reghodel different hematocrits. The backscattered power as a
blood cells (RBCs) remains largely unexploited. Because ofunction of the frequency and the hematocrit was studied.
the very dense suspension of scatterers in normal blood (Mhe results for this one-dimensional (1D) model suggested
and Cobbold, 1992), the characteristics of the ultrasoung, square law dependence between the backscattered power
signal backscattered by RBCs are determined by complexnd the frequency, and a maximum backscattered power at
wave interactions. Several studies were conducted to de=350, hematocrit. These results were in agreement with the
velop theoretical models that could help in understanding p Rayleigh scattering theory, except for its prediction of
the nature of the backscattered ultrasonic signal (Angelseny, artifactual second peak near 90% hematocrit.

1980; Mo and Cobbold, 1986, 1992; Twersky, 1987; Shung Following this study, another approach was used to
and Thieme, 1993; Bascom and Cobbold, 1995). The backygge| the reflection of ultrasound by a chain of randomly
scattered power, one of the parameters th'at can be extractggaced elements, fixed at both ends (Gough et al., 1988).
from the signal, was shown to be a function of the hematr i et al. (1989) also studied the reflection by a chain of
ocrit, the size of the scatterers, and the frequency of thg ,yerers arranged in the steps of a 1D random walk, fixed
incident wave. These models also demonstrated the IMPOLt one end. In both studies, the power as a function of the

tant rol'e. of the spatial 'arrangement of the scatterers "Pgematocrit was evaluated, and the results were comparable
determining the ultrasonic backscattered power. Despite (1
|

th de in this field of h. th . 0 those obtained in their previous study (Routh et al.,
seeveprnggarSeSescg?hzt ::]eeo:sto Ibee clc;\ri;iisdeirjcﬁ asE{[Leeatl)fhz\;lo?m)' Mo et al. (1994) later studied the relationship be-
of the backscattered power at high frequencied@ MHz) tween the backscattered power and the hematocrit by adapt-

or the effect of the spatial arrangement of the scatterers. ing the model of Routh et al. (1987). The simulation model

: as modified to allow random boundary conditions. The
To better understand the scattering process by bloo ackscattered power increased at low hematocrits, peaked
simulation models were also developed. Routh et al. (198 P P

round 35% hematocrit, and decreased at higher hemat-
ocrits. The artifactual second peak at 90% hematocrit was
not observed with this model, which is in agreement with
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Yuan and Shung, 1988b) and a fourth power frequencyering cross sectionai), which is the power scattered per
dependence when Rayleigh scattering conditions are satiselid angle per unit incident intensity (Shung and Thieme,
fied (Shung et al., 1976; Yuan and Shung, 1988a). Tdl993). Because RBCs are much smaller than the acoustical
overcome these limitations, Zhang et al. (1994) extendeavavelength (for the range of frequencies usually used in
the 1D approach to a two-dimensional (2D) model. Themedicine, 2-30 MHz), ultrasound scattering by nonaggre-
highest hematocrit that could be modeled for this 2D sim-gating RBCs follows the Rayleigh scattering theory (Ray-
ulation was 46%. The backscattered power as a function deigh, 1945). This theory implies that the incident wave is
the hematocrit peaked at 35% hematocrit in 1D and at 22%cattered in all directions and that the scattering cross sec-
hematocrit in 2D. The validity of the Born approximation as tion is proportional to the fourth power of the incident wave
well as the influence of the variation of the scatterer size andrequency and to the square of the scatterer volume, a
acoustical impedance were also studied. No results wereehavior that does not depend on the geometry of the

2

(@)

presented on the frequency dependence of the backscatterschtterer (Rayleigh, 1945; Morse and Ingard, 1968). For

power. Currently, neither 1D nor 2D simulation models canweak scatterers, i.e., with density and compressibility that

reproduce the experimental results obtained as a function afnly differ slightly from the surrounding medium, and for

the hematocrit and frequency. Zhang et al. (1994) concludedrbitrary shape, the differential scattering cross section at an

that a 3D simulation model should provide better results. angle 6 is given by (Shung and Thieme, 1993; Lucas and
In the present study, a system-based approach is propos&eaversky, 1987)

to model the backscattering of ultrasound by nonaggregat- )

ing RBCs. It is based on an earlier model developed by o(6) = KV (1 _ KE) _ (1 _ po)cos(@)

Bamber and Dickinson (1980) for ultrasound image forma- 167 Ko Pe

tion of living tissues and later expanded by Meunier and ) .

Bertrand (1995) to study tissue dynamics. This systemWherek is the wavenumbety; is the volume of the scat-

based model is adapted here to simulate the ultrasonic signti€f:Po andp. are the densities (g/cinof the surrounding

backscattered by blood. In this system-based model, th&1€dium and of the scatterer, respectively, agdndx, are

characteristics of the RBCs are defined in 3D, which shouldD€il respective compressibilities (Efdyne). The wave-

alleviate some limitations of the simulation models de-NUMPer is defined ak = 2a/A = 2aflc, whereA is the

scribed previously. Furthermore, as will be shown later, theVavelengthf is the frequency of the propagating wave, and

model explicitly considers the spatial arrangement of the® 'S:T,g speed of sound in the medium, which is equakgo (

scatterers, an important parameter affecting the backscafo)  cm/s (Lucas and Twersky, 1987). _

tered signal. The choice of this model was governed by its 't 1S generally assumed that Rayleigh scattering occurs

flexibility in defining the transducer and tissue characteristics WNen ka < 7/10, wherea is the radius of the scatterer

The pOSSlblllty of adapting the model to the StUdy of moving (Shung and Thieme, 1993) Beyond that limit, the behavior

