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ABSTRACT Competitive binding of the most common cations of the cytoplasm (K1, Na1, Ca21, and Mg21) with DNA was
studied by equilibrating oriented DNA fibers with ethanol/water solutions (65 and 52% v/v EtOH) containing different
combinations and concentrations of the counterions. The affinity of DNA for the cations decreases in the order Ca . Mg ..
Na ' K. The degree of Ca21 and/or Mg21 binding to DNA displays maximum changes just at physiological concentrations
of salts (60–200 mM) and does not depend significantly on the ethanol concentration or on the kind of univalent cation (Na1

or K1). Ca21 is more tightly bound to DNA and is replaced by the monovalent cations to a lesser extent than is Mg21. Similarly,
Ca21 is a better competitor for binding to DNA than Mg21: the ion exchange equilibrium constant for a 1:1 mixture of Ca21

and Mg21 ions, Kc
Ca

Mg, changes from Kc
Ca

Mg ' 2 in 65% EtOH (in 3–30 mM NaCl and/or KCl) to Kc
Ca

Mg ' 1.2–1.4 in 52%
EtOH (in 300 mM NaCl and/or KCl). DNA does not exhibit selectivity for Na1 or K1 in ethanol/water solutions either in the
absence or in the presence of Ca21 and/or Mg21. The ion exchange experimental data are compared with results of grand
canonical Monte Carlo (GCMC) simulations of systems of parallel and hexagonally ordered, uniformly and discretely charged
polyions with the density and spatial distribution of the charged groups modeling B DNA. A quantitative agreement with
experimental data on divalent-monovalent competition has been obtained for discretely charged models of the DNA polyion
(for the uniformly charged cylinder model, coincidence with experiment is qualitative). The GCMC method gives also a
qualitative description of experimental results for DNA binding competitions of counterions of the same charge (Ca21 with
Mg21 or K1 with Na1).

INTRODUCTION

In the living cell, RNA and DNA phosphate groups and
negative charges on proteins (Asp2 and Glu2 amino acid
residues) are in excess of the positive charges of proteins
(Arg1 and Lys1) and other organic cations. As a result,
inorganic metal ions (K1, Na1, Mg21, and Ca21) exceed
the amount of small mobile anions in the plasma and (es-
pecially) in the nucleus of the cell. In the simplest organisms
(i.e.,Escherichia coli), where negative and positive charges
on the proteins approximately balance each other, the nu-
cleic acids are the dominant polyelectrolytes (Record et al.,
1998a,b). In an elementary building block of eukaryotic
chromatin, the nucleosome, only half of the DNA charge is
neutralized by the positive charges on histone proteins (Mir-
zabekov and Rich, 1979). Little is known about the com-
position of species neutralizing the rest of the DNA charge.
It is clear, however, that Mg21, K1, Ca21, and Na1 should
be the major part of these cations.

Most experimental and theoretical studies on the interac-
tions between DNA and charged ligands (metal ions and
complexes, DNA-binding proteins, and other species) are
made in dilute water solutions. Under these conditions, the

DNA interaction with charged ligands, the helix-coil tran-
sition temperature, and other DNA properties are strongly
dependent on the low-molecular-weight salt concentration
(see recent reviews (Jayaram and Beveridge, 1996; Record
et al., 1998c). However, for condensed DNA states (fibers,
gels) or in vivo, similar characteristics are often independent
of or only slightly dependent on the ionic composition of the
solvent (Ha et al., 1992; Rupprecht et al., 1994; Schultz et
al., 1994). This discrepancy is usually explained by the
direct and indirect consequences of the so-called macromo-
lecular crowding effect (Record et al., 1998a,b, and refer-
ences cited therein). In the condensed state of DNA (fibers,
gels, liquid crystals), the mean concentration of counterions
is very high (1–2 M for distances between the DNA helix
axes of;20–40 Å), and this leads to loss of sensitivity of
the binding and structural parameters of DNA with respect
to the concentrations of ions in the bulk solution. Thus
oriented fibers, gels, films, and liquid crystalline structures
of DNA can serve as a basic model for describing the
interactions between DNA and other ions in natural DNA
states.

The competition between monovalent and multivalent
counterions for binding to polyelectrolytes is usually stud-
ied by theoretical modeling of polyion-mobile ion interac-
tions or in studies of the DNA-oligocation binding in dilute
solutions (for references see reviews in Anderson and
Record, 1982; Record et al., 1998c). There are relatively
few experimental works devoted to the peculiarities of
M1/M2, Ca/Mg, and Na/K competitions in binding to poly-
electrolytes including DNA (Bleam et al., 1980; Gregor et
al., 1956; Kuznetsov et al., 1984; Soldatov and Bichkova,
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1988) (the abbreviations M1 and M2 are used for unspeci-
fied mono- and divalent cations, respectively). Data ob-
tained on synthetic ion exchangers with sulfonic, carboxy-
lic, and phosphate groups are useful for understanding the
effects observed in biologically relevant condensed poly-
electrolyte systems. Data for sulfonic anions are useful
because the behavior of these anions in ion exchange equi-
libria is considered to be “purely electrostatic” and usually
gives the best agreement with predictions of polyelectrolyte
theories. Results for COO2 groups are mentioned because
they are important biological “ion exchangers.”

For the divalent-monovalent cation competition, experi-
mental studies of the sulfonic ion exchange resins have
shown that K1 is a more effective competitor than Na1 in
substituting for Ca21 and/or Mg21 on SO3

2 groups (Sol-
datov and Bichkova, 1988). According to the interpretation
of 23Na NMR relaxation data obtained in DNA solutions,
Mg21 is better in substituting for Na1 than is Ca21, al-
though the difference between magnesium and calcium is
close to the uncertainty of the NMR relaxation technique
(Braunlin et al., 1986, 1991).

It is well established that specialized proteins (e.g., cal-
modulin; Gilli et al., 1998) bind Ca21 with much higher
affinity than Mg21: the apparent equilibrium constant of
Ca-Mg exchange on the binding sites of proteins,Kc

Ca
Mg, is

on the order of 103 or higher. Nonspecific binding (i.e.,
charge neutralizing) of these ions with carboxylic or sul-
fonic groups in the ion exchange resins shows much lower
selectivity for Ca21: Kc

Ca
Mg ' 3 for carboxylic (Muraviev

et al., 1996) andKc
Ca

Mg ' 2–3 for sulfonic (Soldatov and
Bichkova, 1988) ion exchangers. Measurements of Ca/Mg-
polyelectrolyte binding in water solutions demonstrate that
Mg21 binds to the COO2 groups in a nonspecific electro-
static manner, while Ca21 has a tendency toward site bind-
ing and coordination with carboxylic groups, resulting in
cross-linking of the polymer chains (Malovikova et al.,
1994). There is much less understanding of Ca/Mg binding
to DNA. Some authors (Manzini et al., 1990; Rose et al.,
1982) report a higher affinity of DNA for Mg21; others
(Braunlin et al., 1992; Nordmeier, 1995) show slight DNA
selectivity for Ca21 (Kc

Ca
Mg 5 1.1–1.2; Kuznetsov et al.,

1984). From the results obtained in water solutions, it is
clear thatKc

Ca
Mg is quite close to unity.