RBCs was another motivation (Meunier and Bertrand, 1995)2f the backscattered power by a single particle becomes
The first part of this manuscript describes the main prop_dependent on the scatterer’'s geometry. For a scatterer radius

erties of the ultrasonic signal backscattered by blood and J1Uch larger than the wavelength, exact solutions of the
summary of the different theoretical modeling approachef@ckscattered power exist for specific geometries such as a
proposed in the literature. The system-based model is dePhere (Morse and Ingard, 1968; Ishimaru, 1978). The char-

tailed in the second part of the manuscript. The model i€@cteristics of the power backscattered by a scatterer of
used to study the effect of the spatial arrangement of tharbitrary density and compreSS|b|I|_ty, whose radius is in the
scatterers on the backscattered signal, and the hypotheSi@Me range as the wavelength, still need to be studied (Kuo

stating that the power of the backscattered signal is propo@1d Shung, 1994). The better understanding of ultrasound
tional to the variance of the local RBC concentration. MorePackscattering by blood in the non-Rayleigh region is rele-

specifically, this simulation model was used to study theVant for ultrasonic imaging devices, operating at high fre-

backscattered power as a function of the hematocrit, th@UeNcies, that are currently being developed to study mi-
volume of the scatterers, and the incident wave frequencyerocireulation, for - example (Turnbull et al., 1995
The Results and Discussion are presented in the last seGlristopher et al., 1997; Ferrara et al., 1996).

tions. In the last part of the Discussion, a new approach to

modeling f[he spatial a_rrangement of the scattergrs IS proQcat‘tering intensity from a random distribution of
posed. This approach is based on the renewal point process

small particles
theory.

For a low volume concentration (hematocrit) of randomly

positioned scatterers, the total backscattered power approx-
THEORETICAL BACKGROUND imates the sum of echoes from all scatterers and is therefore
proportional to the number of scatterers. However, for a
dense suspension of scatterers, uncorrelated scatterer posi-
An important parameter characterizing the ultrasonic signafions can no longer be assumed, even under nonaggregating
backscattered by a single scatterer is the differential scatonditions. Because of its finite size, a particle will prevent

Scattering from one particle
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others from occupying any position within a certain dis-1975):
tance, and thus significant positioning correlation can exist. A
Under these conditions, the power of the backscattered _ 1—H) (6)
signal is a function of the scatterer spatial arrangement and 1+ 2H)*

Is not simply proportional to the number of scatterers. This factor approaches 1 at a very low hematocrit because
The backscattering coefficient (BSC) is, by definition, the tor app y
?he positions of RBCs are then almost perfectly uncorre-

average backscattered power per steradian from a unit vo o o

ume of blood, insonated by a plane wave of unit intensity ated. It decreasoes as the hematocrlt increases, until it

(Shung and Thieme, 1993). In Mo and Cobbold (1992), tha €2¢1es 0 at 100% hematocrit, .

BSC was given by The average number of scatterers per voxgﬁ is H-
QJV = p - Q, where(), represents the voxel size apds

BSC= g, (HN)W, ) defined in Eg. 3. Hence using Eqgs. 5 and 2, the backscat-

tering coefficient can also be expressed as

whereaoy is the differential scattering cross section defined -

in Eq. 1 for6 = 180°,H is the hematocrity is the average BSC= apyvar(n)/Qe. ()

volume of the scatterers, aMi is the packing factor. The his last equation shows that the backscattered power

packing factor is a measure of the orderliness in the spatialy,, 14 he proportional to the variance of the local scatterer
arrangement of the particles. It expresses the acoustic integ,antration. Interestingly, Eq. 7 indicates that a null vari-

ference between all echoes. It was derived from the fOHOW'ance situation, i.e., where the number of scatterers within

ing stgtigtical meche}nics structure factor for symmetricaleach voxel is constant, should lead to a backscattered power
pair-distributed functions (Twersky, 1975, 1987): of 0, independently of the hematocrit. This phenomenon is
called crystallographic scattering, and it can be explained by
WK, (F — 7)) = 1+ p f [9R) — 1] KOTRGR 3) a perfect destructive interference pattern (Shung and Thi-
eme, 1993).

Several studies compared the theoretical BSC as a func-
wherek is the wavenumbef;, andf, are, respectively, unit tion of the hematocrit (Eq. 2) with experimental observa-
vectors in the direction of the incident wave and in thetions (Shung, 1982; Shung et al., 1984; Lucas and Twersky,
direction of observation;p is the density of particles, 1987; Berger et al., 1991). With the packing factor given by
[9(R,) — 1] is the total correlation function, whe§R,) is  Eq. 6, it was found that the experimental and theoretical
the radial distribution functiorR, is the separation of pairs; curves did not match perfectly because the packing of RBCs
j is V—1; and fdR is the corresponding volume integral certainly differs from that of rigid spheres. To overcome this
(i.e., Jf[ dx dy dz). This expression (Eq. 3) was obtained by problem, a new packing factor was introduced to take into
considering an incident plane wave. The radial distributionconsideration the effect of the shape of the scatterers, the
function, g(R,), represents the probability of finding two nature of the flow, and the polydispersity in the size of the
particles separated by a distarRgin the volume. scatterers. The equation describing the new packing factor is

The packing factor is the low-frequency limit of this (Berger et al., 1991)
structure factor (i.ek — 0) and is thus given by (Twersky,

1975, 1987) VI
[1+ (d— DHF
24 2
W=1+p f [9(R,) — 1]dR. (4) e B 4d,d,  H%dd,
K@ Q= ey + 15 4g,)
The packing factor can also be expressed as a function of (8)
the variance of the local scatterer concentration (Twersky,

where H is the hematocritd, considers the shape and
correlation among scatterers, athdrepresents the variance

W = (1/f)var(n), (5) in the particle size. For a suspension of identical rigid
spheres, the parametetsandd, are, respectively, 3 and 0,

where i is the average number of scatterers within alland Eq. 8 becomes equivalent to Eq. 6.

elemental blood volumes (voxels), and vaiié the variance

in the mean number of scatterers within each elementjl,I

voxel averaged over space and time. (In the definition of ETHODS

voxel, the thickness of the volume parallel to the propagaSimulation model

tion plane wave is less than/10.) The Percus-Yevick _ o

. . o . . The system-based model uses the Born approximation, which implies that
approximation model descrlblng the palr—correlatlon forthe scattered echoes are weak compared to the incident signal. It is then

identical, randomly positiqned spherical part_ides can bssible to assume that the impulse response of the system is space-
used to expresd/ as a function of the hematocrit (Twersky, invariant within a small region (Meunier and Bertrand, 1995). The Born

1987), i.e.,
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approximation also implies that it is possible to use the principle of whereM is the number of scatterers. Equation 13 is equivalent to
superposition to represent the wave scattered by a collection of particles by
adding their respective contribution. The radio frequency (RF) signal

M
received by the ultrasound transducer translated inxhg plane can be Zs(%, ¥, 2) = CyyX, ¥, 2 ® E X=X Y —YmZ—Z)

modeled as n=1

9? = Cay(X, ¥, 2 @ N(X, Y, 2), 14

RFu%,Y,2) = 52 Tl %, 2 @ Zofx 1,2, (9) i oy ()
whereN(x, y, 2) is called the microscopic density distribution. This function

is nonzero at the center position of every RBC. The size and echogenicity
where Tg4(X, y, 2) represents the system three-dimensional (3D) pointof the RBCs are considered by the convolutiomNgx, y, 2) with Cy(X, v,
spread function (PSF), artl (X, y, 2) describes the acoustical impedance 7). It can be shown that the Fourier transform of the microscopic density
of the scatterers. In Eq. §,andz are, respectively, along the lateral and distribution is proportional to the structure factor described before in Eq. 3.
elevation directions, ang is in the direction of propagation of the ultra- A system-based interpretation of the structure factor is given in the Ap-
sonic wave. The RF signal in Eq. 9 is determined by the transducer transfgjendix for the special case of ultrasound backscattering.
function, Ty¢(x, y, 2), convoluted by the fluctuations of the tissue imped-  Using previous definitions and assuming that the PSF is constant over

ance, i.e., %9y?) Zs(x y, 2. It is assumed that the incident acoustic wave the dimension of a scatterer in thez plane, the impedance function
is not modified by the small inhomogeneities encountered in the volumedefined in Eq. 12 can be written in terms of a convolution:

Because multiple reflections are neglected, the backscattered RF signal is
thus the sum of the acoustic responses from each point in the sample Z(y) = C(y) ® N(y), (15)
volume. The complete mathematical development leading to this equation
can be found in Meunier and Bertrand (1995). where
The RF signal required for one-dimensional analysis corresponds to one
line of the whole 3D RF signal, and it can be obtained by evaluating Eq.

9 atz = 0 andx = 0. More specifically, Cly) = | [ CsdX, y, 2dx dz, (16)
RF(y) = RF;40,y, 0) andN(y) is defined by
92 M
= a2 | | | et v ) Tad =y = v, = w)du dv do. NY) = 2 T(—x)T(-z)dy — ). (17)
n=1
(10)

Consequently, from Egs. 11 and 15, the RF signal received by the

transducer can be written as
Assuming a separable PSF, i.@54X, ¥, 2 = T()T,()T,(2), RF)
becomes 9?

RHYy) = Y Ty(y) ® C(y) @ N(y). (18)

2
RF(Y) = W Ty(Y) ® Z(Y), (11) The functionN(y) conveys information about the spatial arrangement of the

scatterers and is, by definition, nonzero at every scatterer location. It is a
projection on they axis of each scatterer’s echogenicity weighted by the
magnitude of the PSF at the scatterer’s position. A simpler interpretation of
N(y) is possible whenT,(x) and T,(z) are constant over the width and
thickness of the sample volume. In this casgy)dy represents the number
of scatterers contained in the corresponding sliseof the sample volume.
Z(y) = ZsdX, Y, 2T (—X)T,(—2)dx dz. (12) In summary, the ultrasonic signal backscattered by blood can be computed
by the convolution of the transducer transfer functidp) (with the scat-
terer prototype €) and the functiorN that represents the density distribu-
tion of the scatterers.

whereZ(y) is the projection of the 3D acoustical impedance functidp)(
weighted by the PSF over thez plane, i.e.,

The impedance function, is determined by the fluctuations in density
and compressibility of the medium. It can be made to represent a homo-
geneous medium of mean impedarfgethat embeds the scatterers with ) . .
acoustical impedancg, + AZ (Meunier and Bertrand, 1995). This mean Implementation for computer simulations

impedanceZ, can be ignored because of the second derivative operator 0fl'o compute the ultrasonic signal backscattered by RBCs, the transducer

the quel. Furthermore, the |mpeda_nce 'functlon can be S|mpl'|f|'ed b¥function, the scatterer prototype, and the spatial distribution of the scatter-
assuming that all scatterers are identical in shape and echogenicity. It is.c oo to be defined

then possible to represent the RBCs by a single scatterer protGype
y, 2) that is repeated at each cell positioq, (y,, z,). The 3D impedance

function can then be written as Definition of the PSF (T)
M As used by Meunier and Bertrand (1995), the PSF representing the system
Za(%, y, 2) = E Z.(%, y, 2) response is a 3D Gaussian envelope modulated by a cosine function:
=1 —1 P 2 4ty
) (13) TadX, Y, 2 = exp[z(wi + %T@ + lljgﬂcos(C) . (29)
= E CafX — X0, Y — ¥ Z2— Z), In the above equation,, 1, andi, are the standard deviations of the 3D

n=1 Gaussian function representing the beamwidth, the transmitted pulse
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length, and the beam thickness, respectively. The paramdteysn2Eq. £
19, represent the transducer spatial frequency, whésethe ultrasonic 2 010
frequency and is the speed of sound. In this paper, the PSF is modeled Q 0.08 - a
with ¢, = 0.43 mm,js, = 0.21 mm, and}, = 0.85 mm. It is easy to show > 0.06 -
that the hypothesis of separability used above is valid for this PSFg 0.04
definition. The functionT,(y) used for the 1D analysis corresponds to 2 0.02 -
T3d(or y! O) -a' ’ i
E 0.00
<
S L B B L B B AL B
Scatterer prototype (C) g 100
In our simulations, the scatterer prototype was approximated by a spheref-j 80 b
The functionC(y), which is the projection of the scatterer on thaxis, can 2 604
be written in this case as g 40
Cly) = m(a? 20) 2 27
(y) - 7T(a y2)1 ( ) E_ 04 @ e e e
where the parameteaa corresponds to the radius of the sphere. Human <C R L
RBCs were approximated by spherical scatterers having a volume of 87
wm?® (Shung and Thieme, 1993), which corresponds to a radius ofi175 g
(diameter of 5.5um). For simulations performed to study the effect of the -3
scatterer volume on the backscattered power, the raaliwsas changed 2
accordingly. 3
Simulations were also performed using the scatterer geometry defined‘g
previously by Meunier and Bertrand (1995). In that study, scatterers were=
modeled as 3D Gaussians. In the present study, this scatterer geometry wag 54 R