Available experimental data show that sulfonic groups of
ion exchange resins bind K1 from K1/Na1 mixtures pref-
erentially, with the ion exchange equilibrium constant,
Kc

K
Na, equal to;2 in water (Nordmeier, 1995; Soldatov

and Bichkova, 1988). In methanol/water and ethanol/water
mixtures the values ofKc

K
Na are much higher than in water

(Fessler and Strobel, 1963).23Na NMR relaxation studies of
DNA solutions show small selectivity of DNA for K1 in
comparison with Na1 (Bleam et al., 1980; Paulsen et al.,
1988). On the contrary, equilibrium dialysis studies show
that the DNA affinity for Na1 is slightly higher than for K1

(Nordmeier, 1995; Strauss et al., 1967). In our previous
paper, we have found that DNA in oriented fibers equili-
brated with NaCl/KCl ethanol/water mixtures does not sep-

arate K1 and Na1. Values ofKc
K

Na are close to 1.0 under
all conditions we have studied (Korolev et al., 1999).

In this paper we report the results of experimental studies
of oriented DNA fibers equilibrated in ethanol/water solu-
tions with different combinations of KCl, NaCl, MgCl2, and
CaCl2 at varying concentrations of ethanol and salts. We
have obtained the relative thermodynamic affinities of these
alkali and alkali earth metal ions for fibrous DNA by means
of direct experimental determination of the concentrations
of the ions in the DNA fibers and in the solvent. Within this
approach, even small differences between Ca21 and Mg21

or K1 and Na1, as well as details of divalent-monovalent
ion competition, are clearly seen under conditions of re-
duced water activity, low dielectric constant, and small
volume available for the competing ions between the DNA
polyions separated from each other by only a few Ång-
stroms. We compare our experimental data with the results
of grand canonical Monte Carlo (GCMC) simulations of the
system of parallel, hexagonally packed polyanions of dif-
ferent structures, namely uniformly and discretely charged
polyions with density and spatial distribution of charged
groups modeling B DNA (Fig. 1). Our data reveal that the
Monte Carlo approach within the approximation of a dielec-
tric continuum model can qualitatively and to some extent
quantitatively explain the selectivity of DNA for the coun-
terions studied. Quantitative agreement between the exper-
imental and simulation data has been observed for the
M2/M1 competition if the DNA polyion is modeled as a
system of discrete charges arranged around an impenetrable
cylinder. The competition of counterions of similar charge
(Na1 with K1 or Ca21 with Mg21) gave qualitative agree-
ment between the GCMC and experimental data. Based on
a comparison of the theoretical and experimental results, we
draw some general conclusions concerning the ion binding
properties of nucleic acids in vivo and in vitro.

The manuscript is organized as follows:
In the Material and Methods section, details of the ex-

perimental ion exchange procedures and the theoretical
grand canonical Monte Carlo simulation method are reported.

In the first part of the Results section, we present the data
of the idealized GCMC calculations for the system of hex-
agonally packed polyions in mixtures of divalent cations
with univalent counterions and coions.

In the second part of the Results, we present experimental
ion exchange data and compare these with the estimations
of the GCMC method.

In the Discussion, the possibilities and limitations of the
Monte Carlo simulation approach as well as some implica-
tions of our data for the biologically relevant systems are
discussed.

MATERIALS AND METHODS

High-molecular-weight salmon testes NaDNA (Fluka Chemie AG, Buchs,
Switzerland) was used without further purification. Ethanol (99.5% v/v)
was purchased from Kemetyl AB (Stockholm, Sweden). All ethanol con-
centrations quoted in this paper are given as a percentage by volume.
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Analytical-grade MgCl2 and CaCl2 were purchased from Riedel-de-Haen
AG (Seelze, Germany), and NaCl and KCl were from Merck KGaA
(Darmstadt, Germany). Ultrapure KCl and spectrapure NaCl from Alfa
(Johnson Matthey GmbH, Karlsruhe, Germany) were used for preparations
of ionization buffers in atom absorption spectroscopy (AAS) analyses.

Samples of highly oriented NaDNA fibers for ion exchange, x-ray
diffraction, and mechanochemical studies were prepared by a wet spinning
technique (Rupprecht, 1970). The conditions of wet spinning preparation
of samples for ion exchange experiments were similar to those applied in
the sample preparations for solid-state NMR experiments (Song et al.,
1997). The resulting samples had accurate orientation of the DNA poly-
meric chains, as shown by rotor-synchronized 2D magic angle spinning
(MAS) 31P NMR measurements and by x-ray diffraction (Song et al.,
1997).

Ion exchange measurements

Samples for ion exchange experiments were obtained by cutting pieces
from a fiber bundle (length of the bundle;200 mm, width 6–8 mm,
thickness 0.04–0.08 mm; these dimensions were for an air-dried sample).
Each sample contained;2–4 mg DNA. After cutting, the samples were
transferred to a 65% ethanol/water mixture containing 10 mM NaCl and
equilibrated in this mixture for at least 2 weeks. Then four to eight pieces
of DNA fibers were transferred to the tubes with solvent (eluent) of the
same ethanol concentration but containing a mixture of magnesium and/or
calcium and potassium and/or sodium chlorides. The concentration of
Mg21, Ca21, or the sum of equal amounts of these ions was kept constant
(4 mM), and the concentration of KCl, NaCl, or KCl1 NaCl (the ratio
K/Na was equal to 1:1) was varied from 3 to 300 mM. After 2 days of
equilibrating, two to four samples of DNA fibers were separated and
transferred to the eluents with lower ethanol concentration (52%) but with
the same salt content and concentration. This precaution was due to the
solubility of NaDNA in 52% ethanol/water mixtures. To avoid dissolution
of the DNA fibers, these should be initially saturated with divalent cations
at higher ethanol concentration. We have chosen 52% as the lower limit of
the ethanol concentration because this concentration is reported to be the
minimum for keeping MgDNA fibers resistant to the dissolution in the
eluent (Schultz et al., 1994).

The volume of eluent above the DNA samples was;40 ml, and the
amount of cation in the solvent was in great excess over the quantity of
phosphate groups in the DNA fibers. Equilibrium concentrations of the
ions in the DNA fibers and in the eluent were reached by changing solvent
once a day for 7–10 days. Analysis of the last fraction of eluent in contact
with DNA fibers was carried out, and the composition of this fraction never
differed from that of the stock eluent.

When NaDNA fibers come in contact with the eluent containing a
mixture of cations, substitution of Na1 for a mixture of these cations
begins. The composition of counterions neutralizing the phosphate groups
of DNA depends on the thermodynamic affinity of DNA for these ions
under given conditions (temperature, solvent composition, concentrations,
and relative amounts of ions in eluent). Two types of competitive reactions
can be distinguished:

1. Competition between the cations of same charge:

Me1~eluent! 1 Me22 DNA~fibers!

7 Me12 DNA~fibers! 1 Me2~eluent!
(1)

where Me1 and Me2 are, respectively, K1 and Na1 or Ca21 and Mg21.
2. Competition between ionic species differing in charge:

2M11~eluent! 1 M221 2 DNA~fibers!

7 M12
1 2 DNA~fibers! 1 M221~eluent!

(2)

Here M11 is Na1 and/or K1, and M221 is Ca21 and/or Mg21.

Equilibrium constants for the first reaction (Eq. 1) are

Kc
Me1

Me2 5 ~@CMe1#/@CMe2#! z ~CMe2/CMe1! (3)

and

Ka
Me1

Me2 5 @CMe1#/@CMe2# z ~aMe1/aMe2!