used to assess the effect of the shape of the scatterer on the backscatter&®l

power as a function of the frequency. The backscattered power is known to 0 100 200 300 400 500 60O 700

be independent of the shape of the scatterer for Rayleigh scattering, but this Frequency (MHz)
property may not be valid for non-Rayleigh scatterers. In 1D, the Gaussian B e B A N S A
scatterer prototype can be expressed by 0 100 200 300 400. 500 600 700 800 900
S -1 y? Spatial frequency (cycles/mm)
C(y) = 2o} * 0% eXF<2 "2 (21)
y FIGURE 1 @) Amplitude spectrum of the second derivative of the PSF

where oy, oy, and o, are the standard deviations corresponding to the ((azlayz)Ty(y)). T,0) is comput_ed from Eq. 19, with the transducer fre-
scatterer size in the, y, and z planes. The standard deviations of the quencyf = 7.5 MHz. @) Amplitude spectrum of the scatterer prototype

scatterer prototype were set to the radius of the sphere defined in Eq. 28(3’) fo_r a=275um. —..— The sphgre prototype (Eq. .20); — the
(0, = 0, = 0, = 2.75 um) Gaussian prototype (Eg. 21). The maximum value of the first function was
X y z . .

normalized with respect to that of the second oogAMmplitude spectrum
of the distributionN(y) at 40% hematocrit, computed using the packing
: prilnr g factor. — . —, The simulation results averaged over 10 simulations. —,

Spatial distribution (N) The theoretical spectrum, the amplitude of which is proportional to the

One original aspect of this simulation model is the possibility of incorpo- variance in the mean number of cells. The spatial frequency in cycles/mm

rating the effect of the 3D spatial distribution of the scatterers on the BSCIs also indicated on thg axis.

Recall that the functiolN(y) can be interpreted as the number of scatterers

contained in each slicg, of thickness g in the sample volume. If the

number of scatterers in a slice of thicknessisilarge, then for randomly ~ averaged over several realizations of the same statistical process. The

positioned scatterers, the central limit theorem predicts Kg} is the  theoretical power spectrum of the functidify) is constant over all fre-

outcome of a normal stochastic process (Papoulis, 1991). Thus, the firsgiuencies, for the packing factor definitions given by Eq. 6 or 8. As shown

order statistics QN(y) requires specifying its mean and variance, which, in later in the Discussion, the microscopic density distribution may be more

our case, are given by= H - QJV and var) = AW, respectively. Thetwo ~ accurately modeled as a function of the frequency by using the point

different definitions of the packing factor given by Egs. 6 and 8 were usedProcess theory.

in the definition of the functior\. As shown previously in Eq. 2, theoretical models suggest that the
backscattered power is equal tq. (H/V)W. The backscattering cross
sectionoy, is considered by the second derivative of the transducer func-

RF signal tion (9%/ay?) T,(y) operating on the cell prototype functio@); The spatial
distribution of the scattererd\ reflects the acoustic interference associ-

As mentioned before, the ultrasound signal is computed by the convolutiomted with the presence of many scatterers and leads to the coefficient

of (9%/ay?) T,(y), C(y), andN(y). The convolution of these functions in the (H/V)W of the theoretical model.

time domain is equivalent to a simple product of their Fourier transforms

in the spectral domain. The spectra of those functions, as defined previ-

ously, are presented in Fig. 1. The spectrum of the second derivative of th€omparison of the simulations with theory and

PSF is shown in Fig. &, and the spectra of the two different scatterer experimental results

geometries, i.e., the sphere and the Gaussian, are shown in Ikig-he

function representing the spectrum of the spatial arrangement of the scat-he simulations were compared to the theoretical BSC given by Egs. 1 and

terers N) is illustrated in Fig. Ic. The spectrum is that of a white noise 2 and to experimental results obtained by Shung and collaborators (Shung

whose expected power level is proportional to the variance of the numbeet al., 1984; Yuan and Shung, 1988a; Shung et al., 1993). The surrounding

of scatterers within each elemental voxel (vrE Qg (H/V)W), when medium considered in this work was an isotonic saline solution because




2392 Biophysical Journal Volume 77 November 1999

RBCs washed and suspended in saline do not form aggregates. The~
following values were used to compute the theoretical backscattering cros‘s_: 30
section defined by Eq. 16(= 180°): for human red cells¢, = 34.1 X
10 *2cmP/dyne andp, = 1.092 g/cri; and for the isotonic saline solution,
Ko = 44.3 X 1072 cn?/dyne andp, = 1.005 g/cm.

The size of the sample volume in the direction of propagayiamas
2.048 mm, and the resolution within the 3D volume was @b, corre-
sponding to a sampling frequency of 1.57 GHz. (The sampling frequency
is obtained by dividingc/2 by the spatial resolution of 0.pm.) This
resolution was chosen to prevent significant aliasing for the RBC prototypeigs
(C) and the PSFT). This small resolution allows the modeling of each ‘;
RBC with many “scattering points.” The tissue is thus represented by a_ 15
large number of points, either within or outside each RBC. As mentioned q‘:,
before, the surrounding medium has an acoustical impedapaeehile all 3]

25

" - steradia

cm

20

PNV YO TN NG TR T A YT NN TN AU WD GO TN SO SO DU AN T S

RBCs have the same impedance, characterized by the convolution of th% 10
scatterer prototype functiorCy{ with the position matrix I{l). The voxel 8
size used for projecting the 3D volume into 1D was determined irxthe o
plane by the dimensions of the PSF. The width and thickness of the PSEE
were estimated by twice the FWHM (full width half-maximum), which is @ 5
~2.35 multiplied by the standard deviatiogy)((Meunier and Bertrand, "é
1995). Using the standard deviations defined previously, the width of theg

voxel thus corresponded to 2 mm and the thickness to 4 mm. In the® 0 $————+—F————1r—+
simulations, 4096 voxels were used (2Q48/0.5um), and the dimension  m 20 40 60 80 100
of the voxel (), was 4X 10 mm® (2 mm X 4 mm X 0.5 um).

All simulations were performed with Matlab 4.2 (The MathWorks Inc., Hematocrit ( % )
Natick, MA). The backscattered power of the simulated signalyRWas
obtained by computing the mean value of the square of the amplitude oFIGURE 2 Backscattering coefficient as a function of the hematocrit at
this signal. All simulations presented in the following section were com-7.5 MHz. O, Simulation results, which are expressed in terms of mean
puted 100 times for statistical averaging. All results were expressed irone standard errom(= 100 simulations). ——, The theoretical curve,
cm 'steradian® and were normalized with respect to the theoretical computed from Egs. 1 and 2. The packing factor of Eq. 6 was used for the
values obtained from Eq. 2. The normalization constant was computed bgimulations and theoretical result¥, Experimental results reproduced
doing a linear regression of the backscattered powers over the range éfom Shung et al. (1984).
hematocrits, frequencies, and volumes considered (see Figs. 2-7).

o

theoretical, simulation, and experimental results is observed
at high hematocrits. It is important to note that these values
A spherical scatterer prototype(y) was used in all simu- of d, andd, are specific for these scatterer and static flow
lations, except when specified. Fig. 2 shows the relationshigharacteristics. These values would be different under lam-
between the BSC and the hematocrit for human RBCs at 7.Bar or turbulent flow conditions and in the presence of RBC
MHz. The simulation resultsc{rcles) are presented along aggregation, because these conditions affect the spatial ar-
with the theoretical BSC curvesglid ling) obtained from rangement of the scatterers.
Eqg. 2, and experimental results obtained from a stationary All other simulations presented in the Results were done
erythrocyte suspensiotrigngles (Shung et al., 1984). The with the packing factor expressed by Eq. 6. These simula-
packing factor used for the theoretical curve and the simutions were performed to study the properties of the back-
lations was evaluated according to Eq. 6. As seen in thiscattered signal in relation to the volume of the scatterers
figure, there is a good agreement between the simulatioand the frequency. Fig. 4 shows the BSC as a function of the
and theoretical results. But, as also shown by Shung et afrequency of the propagating wave. The full line represents
(1984) and Lucas and Twersky (1987) for the theoreticathe fourth-power dependence predicted by the theory (Egs.
data, neither of these results perfectly match the experimert, 2, and 6). The triangles correspond to experimental mea-
tal data. The largest discrepancies are observed around tearements obtained by Yuan and Shung (1988a) at a hemat-
peak of the BSC curve and at high hematocrit values. Thecrit of 44%, using bovine whole blood, which is known to
maximum power of the simulated and theoretical curves isorm very few aggregates (Weng et al., 1996). The circles
observed near 13% hematocrit, while the peak of the exand diamonds correspond to the simulation results. The
perimental data occurs at 16% hematocrit. circles represent simulations performed with a spherical
As mentioned previously, the packing factor defined byscatterer prototype, and the diamonds represent those per-
Eq. 6 was derived for identical spheres. Equation 8 wasormed with the Gaussian scatterer prototype. These simu-
proposed to better reproduce experimental results obtainddtions were done at 40% hematocrit for frequencies ranging
for RBCs. Simulations were performed using this definitionfrom 2-500 MHz, the latter being well beyond frequencies
of the packing factor, wittd, = 1.723 andd, = 0. The used for cardiovascular applications. Both curves are in
results obtained for these simulations are presented in Figjood agreement with the theoretical and experimental data
3. The maximum backscattering occurs at 16% hematocriat low frequencies. But it can be seen in Fig. 4 that the
for all types of data, and a better agreement between thieehaviors of the two simulated BSC curves differ at High

RESULTS
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FIGURE 3 Backscattering coefficient as a function of the hematocrit at 10 100 10
7.5 MHz. O, Simulation results, which are expressed in terms of mean
one standard errom(= 100 simulations). ——, The theoretical curve, ka

computed from Egs. 1 and 2. The packing factor of Eq. 8 was used for the
simulations and theoretical result¥, Experimental results reproduced FIGURE 4 Backscattering coefficient as a function of the frequency at
from Shung et al. (1984). Because all results were normalized with respe0% hematocritO, Simulation results using a spherical scatterer proto-
to the theoretical curve, the scaling of thexis on this figure and that in  type; &, simulation results using a Gaussian scatterer prototype. Both are
Fig. 2 are different. expressed in terms of meanh one standard erron(= 100 simulations).
——, The theoretical fourth-power frequency dependeMceExperimen-
tal results reproduced from Yuan and Shung (1988a). The normalization
constant of the simulation and experimental results was computed for
values. For the Gaussian scatterers, the backscattered powienuencies between 2 and 20 MHz. The parametarsorresponding to
decreases in the non-Rayleigh region, while for the spherime frequency sce_\le are al_so indicated on thexis, wherek is the
cal scatterers, the backscattered power rather oscillatd@venumber and is the radius of the scatterers.
around a constant value. Neither of the two curves follows
the theoreUcaI prediction for Rayleigh scattering at h'ghlation results.
frequencies (above-40 MHz).

The backscattered power as a function of the volume o
the scatterers was also studied for a range of volume Were
beyond that of normal human RBCs. These simulation
were performed to better understand the fundamental mec
anisms of ultrasound backscattering. Figs. 5 and 6 show th
results obtained for scatterer volumes ranging between 4.