5 Kc
Me1

Me2 z ~gMe2/gMe1! (4)

Here Kc
Me1

Me2 is the apparent equilibrium or selectivity constant, and
Ka

Me1
Me2 is the so-called corrected selectivity constant, because it is

obtained after correction ofKc
Me1

Me2 for the preference of the solution
phase; [CMe1], [CMe2], CMe1, andCMe2 are, respectively, the concentrations
of Me1 and Me2 in the DNA fibers and in the eluent;aMe1, aMe2 andgMe1,
gMe2 are the activities and activity coefficients of Me1 and Me2 in the
eluent.

The numerical value of the equilibrium constant for the second reaction
(Eq. 2) depends on the choice of units used in determining the ion
concentrations. To compare our data with those available in the literature,
we express cation concentrations in molar parts with the apparent equilib-
rium constant (Dc

1
2) of reaction 2:

Dc
1
2 5 ~ pM1

b /pM1
f !2 z ~ pM2

f /pM2
b ! (5)

HerepM1
b , pM2

b andpM1
f , pM2

f are molar fractions of bound (found in analysis
of DNA fibers) and free (determined in eluent) cations M11 and M221,
respectively. We use the sum of the molar fractions of monovalent and
divalent cations when, respectively, both Na1 and K1 or Ca21 and Mg21

are present in the system.
The ion exchange equilibrium constant calculated with Eq. 5 differs

from the definition of the competitive parameterD, which was proposed to
measure the selectivity of DNA-counterion interactions from23Na NMR
relaxation studies (Bleam et al., 1980). This difference is due to the fact
that theD values are based on the calculated relative amounts of counte-
rions located in the close vicinity of the polyion, whereas in the determi-
nation ofKc

K
M andKa

K
M the total quantities of counterions in the DNA

fiber phase are used. However, the separation between the DNA polyions
in condensed ordered fibers is very small, and thus every ion within the
“DNA phase” can be considered as bound to the nearest polyion.

The amounts of ions in the samples of DNA fibers after the ion
exchange procedure have been determined as follows.

The DNA samples were quickly removed from the solvent, slightly
pressed between sheets of weighing papers, weighed, and dried over
phosphorus anhydride. The dried DNA samples were weighed again (to
find the content of the volatile components) and dissolved in bidistilled
water. The concentrations of Ca21, Mg21, Na1, and K1 in these DNA
solutions were determined with a PU9100 AAS Spectrometer (Phillips
Scientific, Cambridge, England). To eliminate interference from the phos-
phate groups of DNA on the atomic absorption data, 0.2% (w/v) solutions
of ultrapure potassium (as KCl) or sodium (as NaCl) solutions were used
for the preparation of probes and standard solutions. The DNA concentra-
tions,CP, in the probes were determined by UV absorption measurements
of acid-hydrolyzed DNA solutions. Other details of our ion exchange
technique have been reported elsewhere (Korolev et al., 1999).

The grand canonical Monte Carlo
simulation method

The model

In our theoretical calculations of ion exchange properties, we have used
two models that represent the DNA polyion in solution. In the simplest
model (cylindrical polyion), DNA was considered as an infinitely long
uniformly charged hard cylinder of radiusa 5 9.5 Å and reduced linear
charge densityj 5 lb/b, whereb 5 1.7 Å is the length of the cylinder
corresponding to the unit charge for B DNA andlb 5 e2/ekT is the Bjerrum
length (lb 5 7.13 Å for water at room temperature). In the simulation

2738 Biophysical Journal Volume 77 November 1999



program, we put negative unit charges on the polyion axis, so that they are
separated by the distanceb from each other (CB model in Fig. 1). Because
b ,, a and because of the Gauss theorem, such a charge distribution is
equivalent to an equilibrium distribution of charge over the polyion sur-
face. The radiusa limits the area that is impenetrable for the centers of the
smallest ion species. The larger ions ofith type cannot penetrate closer to
the polyion axis thanai 5 a 1 (si 2 smin), wheresi andsmin are radii of
the ith and smallest ion species, respectively.

The other model (helical polyion) was devised to incorporate effects of
the helical DNA grooves and the discrete charge localization on the DNA
surface. This model has been used in previous papers (Lyubartsev and
Nordenskio¨ld, 1995, 1997). The model has a hard cylindrical core of radius
a 5 8 Å for B-DNA (HB model in Fig. 1) and charged “phosphate groups”
situated at the sites corresponding to the B form of DNA. The valuea 5
8 Å determines the distance of closest approach for the centers of all of the
small ions in the simulation cell. Each phosphate group has a charge2e
and a soft repulsiver212 potential of effective radiuss2 5 2 Å. This set
of phosphate groups forms an idealized model of double-stranded DNA
with two grooves (model HB in Fig. 1). Because of the repulsive short-
range interactions, the average effective radius of DNA is;10 Å for the
B form. Unlike in our previous study (Korolev et al., 1999), where we also
tested DNA polyion models representing the A form, we restricted our-
selves in this study to modeling only B-DNA. The reason is that according
to experimental data (Rupprecht et al., 1991, 1994), Na-, K-, Mg-, and
CaDNA are in the B form in fibers equilibrated with 65% and 52% EtOH.

In all of the cases the ions are modeled as soft charged spheres of
effective radiussi. The ions interact with each other and with the phos-
phate groups of DNA by the potential

Vij 5
zizje

2

4p«0«r ij
1 kTSsi 1 sj

r ij
D12

(6)

(The first term is the Coulomb interaction of charges, and the second is the
“soft spheres” repulsion.) The specific choice of ion radiussi for each ion
type is discussed below.

Simulation details

The standard grand canonical Monte Carlo (GCMC) method (Valleau and
Cohen, 1980) was employed for the simulation and performed as in our
previous work (Lyubartsev and Nordenskio¨ld, 1997) for the situation of an
ordered DNA phase in equilibrium with a bulk salt solution. In the present
study, we have calculated the activity coefficients for water solutions of
CaCl2 1 NaCl and received a good agreement with experimental values
(Butler, 1968).

Because during the simulations the system should be kept electroneu-
tral, steps including insertion or deletion of ions must be performed with
pairs of ions of opposite charge (Lyubartsev and Nordenskio¨ld, 1995;
Valleau and Cohen, 1980). Normally, in a dense polyion system, the

number of counterions in the simulation cell greatly exceeds the number of
coions; thus exchange between different counterion species is hindered by
the fact that coions must also mbe involved in this process also. To
facilitate the exchange between different species of counterions, we have
introduced another kind of Monte Carlo step, in which one counterion is
replaced by an ion of another type but of the same valency. This kind of
step, which also follows the rules for the grand canonical ensemble, greatly
accelerates the process of approaching thermodynamic equilibrium be-
tween different ions of the same charge and is important for modeling ion
exchange processes.

The height of the simulation cell was taken as corresponding to three
full turns of DNA (102 Å for B-DNA) in our calculations within the HB
model, and the size of the cell in the perpendicular direction was taken as
corresponding to the distance between DNA helices in fibers,R 5 25 Å
(Schultz et al., 1994). When performing calculations with the CB model,
we have added 2 Å to this value to account for the extra space in the DNA
grooves. The total number of simulated ions varied from 100 to 400,
depending on the salt concentration and the number of polyions in the
simulation cell. Additional simulation details are given in our previous
work (Lyubartsev and Nordenskio¨ld, 1995).