3 3 . .
“ﬁTQ aEdHi\Z/OEm ; at atl f|>t<edTrs]cattere|: nufmIE).er gensny from Eqgs. 1 and 2 shows a linear dependence between the
( e — — aconstan )'. € results of Fg. > were backscattering coefficient and the volume of the scatterers
obtained for a cell concentration of*6 10° cells/mn¥, and (BSC = 0. (H\V)W, whereH andW are constant, and

i : — Ybs ’ ’ bs
F'?l' /6 ggrr_lt_aﬁpoqd.cl, to a cell co(;lcentrr]atmp Olf %0105 dis proportional toV?). The simulation results are in good
cells/imnt. The circles correspond to the simulations, an agreement with the theory for the range of volumes consid-

thbe; Fnaggtl)es s(rf '9. 5)tcc;rrelsgg§df to exp9r|m%ntql result(%red' The cell concentration corresponding to the range of
obtained by Shung et al. ( ) for porcine, bovine, an olumes is also given on theaxis.

lamb RBCs. The full line represents the theoretical volume

square relationship multiplied by the packing factgf\Wy).

This relationship is obtained from Eq. 2 (BS€ o, (H/  DISCUSSION
V)W, where the ratidH/V is a constant for a fixed number
density of RBCs, and,,.is proportional tov?). The hemat-

ocrit scale corresponding to the simulation conditions is alsa@’he results, which are in very good agreement with the
indicated on thex axis. In both figures, a good agreement theory and experimental data, confirm the validity of this
was obtained between the theoretical curves and the simuodel for simulation of the ultrasonic signal backscattered

In Fig. 5, the results also agreed well with
?xperimental data.

Finally, a last series of simulations was done to better
termine the relationship between the backscattered power
%ind the size of the scatterers at a constant hematocrit (vol-
ume concentration) of 40%, which implies a constant value

f the packing factor for nonaggregating RBCs. The simu-
tion results are presented in Fig. 7. The full line obtained

Analysis of the results
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FIGURE 5 Backscattering coefficient at 7.5 MHz as a function of the FIGURE 6 Backscattering coefficient at 7.5 MHz as a function of the
volume of the scatterers for a constant scatterer concentration<ol@ volume of the scatterers for a constant scatterer concentration xf U
cells/mn?. O, Simulation results, which are expressed in terms of mean  cells/mn?. O, Simulation results, which are expressed in terms of mean
one standard errom(= 100 simulations). ——, The theoretical volume one standard erron(= 100 simulations). ——, The theoretical volume
square relationship multiplied by the packing fact®, Experimental  square relationship multiplied by the packing factor. The hematocrits

results reproduced from Shung et al. (1993). The hematocrits correspongprresponding to the volume scale are also indicated o thes.
ing to the volume scale are also indicated on xrexis.

by simply using the appropriate packing factor. However,

by RBCs. The system-based approach provided more accthe definition of the packing factor as a function of these
rate modeling than previous simulation models (Routh etharacteristics needs to be further investigated.
al., 1987, 1989; Gough et al., 1988; Mo et al., 1994; Zhang The theoretical model used to compare our simulation
et al., 1994). One of the reasons why our results provided eesults (Eqgs. 1 and 2) is based on the Rayleigh scattering
better agreement with the experimental observations is thaheory. The results of Fig. 4 are in agreement with this
the geometry of the scatterers was defined in 3D (sphericaheory, which suggests a fourth-power dependence at least
or Gaussian scatterers), while in previous 1D and 2D simup to 30 MHz (Shung et al., 1993; Kuo and Shung, 1994)
ulation models, slabs (Routh et al., 1987, 1989; Gough etthe limit of Rayleigh scattering is usually approximated by
al., 1988; Mo et al., 1994; Zhang et al., 1994) and cylinderka = #/10 (Ishimaru, 1978; Shung and Thieme, 1993)). For
(Zhang et al., 1994) were used. Moreover, the spatial arka < #/10, the simulations provided a 3.9 power depen-
rangement was defined to represent the characteristics ofence. Very interestingly, the simulation results of Fig. 4
scatterers suspended in a 3D volume, by using the appr@btained for spherical scatterers are in agreement with the-
priate packing factor. oretical results obtained using the T-matrix method for

As mentioned before, theoretical modeling showed thespherical scatterers and biconcave scatterers mimicking
importance of the spatial arrangement of the scatterers oRBCs (Kuo and Shung, 1994) at high frequencies. The
the backscattered power. In the present simulation modetifferent behavior obtained for the two scatterer prototypes
the spatial distribution of the scatterers was modeled byan be explained by the fact that the Gaussian geometry is
considering the packing factor theory (see Figs. 2 and 3)not limited in space, as opposed to the spherical geometry.
More specifically, the backscattered power was shown to b&@he discontinuity at the sphere boundary produces a win-
proportional to the local variance of the scatterers (Yar(  dow effect that creates oscillations in the spectrum of the
nW). It is known from the literature that the spatial arrange-scatterer prototype at high frequencies, as shown in Hig. 1
ment of the scatterers depends on the scatterer and floWwhe behavior of the backscattered power at high frequencies
characteristics. The flexibility of the system-based modeis thus mostly affected by the shape of the cell, as opposed
allows the properties of the backscattered signal to be mode Rayleigh scattering, which is independent of the geom-
eled for different characteristics of the flow and scatterersetry of the scatterer.
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scattering coefficient. The last simulations presented in Fig.
] 7 were done for different scatterer volumes at a constant
{ hematocrit. In this case, the BSC is not affected by the
i packing factor, and it is linearly related to the volume of the

scatterers.