Dielectric constant

The most common assumption used in polyelectrolyte theories is that the
solvent can be approximated as a dielectric continuum. An alternative
molecular description of the solvent around a polyion demands a tremen-
dous increase in computer resources, which has only recently become
available for systems of reasonable size. Usually the dielectric constant,e,
of the pure solvent is used and water is the solvent in the vast majority of
calculations. We have used values ofe determined in ethanol/water mix-
tures at 20°C:e 5 53 and 45 for 52% and 65% EtOH, respectively
(Åkerlöf, 1932). In a previous paper (Korolev et al., 1999) we discussed the
correctness of this approximation and showed that it can produce qualita-
tive agreement between experimental and GCMC simulation results for
ordered DNA fiber systems.

Ionic radii

A natural consequence of the dielectric continuum approximation is the
introduction of “effective” radii of small ions and charged groups of the
polyion to account for solvation effects. Because the equilibrium concen-
trations of ions in the DNA fibers are defined by thermodynamic relation-
ships, it is a natural choice to define the effective radii of ions used in our
computations by their thermodynamic properties. Values of monovalent
ion radii obtained by fitting osmotic and activity coefficients, calculated
within the MSA (mean spherical approximation) theory, to the correspond-
ing experimental values (Fawcett and Tikanen, 1996; Simonin et al., 1996)
were used in our work. Actually, only the best-fitting values of cation-
anion separation are reported by Simonin et al. (1996). To evaluate the
radii (s) of individual ions, we have assumed equal hydration of K1 and
Cl2 in KCl solutions and obtained the following values ofs for Na1, K1,
and Cl2: 1.88, 1.62, and 2.00 Å, respectively. We did not find literature
data for Ca21 and Mg21 of a degree of reliability similar to that of
univalent cations. For this reason, we have used the values 5 3.00 Å as
an estimation of the radius of the hydrated magnesium ion. According to
the data of experimental (Black and Cowan, 1994) and molecular dynamics
(MD) studies (MacKerell, 1997; York et al., 1992), Mg21 binds to the
nucleic acids (RNA and DNA), usually as a fully hydrated cation. To
evaluate the ionic radius of Ca21, we performed a series of calculations
modeling ion exchange equilibrium between DNA fibers and eluent with
e 5 45 (65% EtOH) and concentrations of CaCl2 and MgCl2 equal to 2 mM
each (Co

KCl 5 10 mM). We varied the value of the Ca21 ion radius at fixed
values of the radii of the other ions (1.62 Å for K1, 2.00 Å for Cl2, and
3.00 Å for Mg21). At s 5 2.60 Å for Ca21, the magnitude ofKc

Ca
Mg

calculated with the GCMC method with the HB model for the DNA
polyion is equal to the experimentally determined value (Kc

Ca
Mg 5 2.0–

2.1). This value of the Ca21 ion radius adjusted for one experimental point

FIGURE 1 Models of the B-DNA polyion. CB is a model representing
a uniformly charged cylinder; HB is a model of the simplified helical
polyion.

Korolev et al. Binding of Mg21, Ca21, Na1, and K1 to DNA 2739



is then used in all other calculations simulating experimental conditions
with different ethanol and salt concentrations.

We have also used values of ionic radii obtained earlier by MSA
calculations without correction for thee change (Triolo et al., 1976) and
Stokes’ radii (Robinson and Stokes, 1965). These two sets of ionic sizes
gave much higher values of the ion exchange constants, with larger
deviations compared to the experimental data than obtained for the metal
ion radii listed above. Therefore, we did not report values of ion exchange
equilibrium constants calculated with parameters taken from Robinson and
Stokes (1965) and Triolo et al. (1976).

The existence of high local concentrations of phosphate groups and
counterions in the vicinity of the DNA macromolecules allows us to
consider the DNA fiber phase to be similar to a concentrated electrolyte
solution. Data of MD studies show that in concentrated electrolyte solu-
tions (Cs ' 2 M), cations and anions create dynamic ion pairs, mostly of
two sorts: contact anion-cation and solvent-separated anion-water-cation
(Lyubartsev and Laaksonen, 1997). Consequently, the closest distance
between neighboring ions of opposite charges lies somewhere between the
values characteristic for these two sorts of ionic pairing, i.e., between the
sum of their crystallographic radii and this sum plus the diameter of a water
molecule. The above-cited values ofs11s2 lie just within this interval.

We have used ionic sizes determined in water solutions. However, the
degrees of ionic solvation can differ in ethanol/water mixtures. Neverthe-
less, our choice of ionic sizes should be reasonably correct, taking into
account the fact that DNA fibers should be considerably enriched with
water. Thus water is expected to be the dominant solvating ligand in the
“DNA phase” (Korolev et al., 1999).

RESULTS

GCMC simulation results for model systems

To evaluate the possibilities of the GCMC model in describ-
ing the competition between ions differing in charge and
size, and to check the influence of the dielectric constant on
the ions’ distribution functions around the polyion, we have
performed GCMC calculations for some model systems. In
our model calculations, the dielectric constant,e, is either 45
(65% EtOH) or 80.1 (H2O at 20°C); the DNA-DNA dis-
tance,R, is 50 Å (it corresponds to the DNA concentration,
CP 5 450 mM); the concentration of M221 in the bulk
phase is constant and equal toC21

o 5 4 mM; and the
concentration of M11 is varied betweenC1

o 5 10 and 300
mM (a superscript o means that the value refers to the eluent
phase). We have studied the ion distribution functions for
different sizes of the divalent counterion, M221 (the radius
of M221, s21, is either 1 or 3 Å) and the univalent coion,
A2 (s2 is equal to 2 or 5 Å). The radius of M11 wass1 5
2 Å in all model calculations.

RDF of counterions

In Fig. 2, radial (cylindrically averaged) distribution func-
tions (RDFs) forC1

o 5 10 mM (Fig. 2, A and C) and
C1

o 5 300 mM (Fig. 2,B andD) are shown. The size of the
anion has little influence on the RDF of mono- and divalent
cations. For the HB model of the polyion (e 5 45, C21

o 5
4 mM, ands21 5 1 Å), the bulkier monovalent cations
(s1 5 2 Å) are not capable of pushing out small divalent
counterions from the polyion; the increase in the M11

concentration in the bulk phase has only a small influence
on the divalent cation’s RDF. An increase in the dielectric
constant (e 5 80.1) leads to a 2.0–2.5 times decrease in the
M221 concentration in the vicinity of the polyion (r ' 8–10
Å) and to a higher concentration of M221 at r . 15 Å (for
s21 5 3 Å; lines in Fig. 2, A and B). A bulkier divalent
cation (s21 5 3 Å) is substituted for the monovalent cation
(s1 5 2 Å) with an increase inC1

o; the M221 concentra-
tion at r between 8 and 13 Å decreases from 1–2 M to
0.2–0.4 M (open circlesin Fig. 2, A andB, respectively).
An increase in the cation size also leads to a change in the
RDF shape: two maxima (near the polyion surface and at
r 5 11–13 Å) can be seen in the RDF curves. Qualitatively,
similar RDF curves have recently been obtained in molec-
ular dynamics simulations for NaDNA oligomers in water
(Lyubartsev and Laaksonen, 1998; Young et al., 1997). Our
data confirm a conclusion drawn by Montoro and Abascal
(1995) that the simplified presentation of the polyion as a
cylinder with spherical charges is a satisfactory approxima-
tion for describing the electrostatic polyion-small ion inter-
actions.