-t
o

[o1]
1
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[

A new approach to modeling the variance in the
spatial arrangement of the scatterers

The results presented in this article were all obtained using
the packing factor of Eq. 6 or 8 to model the variance in the
spatial arrangement of the scatterers (Wa AW = Q.
(H/V)W). We introduce here a new approach, inspired by
the renewal process theory (Papoulis, 1991), to model the
function N(y). This approach was not used in the simula-
tions presented in this article because it is currently being
developed in 1D only. Despite this fact, interesting obser-
vations can be made at this point, as presented below.
The positions of a high density of scatterers are not
Volume ( um®) completely random because of their finite size. For instance,
L S R L HO L B A two cells cannot occupy the same space. This phenomenon
200 100 67 50 40 can be modeled by a particular point process, where the
output is a series of pulses randomly positioned. In the case
of scattering by RBCs, an event (pulse) represents a point at
FIGURE 7 Backscattering coefficient at 7.5 MHz as a function of the the cell location. The sequence of random intervals describ-
scatterer volume, for a constant hematocrit of 4@%Simulation results,  ing the distance between two adjacent pulses is called a
which are expressed in terms of meanone standard errom(= 100 raenewal process (Papoulis, 1991). The distance between two
simulations). ——, The theoretical linear volume relationship. The cell . .
concentration corresponding to the range of volumes considered is alsgwseS of a .renewal. point process IS, often repr.e.sented F’y a
given on thex axis. random variable with an exponential probability density
distribution. For cells of finite size, there is a null probabil-
ity that two pulses are closer than the diameter of the cell,
i.e., 2a. The probability density that another cell is present

The experimental results presented in Fig. 5 were oby; 5 gistance can be expressed by the exponential density
tained by Shung et al. (1993) at a cell concentration &f 6  ¢,4ction

10° cells/mn?, scatterer volumes up to 90m® (maximum

hematocrit= 5.5%), and an ultrasound frequency of 7.5 f(r) = 0
MHz. From these results, the BSC was found to be propor- '
tional to the square of the volume of the scatterers, which is
in agreement with the theory for this low scatterer density.
For instance, the packing factor of Eq. 6 is higher than 0.65

for hematocrits below 5.5%, which provided results close tayhere is the mean of the density distribution, apd+ 2a

the volume square relationshipV(~ 1, so the BSC is s the mean distance between two pulses. The Fourier trans-
proportional tov? for a constant number density of scatter- form of this density distribution is expressed by

ers). However, an increase in the volume of a fixed number

of scatterers also results in an increase in the hematocrit, exp(—2jwa)
which affects the value of the packing factor. Even if the Fjow) =
relationship between the BSC and the volume of the scat-

terers can be predicted from the theoretical equations, the . .
literature is not clear on this topic (Shung et al., 1993). So, The power spectral density of the point process can be
it should be made clear that the relationship between th(f.‘hOWn to be equal to (Shwedyk et al., 1977)

BSC and the volume of the scatterers, for Rayleigh scatter- )

ing, is VAW at a fixed number density of scatterers. As Dj) = a<1 4+ Re{ F(jw) >> (24)
shown in Fig. 6, the influence of the packing factor domi- 1-F(jw))

nates over that of the volume square relationship at hema-

tocrits higher than~22%. This effect is very important at wherea represents the average pulse density that is equal to
high hematocrit values and leads to a decrease in the back/(2a + w). This equation can also be written @jw) =

PRI TRU NUR NS YA T OO K SOV N ST S SR TN S S

Backscattering coefficient x 10° (cm™ - steradian™ )

04—+ e
0 20 40 60 80 100

Celi concentration x 10° ( cells / mm?)

T<2a

f(r) = iexp(—(ﬂr —2a)lp), T> 28, (22)

1+ joun (23)
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trates the power spectrum of the functibhbased on the
packing factor. The mean amplitude of this spectrum is
equal to H/V)W = var(n)/Q, (see Egs. 2 and 7). In 1D, the
packing factor V) obtained from the Percus-Yevick pair
correlation equation is equal to (& H)? (Twersky, 1987).
= > : ) ThusW, expressed as a function afand i, can be written
2+ w'p’ — 2 c08208) + 20p sin2wa) asW = p?(2a + w)2 Moreover, since the cell concentra-
(25) tion in 1D (H/2a) is equal to 1/(2 + u), the coefficient
(H\V)W is given byu?/(2a + w)®. From Eq. 24 withw —
In 1D, the hematocrit is equivalent to the ratio of the cellg the power density spectrum gives the same result, i.e.,
diameter to the average distance between two cells (center
position to center position), i.ed = 2a/(2a + ). For 2a = im{® (o)} = o
5.5 um andH = 10%, 40%, and 70%, the power spectral 0 (2a+ w)®
density®(jw) is shown in Fig. 8. It can be seen that at 10%
hematocrit, the power spectrum is almost constant over all hus we showed here that the modeling\gy) based on the
frequencies. On the other hand, at 40% and 70% hemaRoint process theory is equivalent to the packing factor
ocrits, important oscillations can be observed with a domi-2pproach, at low frequencies. Furthermore, considering that
nant peak located at100 MHz. At 70% hematocrit, the M, _.{®(w)} = 1/(u + 2a), the packing factor can be
oscillations of the power spectrum are higher, but the low-expressed as the ratio of ljmy{ P(jw)¥lim, ..{P(jw)}.
frequency limit is lower than that observed at 40% and 10% To better understand the effect of these two modeling
hematocrits. Unlike the power spectrum Mfy) shown in ~ approaches on the backscattered power, simulations as a
Fig. 1c, which does not depend on the frequency, thefunction of the frequency were performed in 1D. The results
renewal process theory suggests that there is a frequenéjye presented in Fig. 9 for a hematocrit of 40%. Both curves
dependence in the range of frequencies considered. were obtained using the PSRy) of Eq. 19 and the sphere
As shown below, even if the power spectra obtained from
the two described approaches seem different (Figsaid

o[l + ¥(jw)], where

2(coq2wa) — wu sin2wa) — 1)

2

(26)

o

8), their low-frequency limits are equivalent (the mean __ g0
amplitude in Fig. Ic is slightly different from the low 72 3
frequency limit of Fig. 8 because the former is modeled in & ' 3
3D, whereas the latter is developed in 1D). Fig: dlus- g 10° 4
7] 3
< 107 4
£ 3
350 ART
] < :
i . — 105 =
300 ,\\ x ]
i . $ 104
250 P G 10° 3
] [ g E
£ ] - > 107
E oo ] o £ G
g 2007 Pl r g 10 4
o J 1 S\ o E
) 1 f | / \ S E
5 1 I /A 2 10° 3
2 150 4 ;o /A / S ]
[¢] 1 j i \ / 8 ] :
a 4 / \ / \ ¥ o 10 —— T e
] I a0, / - 100 10" 102 10°
100 | A0 N
] . —— Fr ncy (MHz
] { N - - equency (MHz)
50 1 /j ~ —— T
] S 107 10° 10!
-7 10%
et ka
0 T T T T T
0 50 100 150 2006 250 300 350 FIGURE 9 Backscattering coefficient as a function of the frequency at
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Frequency (MHz) dence.O, 1D simulation results obtained by using the packing factor