In the case of small (s21 5 1 Å) divalent ions and at
C1

o 5 10 mM monovalent cations are almost completely
removed from the surface of the polyion; the concentration
of M221 at r 5 8–10 Å is 100 or more times higher than the
local M11 concentration. However, when the monovalent
ion concentration is high (C1

o 5 300 mM), the concentra-
tion of M11 is large, even if the divalent cation is small
(filled circles in Fig. 2 D). The increase in the M221 radius
(s21 5 3 Å) improves the competitive ability of the mono-
valent cation: atC1

o 5 10 mM, C1 5 0.2 M at r 5 8–10
Å, which is 10 times higher than fors21 5 1 Å, although
still 5–10 times less than the concentration of M221 in the
same region (open circlesin Fig. 2, A andC). An increase
in the dielectric constant has a relatively small influence on
the RDF of M11 (lines in Fig. 2, C andD).

Our simulations show that for mono- and divalent coun-
terions with radii close to those of hydrated ions, and for the
discretely charged polyion model (HB model in Fig. 1), the
RDF of the cations has two maxima, which correspond to
the accumulation of the ions in the minor groove of the
B-DNA and near the vertexes of the phosphate groups.
These results also give some justification for the “two-state”
approximation used in the well-known counterion conden-
sation theory (Manning, 1996) or in interpretations of NMR
counterion relaxation measurements (which postulates a
division of the counterions into two classes, condensed on
the polyion and “free”). The RDF of cations calculated for
the HB model has two distinct areas: 1) the 4–6-Å layer of
rather high concentration near the polyion and 2) all other
cations atr . 12–14 Å. In the uniformly charged cylinder
approximation (CB model in Fig. 1), the RDF is just de-
caying with increasing the distance, and it is impossible to
find such a distinct border that separates the condensed and
free counterions.
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RDFs of coions

The RDFs of the coions are shown in Fig. 3. The most
interesting feature of these curves is the maximum atr 5
11–13 Å (crossesand filled circles in Fig. 3 A). At this
maximum, the concentration of anions exceeds the bulk
value by two to three times (C2

o 5 18 mM). This maximum
appears for small sizes of the divalent counterions (s21 5
1 Å) and can be explained by ion-ion correlations. For the
uniformly charged cylinder (CB model), the effect is much
more pronounced than for the HB model. Analysis of the
angular distribution shows that coions form a compact
cloud, which is concentrated around the areas of the minor
groove and near the vertexes of phosphate groups, in the
region where also most of the M11 and M221 ions are
accumulated. An increase in the 1-1 salt concentration (at
constantC21

o 5 4 mM) leads to a decrease in the anion
accumulation near the polyion, but the maximum on the
corresponding RDF is still observed atC1

o 5 100 mM
(data not shown). The maximum (obtained fors21 5 1 Å,
s2 5 2 Å, ande 5 45) disappears only atC1

o 5 300 mM
(filled circles in Fig. 3 B). The RDFs of coions are in
agreement with the results on the mobile ion distributions
obtained by the MC and the hypernetted chain methods

(Bacquet and Rossky, 1988) and by the modified Poisson-
Boltzmann approach (Das et al., 1997).

The clear maxima on the coions’ RDFs are observed only
for small values of the dielectric constant and for small radii
of the coions and counterions; under other conditions (i.e.,
at e 5 80.1 and fors21 5 3 Å), the maximum on the coion
RDF is either absent or insignificant. The coion radial and
angular distributions are strongly dependent on the dielec-
tric permittivity of the solvent. In Fig. 3,A and B, RDF
curves calculated fors2 5 2 Å ands21 5 3 Å (the radii
close to the size of hydrated ions) are shown fore 5 45
(crosses) and e 5 80.1 (lines). One can see that a lower
dielectric constant makes anions come closer to the polyion
surface. An increase in the coion radius results in a shift of
the coions from the polyion: ate 5 45 ands2 5 5 Å, the
steep increase in the coion concentration begins 4–6 Å
further away from the polyion axis than for the anions with
s2 5 2 Å.

Large anions cannot be accumulated near the polyion,
and this leads to stronger neutralization of the negative
charge from the polyion by the counterions. Under certain
conditions (e.g., high concentration of salt in the eluent) this
may even cause “overneutralization.” Thus, fors2 5 5 Å,

FIGURE 2 RDF of the divalent (A and B) and
monovalent (C andD) counterions calculated with the
GCMC method for the concentration of 1-1 salt in the
bulk phase 10 (A and C) or 300 mM (B and D) and
constant (4 mM) concentration of the divalent cation.
Points are for dielectric constant,e 5 45 (65% EtOH
at 20°C), lines are fore 5 80.1 (H2O at 20°C); the
DNA-DNA distance is 50 Å (CP 5 450 mM); if not
specified, the HB model of the polyion is used. The
radius of monovalent cations1 5 2 Å; the radii of
divalent cation (s21) and monovalent anion (s2) are
varied:F, 3, s21 5 1 Å, s2 5 2 Å; E, 1, and lines,
s21 5 3 Å, s2 5 5 Å; 1 and 3, CB model. Hori-
zontal bars in the graphs are drawn to show the bulk
concentration of ions. Note the logarithmic scale of the
ordinate.
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the electrostatic potential changes its sign atr ' 11–20 A
(this distance varies, depending on the salt concentration,
radius of M221, and the polyion model). The effect of
potential inversion also correlates with the appearance of
the maximum on the coion RDF. This effect was also
observed in other works (Lyubartsev and Nordenskio¨ld,
1997; Montoro and Abascal, 1995).

A salt accumulation effect in the DNA ordered phase
(overequivalent sorption) has also been found both in ex-
periment and in the model GCMC calculation in our previ-
ous paper (Korolev et al., 1999). This effect is below the
limit of experimental error at low salt concentration in the
eluent. However, at high concentrations of salts (C1

o . 100
mM), the experimental data definitely show that the amount

of salts in the DNA fibers is several times higher than that
calculated by the GCMC method for DNA-DNA distances
characteristic for oriented fibers. Results of the present
study demonstrate some overequivalent sorption of KCl
and/or NaCl only forC1

o 5 300 mM (data not shown).

Modeling ion exchange

In Fig. 4 we show an example of the RDF curves obtained
in mimicking the ion exchange equilibrium between DNA
fibers and eluent (65% EtOH with a mixture of MgCl2 and
CaCl2, 2 mM of each salt, and the following concentrations
of NaCl and KCl: 5 mM of each salt (Fig. 4A) and 150 mM
of each salt (Fig. 4B); the choice of specific ion radii for
K1, N1, Ca21, and Mg21 is discussed in Materials and
Methods). An increase in the 1-1 salt concentration in the
eluent leads the divalent counterions being pushed out of the
ordered phase and to their replacement by the monovalent
ions. The RDFs of K1 and Na1 do not differ significantly.
These ions can penetrate the minor groove of B-DNA; the
second maximum on their RDF (atr 5 10–11 Å) is weakly
shaped. The difference between the Ca21 and Mg21 curves
is more noticeable: the larger Mg21 ion penetrates the minor

FIGURE 3 RDF of the monovalent coions calculated with the GCMC
method for the concentration of the 1-1 salt in the bulk phase: (A) 10 mM
or (B) 300 mM and constant (4 mM) concentration of the divalent cation.
Points are for dielectric constant,e 5 45 (65% EtOH at 20°C), lines are for
e 5 80.1 (H2O at 20°C). The DNA-DNA distance is 50 Å (CP 5 450 mM);
if not specified, the HB model of the polyion is used. Radius of the
monovalent cations1 5 2 Å; the radii of divalent cation (s21) and
monovalent anion (s2) are varied:F, 1, s21 5 1 Å, s2 5 2 Å; ‚, ——,
s21 5 3 Å, s2 5 2 Å; E, s21 5 3 Å, s2 5 5 Å; 1, CB model. Horizontal
bars in the graphs are drawn to show the bulk concentration of ions.

FIGURE 4 RDF of divalent (Ca21 and Mg21) and monovalent (K1 and
Na1) counterions calculated with the GCMC method, modeling the con-
ditions of the ion exchange experiment. The concentration of the 1-1 salt
(NaCl1 KCl, K/Na 5 1/1) in the bulk phase is 10 mM (A) or 300 mM (B);
the concentration of MgCl2 1 CaCl2 (Ca/Mg 5 1/1) is constant (4 mM).
Ions are marked as follows:Œ, Ca21, ionic radius,s 5 2.6 Å; E, Mg21,
s 5 3.0 Å; F, Na1, s 5 1.88 Å; M, K1, s 5 1.62 Å. Other parameters
are as follows: HB model of the DNA polyion; DNA-DNA distance 25 Å;
dielectric constante 5 45 (65% EtOH at 20°C). Note the inversion of the
monovalent/divalent cation RDF with the increase in the bulk concentra-
tion of the 1-1 salt and logarithmic scale of the ordinate.
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groove to a lesser extent than does Ca21, which is the major
reason for the higher selectivity of DNA (modeled as a HB
polyion) for Ca21.

The GCMC simulation procedure conforms ideally with
the modeling of the ion exchange experiments because the
number of ions in the simulation cell is automatically ad-
justed to the specified value of the chemical potential, which
in turn is linked to the concentration of ions in the bulk
phase. Integration of the ions’ RDF over the whole cell
volume gives the total amount of ions of each type. This
quantity can be directly compared with the experimentally
determined amount of ions in the DNA fibers.

Comparison of the ion exchange and GCMC
simulation results

In this section we compare experimental and theoretical
results on the competition between K1, Na1, Mg21, and
Ca21 for binding to DNA in oriented DNA fibers. In ex-
perimental studies the oriented fibers of DNA are in equi-
librium with ethanol/water mixtures (65% and 52% EtOH).
The concentration of MgCl2 and/or CaCl2 in the eluent is
constant and is equal to 4 mM, while the concentration of
potassium and/or sodium chlorides is varied between 3 and
300 mM. In cases where both Ca21 and Mg21 or K1 and
Na1 are present in the eluents simultaneously, the ratios
CK

o/CNa
o andCMg

o/CCa
o are 1:1.

Experimental results of the ion exchange measurements
are summarized in Table 1.

Competition between monovalent and divalent ions

The ion exchange data (points) on the competition of mono-
valent ions (Na1, K1, or Na1 1 K1) with the divalent ones
(Mg21, Ca21, or Ca21 1 Mg21) are compared with the
GCMC simulation results (curves) in Figs. 5 and 6. In Fig.
5, the percentage of charges from M221 in DNA fibers is
shown; in Fig. 6, the values of the ion exchange constant
Dc

1
2 calculated with Eq. 5 are displayed.

One can see from Table 1 and Fig. 5 that the real
competition between monovalent and divalent ions begins
after the concentration of M11 in the eluent exceeds 30 mM
(at constantC21

o 5 4 mM). Most noticeable changes in the
amounts of M221 and M11 bound to DNA are observed at
C1

o between 50 and 300 mM. Our data are in agreement
with the qualitative estimations of mono/divalent counterion
competition based on the Poisson-Boltzmann equation
(Rouzina and Bloomfield, 1997). For example, an estimate
of the region where almost complete dominance of M221 on
DNA reverts to the full substitution of these ions for M11

yields approximatelyC1
o 5 10–300 mM (atC21

o 5 4
mM), which is borne out in the experimental data onPM2

(Fig. 5).
Both ion exchange and GCMC simulation data show the

weak dependence of the M221 binding degree,PM2, and ion
exchange constant,Dc

1
2, on the ethanol concentration (di-

electric constant of solvent) for ethanol/water mixtures. At
the same time, M2/M1 exchange equilibrium is quite sen-
sitive to the nature of the divalent cation: Ca21 ions “agree”

TABLE 1 Results of the experimental determination of the DNA selectivity for Ca21, Mg21, K1, and Na1 in oriented DNA fibers

Competing ions
C1

o

(mM)

Dc
1
2

Percentage of M221

charges on DNA,PM2 Kc
Ca

Mg Kc
K

Na

65% EtOH 52% EtOH
65%
EtOH

52%
EtOH 65% EtOH 52% EtOH 65% EtOH 52% EtOH

Ca21, Mg21, K1 10 0.00481 0.00553 95.4 95.2 2.08 1.58 — —
30 0.0102 0.0109 87.2 86.8 2.00 1.56 — —

100 0.0298 0.0313 61.5 59.9 1.96 1.46 — —
300 0.086 0.0973 21.3 20.2 1.59 1.35 — —

Ca21, Mg21, Na1 10 0.00480 0.00467 95.3 95.1 1.97 1.52 — —
30 0.00844 0.00948 87.8 87.5 2.00 1.55 — —

100 0.0293 0.0351 61.1 58.3 1.83 1.31 — —
300 0.137 0.137 15.0 15.2 1.49 1.22 — —

Ca21, Mg21, K1, Na1* 3 0.0138; — 0.00560; — 96.0; — 97.6; — 2.00; — 1.49; — 1.80; — 0.50; —
10 0.00645; 0.00647 0.00482; 0.00675 92.9; 94.3 95.5; 94.6 1.97; 2.02 1.49; 1.54 1.50; 1.44 0.90; 0.62
30 0.0144; 0.00959 0.0133; 0.0112 82.1; 87.2 85.5; 86.5 1.93; 2.00 1.48; 1.50 —; 1.07 0.98; 0.86

100 0.0382; 0.0311 0.0387; 0.0364 56.5; 59.2 56.2; 57.2 1.83; 1.94 1.39; 1.35 1.30; 1.13 0.93; 0.90
300 0.124; 0.109 0.129; 0.110 16.4; 17.5 16.4; 17.1 1.53; 1.56 1.37; 1.25 0.93; 1.03 0.92; 0.95

K1, Na1, Mg21 10 0.00562 0.00579 95.1 95.2 — — 0.93 0.94
30 0.0171 0.0138 84.1 85.3 — — 1.03 0.99

100 0.0479 0.0490 53.2 52.7 — — 0.93 0.91
300 0.155 0.148 14.3 14.6 — — 0.83 0.90

K1, Na1, Ca21 10 0.00504 0.00408 95.1 94.6 — — 0.70 0.72
30 0.00758 0.00735 88.1 88.6 — — 0.90 1.00

100 0.0181 0.0233 67.5 63.7 — — 0.99 0.97
300 0.0808 0.0857 21.6 19.5 — — 0.87 0.91

*Results of the two series of measurements are listed.
C1

o , Total concentration of KCl and/or NaCl in the eluent;Dc
1
2, monovalent-divalent ion exchange equilibrium constant (Eq. 5);Kc

Ca
Mg, Ca/Mg ion exchange

equilibrium constant (Eq. 3);Kc
K

Na, K/Na ion exchange equilibrium constant (Eq. 3).
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to be replaced by M11 (K1 or Na1) to a lesser extent than
Mg21 ions (compare the values ofPM2 obtained atC1

o 5
100 and 300 mM in the systems K/Na/Ca and K/Na/Mg).
The difference inPM2 values is most noticeable atC1

o 5
100 mM: PM2 is equal to 53% for Mg21 and 64–67% for
Ca21. This means that the amount of Ca21 on DNA is
;20% higher than that of Mg21 under conditions when
about half of the DNA charge is neutralized by the mono-
valent ions. Na1 ions have a slightly higher efficiency in
replacing M221 on DNA than K1 ions. This can be seen
only at relatively high concentrations of monovalent cations
in the eluent (Table 1). In addition, the Na1 ions preferen-
tially substitute Ca21 from Ca21/Mg21 mixtures.