FIGURE 8 Power spectrum of the distributidity) computed using the

method to computé(y); <, the results obtained with the point process
approach. Both results were computed using the spherical scatterer proto-

point process approach for hematocrits of 10%, 40%, and 70%. Theype, and they are expressed in terms of meaone standard erron(=

low-frequency limit of the power spectrumif1 — H)%2a, which is equal

100 simulations). The parametée corresponding to the frequency scale

to 14.73 at 10% hematocrit, 26.18 at 40% hematocrit, and 11.45 at 70%re also indicated on theaxis, wherek is the wavenumber anal is the

hematocrit.

radius of the scatterers.
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as the cell prototype function (Eqg. 20). The diamonds corvalid, flexible, and efficient in simulating the ultrasonic
respond to the simulations performed with the point processignal backscattered by RBCs suspended in a saline solu-
theory, and the circles correspond to the packing factotion. This model can be used to simulate Rayleigh as well as
approach (var() = Qg H/\V)W, with W = (1 — H)?in 1D).  non-Rayleigh scattering, as opposed to most theoretical
The results obtained from the two different definitions of models developed in the literature (Angelsen, 1980; Mo and
N(y) are very similar. Even if the functioN obtained using Cobbold, 1986, 1992; Twersky, 1987; Bascom and Cob-
the new approach oscillates at high frequencies, the oscibold, 1995), which are limited to the case of Rayleigh
lations of the backscattered power f@ > 7/10 are mostly  scattering. The model confirms that the backscattered signal
determined by the cell functiorCj defined in Eq. 20. power is proportional to the variance of the local RBC
concentration, although it is still not well known how the
size distribution, the shape, and the flow conditions affect
Theoretical predictions this variance. The results also demonstrate that the back-

The current model predicts that for perfectly ordered scatScattered power is proportional to the square of the volume

terers (null variance), the backscattered power is effectively! the scatterers weighted by the packing factor, at a con-
null, except for some frequencies. It is well known that Stant scatterer number density. On the other hand, the power
regularly spaced scatterers result, in the frequency domaif/@S shown to be linearly proportional to the volume of the
in a set of regularly spaced impulses. Thus, the backscagcatterers when the hematocrit (volume cqncentranon)_ is
tered power is null, unless the repetition frequency of thek€Pt constant. A new approach to modeling the spatial
pulses falls within the system bandwidth. It can easily be2irangement of the scatterers suggests a frequency depen-

shown that the repetition frequency, in Hz, is equaldg= dence of thi.s function. This approach is promising .but is
ca/2, wherec is the sound velocity in the medium aads currently being developed only in 1D. In future studies, it

the average pulse density. Thus, the backscattering is almo¥Puld also be interesting to model RBC aggregation and
zero, unless the frequency of the transddéer multiple of flow turbulence, which are expected to affect the variance in
f.ep OF course, for scatterers the size of a RBC, the repetit€ spatial distribution of the scatterers,

tion frequency is very high (i.e., over 100 MHz), and the

backscattered power is zero for scatterers separated by the ]
same distance and a transducer frequency below 100 MHAPPENDIX: A SYSTEM-BASED INTERPRETATION

OF THE STRUCTURE FACTOR

The structure factow(k, (f; — 7)), defined in Eq. 3, can be written, for
Future work backscattering measurements, in which dase —f,, as

In the present study, all simulations were done using iden-

j[ical scatter_ers. It is possible and it vyould _be i_nteresting to W(R) =1+ pf [9(R,) — l]e’“ZdeR, (A1)

improve this model to allow polydispersity in scatterer

sizes. Furthermore, nothing was done to avoid the overlap

of very close scatterers. Previous simulation models didvherek = k.

implement the modeling of nonoverlapping RBC positions In this_ case, the structure factor can b_e interprgted as being a Ii_ne of the

(zhang et al., 1994; Lim et al., 1996). For a given spatialiD- FOL_mer traqsfor‘m of the to_tal _correlatlon func_tIGJ(FBp) - }], the line
R . eing in the direction of the incident wave. This can easily be seen by

distribution of the scatterers, mean number and variance, th@&nsidering a particular case, that of an incident plane wave inythe

overlap of the scatterers should not affect the results bedirection of a Cartesian coordinate systeqy( ). Indeed with this, Eq. Al

cause the transducer cannot resolve individual scatterers. igcomes

would also be interesting to introduce the hypothesis of the

hybrid approach, which suggests the voxel as the scattering, ,~ _id

uxit (Limpzt al., 1996). In tgg case, it would not be neces- qN(k) =1+ pfff [90y, 2 — e dxdydz. (A2)

sary to define every single scatterer in the sample volume

when applying the system-based model presented in thisnus, it can be seen that the structure factor is proportional to a 1D Fourier

study. It would also be relevant to allow for the motion of transform of the projection, on the propagation axis, of the 3D total

RBCs, a property that can be included in the modelcorrelation function. By the Fourier slice theorem, this 1D Fourier trans-

. . . . form is a line of the 3D spectrum of(R;) — 1].
(Meumer and Bertrand, 1995)' Fma”y’ it may be of interest The structure factor can also be described in terms of the microscopic

to model_the p_Oint process_approach in 2D or 3D, especiallyiensity distributionN, which is a set of Dirac pulses representing the
for studying high frequencies. scatterers’ spatial distribution:

M
CONCLUSION N(X Y, 2) = 28X — X,y — Vi, Z— 2), (A3)

The results presented in this study contribute to a better -

Undersltanding of the basic mechanisms of ultrasound bac'ﬁ]here &, Vi, z) are the coordinates of tlith scatterer, anM is the number
scattering and demonstrate that the system-based modeldsscatterers. Let be the location of thith scatterer; the Fourier transform
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