Because our data have been obtained in a broad range of
1-1 salt concentration and M1/M2 ratio, we have found that
the values ofDc

1
2, are dependent on the M11 concentration,

contrary to previous work (Braunlin et al., 1986; Paulsen et
al., 1988). The fact that in previous work (Paulsen et al.,
1988) values ofDc

1
2 did not depend on concentration was

most likely a result of the relatively high concentrations of
MgCl2 in the NMR experiments. Under these conditions,
the “real” (i.e., comparable degree of M11 and M221 bind-
ing) competition between mono- and divalent cations does
not take place, and Mg21 ions are the dominant counterions
in the vicinity of the DNA polyion.

Some discrepancy can be observed between theoretical
curves and experimental data at low salt concentrations
(C1

o 5 3 and 10 mM). This may be due to the uncertainty
in the experimental values of Ca21 and Mg21 ion quantities

in DNA fibers. The experimental error can be caused by the
interference from DNA phosphate groups in the analyzed
solutions or by small differences in viscosity between the
calibration solutions and the analyzed samples in the AAS
analyses. Possible underestimation of the amount of Ca21

and Mg21 in the DNA samples is confirmed by the fact that
the total charge, calculated as a sum of the cation concen-
trations, is slightly (1–5%) lower than the amount of phos-
phate groups determined in the acid-hydrolyzed DNA fibers
(this difference is observed only at a low concentration of
salts in the eluent). This little misbalance, however, can
substantially influence the values ofDc

1
2 when the amount

of univalent cations in the DNA is small, resulting in an
overestimation of the monovalent cations’ binding at low
concentrations of KCl and/or NaCl.

The nature of the divalent cation (Ca21 or Mg21) is a
factor that influences theDc

1
2 values more than other ex-

perimental variables. Magnesium ions (circles and upper
curvesin Figs. 5 and 6) are weaker competitors for binding
to DNA with K1 and/or Na1 than Ca21 (for Ca21, exper-
imental and GCMC data are shown, respectively, assquares
and lower curvesin Figs. 5 and 6). For the mixtures of Ca21

and Mg21, we have obtained intermediate values ofDc
1
2

andPM2.
At all concentrations, Na1 and K1 do not differ signifi-

cantly in the competition with M221. Only at C1
o 5 300

mM does Na1 (down triangles) push out from DNA larger

FIGURE 5 Dependencies on the ionic strength in the eluent of experi-
mental values (points) and values calculated with the GCMC method
(curves), for the charge fraction of divalent cations,PM2, determined in the
phase of oriented DNA. The concentration of 1-1 salt is varied from 3 to
300 mM at a constant (4 mM) concentration of the divalent cation salt.
Solid points are for 65% EtOH; the open ones are for 52% EtOH in the
eluent. Competing ions are as follows:E, F andcurve 1, Mg/K/Na; M, f
andcurve 3, Ca/K/Na;‚, Œ, Ca/Mg/K;ƒ, �, Ca/Mg/Na;L, l andcurves
2 and 4(zzzzz), Ca/Mg/K/Na (two series of experiments). Theoretical curves
are for the dielectric constante 5 45 (65% EtOH at 20°C) ——, GCMC
data for the HB model (curves 1–3); zzzzz, GCMC data for the CB model
(curve 4).

FIGURE 6 Dependencies on the ionic strength in the eluent of experi-
mental values (points) and values calculated with the GCMC method
(curves), for the monovalent-divalent cation exchange equilibrium con-
stant,Dc

1
2, determined in the phase of oriented DNA. The concentration of

1-1 salt is varied from 3 to 300 mM at constant (4 mM) concentration of
the divalent cation salt. Data are marked as in Fig. 5. Values ofDc

1
2

calculated from literature data are also shown in the figure:3 with lines,
theoretical results by Bacquet and Rossky (1988) (two groups of data);1,
experimental data from Soldatov and Bichkova (1988).
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amounts of Ca21 and/or Mg21 than does K1 (up triangles).
This difference is better displayed in Fig. 6 than in Fig. 5.

Some values ofDc
1
2, calculated from the theoretical

(Bacquet and Rossky, 1988) and experimental (Soldatov
and Bichkova, 1988) literature data, are also drawn in Fig.
6. Theoretical values ofDc

2
1 reported by Paulsen et al.

(1988) deviate substantially from other data and are not
shown in Fig. 6. Two groups of small crosses, connected by
thin lines, are the results by Bacquet and Rossky (1988)
obtained in Monte Carlo and hypernetted chain calculations
for a uniformly charged cylindrical polyion (the charge
density is equal to that of B-DNA, counterions are point
charges, ande 5 78). In these calculations counterions were
considered bound to DNA if they are closer than 17.5 Å to
the polyion axis. Bacquet and Rossky (1988) also per-
formed two series of calculations for low and high ionic
strengths and varying M1/M2 ratios. Despite the differences
in the parameters and in the models of our work and the
cited paper, the coincidence between the data can be con-
sidered as very good.

The two groups of points at ionic strength 0.05 M in Fig.
6 are the experimental results on the competition of Mg21,
Ca21, Na1, and K1 for binding to the sulfonic groups of the
polystyrenesulfonate ion exchange resin (Soldatov and
Bichkova, 1988). The eluent is water at 25°C. Two series of
measurements were carried out: in the first one, the relative
amount of K1 ions in the eluent was varied at a constant
Ca/Mg ratio; in the second series, the K/Na ratio was fixed
and the amounts of Ca21 and Mg21 were varied. The
tendency ofDc

1
2 to change with increasing K1 and Mg21

content in the eluent is shown in Fig. 6 by arrows, with
comments near the respective group of points. Again the
data for the polystyrenesulfonate ion exchange resin are in
general agreement with our results, despite the difference in
the chemical nature of the polyion exchange group and the
conditions in the eluent. Comparing our results with litera-
ture data in more detail, one can see that the influence of the
nature of the divalent cation on theDc

1
2 value is similar for

DNA and a sulfonic ion exchanger (Mg21 is a weaker
competitor with M11 than Ca21 is). At the same time we
have not found any significant influence of the nature of the
M11 cation (K1 or Na1) on theDc

1
2 values obtained for

DNA fibers in ethanol/water eluents. This is in contrast with
the sulfonic cation exchanger, where K1 exhibits a higher
capacity than Na1 in replacing M221 from the ion ex-
changer phase. Furthermore, atC1

o 5 300 mM, we have
observed an increase inDc

1
2 after substituting K1 for Na1.

This means that DNA exhibits a tendency that is the oppo-
site that of the sulfonic ion exchanger in binding K1 and
Na1.

In general, the data presented in Fig. 6 demonstrate that
the binding of Ca21, Mg21, Na1, and K1 to DNA has
mostly electrostatic character. The only exception is that
DNA (unlike sulfonic groups of cation exchange resins) has
some specific nonelectrostatic binding mode in its interac-
tions with Na1 (see K/Na Equilibria in the Discussion).

In Figs. 5 and 6, the dotted lines 4 were calculated by the
GCMC method for the CB model of the DNA polyion,
K/Na/Ca/Mg competition, and fore 5 45 (65% EtOH). The
differences between the CB and HB models in the evalua-
tion of Dc

1
2 are clearly seen (one should compare curves 4

with the corresponding curves 2 for the HB model). The HB
model reproduces experimental dependencies much better
than the CB model does (corresponding experimental data
are rhombi in Figs. 5 and 6).

Competition between Ca21 and Mg21 ions

Ca21 always wins in competition with Mg21 for binding to
DNA in oriented DNA fibers:Kc

Ca
Mg exceeds unity under

all of the conditions we have studied. A decrease in the
ethanol concentration results in a lowering of theKc

Ca
Mg

value (from 2.0–2.1 to 1.5–1.6 in 65% and 52% EtOH,
respectively, and at low concentrations of monovalent cat-
ions). Consequently, in water the difference in binding of
Ca21 and Mg21 to DNA is likely to be very small. Actually,
some disagreement still exists on whether Ca21 or Mg21

has a higher affinity for DNA in water. Direct determination
of Kc

Ca
Mg for DNA immobilized in a polyacrylamide gel in

water gaveKc
Ca

Mg 5 1.2 (both from direct measurement of
Kc

Ca
Mg and from comparison ofKc

Ca
K and Kc

Mg
K values)

(Kuznetsov et al., 1984). In these experiments the Ca/Mg
ratio was equal to 1:1. NMR relaxation measurements of the
Ca/Mg competition for binding to DNA reported in a num-
ber of works (Braunlin et al., 1987, 1989; Manzini et al.,
1990; Rose et al., 1982) were performed with varying
Ca/Mg ratios. It is possible that the dependence ofKc

Ca
Mg

on the Ca/Mg ratio could be the reason for contradictions in
findings on whether Ca21 or Mg21 is more strongly bound
to DNA; according to Rose et al. (1982), Mg21 binds
selectively (Kc

Ca
Mg , 1) at high Ca/Mg ratios, but for

Ca/Mg ,, 1, Ca21 is the preferentially bound cation
(Kc

Ca
Mg . 1) (Braunlin et al., 1987, 1989). In ion exchange

chromatography this phenomenon is called preferential
sorption of the minor component.

In Fig. 7, results of the comparison of experimental
(points) and theoretical (curves) values of the DNA selec-
tivity for Ca21 and Mg21 are presented. An increase in the
Na1 or K1 concentration in the eluent leads to a reduction
in the DNA selectivity for Ca21. Thus Kc

Ca
Mg decreases

from 2.0–2.1 to 1.5–1.6 in 65% EtOH and from 1.5–1.6 to
1.2–1.4 in 52% EtOH forC1

o 5 3–30 mM and 300 mM,
respectively (see Table 1). This effect, caused by a change
in the ratio of the Ca21 and Mg21 activity coefficients
(gCa/gMg) with increasing ionic strength, is reproduced
qualitatively by the GCMC simulations. The values of the
corrected selectivity coefficient,Ka

Ca
Mg (calculated with

Eq. 4), remain approximately constant in the whole range of
salt concentration we have simulated in the GCMC calcu-
lations. The tendency of the apparent ion exchange equilib-
rium constant to depend on the ionic strength is in agree-
ment with similar dependencies that we have found in
studies of the DNA selectivity for Li1, Na1, and K1 in a
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broad range of ethanol and salt concentrations (Korolev et
al., 1999). In that work we have shown that the GCMC
simulation method can correctly evaluate these ionic activ-
ities. For the case of mixtures of alkali and alkali earth metal
halides in ethanol/water solutions, we could not find corre-
sponding data on the activities of the cations. The only
experimental data we are aware of (Butler, 1968) have
shown satisfactory agreement (within 10%) with our
GCMC calculations of activities of Ca21 in a water solution
of CaCl2 1 NaCl salt (data not shown).

The simulation results onKc
Ca

Mg determined fore 5 53
deviate from the experimental values obtained in 52%
EtOH. This means that the valuesCa 5 2.6 Å that we use
in the GCMC calculations is not a proper choice for the
Ca21 ion size in both 52% and 65% EtOH. It has to be
remembered here that the valuesCa 5 2.6 Å has been
adjusted to get aKc

Ca
Mg value similar to the experimental

one atC1
o 5 10 mM ande 5 45, i.e., in 65% EtOH (see

Materials and Methods). It is possible that the degree of
Ca21 hydration in the DNA fibers equilibrated with 52%
EtOH eluent is higher than that in 65% EtOH.

The GCMC simulation results also show thatKc
Ca

Mg is
weakly dependent on the nature of the third (univalent)
competing cation. At high concentration of M1Cl (C1

o .
100 mM), GCMC data show that smaller monovalent cat-
ions cause a decrease inKc

Ca
Mg, i.e., the small M11 ions

may replace the smallest of the divalent cations near the
DNA surface. The GCMC method gives values forKc

Ca
Mg

in the presence of Na1 that are higher than those in the
presence of K1 (respectively,lines 1 or 19 and 3 or 39 in
Fig. 7). Experimental values ofKc

Ca
Mg display an opposite

dependence: Na1 ions replace divalent counterions more
effectively (than K1) near the DNA at high concentrations
of M1Cl in the eluent. This causes theDc

1
2 values to be

higher in the presence of Na1 than in the presence of K1

(see Fig. 6). Our data also reveal that Na1 competes for the
same specific binding sites on DNA as Ca21, and this
reduces the values ofKc

Ca
Mg in the presence of a high

concentration of NaCl in the eluent.

DNA selectivity for Na1 and K1 ions

The experimental values ofKc
K

Na determined in the pres-
ence of divalent cations show a significant spread in the
magnitude, especially at low salt concentration in the
eluents (Table 1 and Fig. 8). The uncertainty ofKc

K
Na is

probably a result of experimental errors in the analysis of
these ions at the very low contents in the DNA fibers under
conditions of competition with divalent ions (see above). At
the same time, theKc

K
Na values found in two series of

measurements in 65% EtOH indicate some DNA selectivity
for K1 for all salt concentrations exceptC1

o 5 300 mM
(solid rhombiin Fig. 8).

The GCMC simulation results show that within this
model the identity of the divalent cation and the concentra-
tion of ethanol in the eluent do not effect the values of
Kc

K
Na. All theoretical curves are close to each other (in Fig.

8, only theKc
K

Na values calculated for four-cation compe-
tition are shown). Within experimental uncertainty the ex-
perimental values ofKc

K
Na also do not show any applicable

FIGURE 7 Dependencies on the ionic strength in the eluent of experi-
mental values (points) and values calculated with the GCMC method
(curves), for the Ca/Mg ion exchange equilibrium constant,Kc

Ca
Mg, deter-

mined in the phase of oriented DNA. The concentration of 1-1 salt is varied
from 3 to 300 mM at constant (4 mM) concentration of the divalent cation
salt. Solid points and thicker lines are for 65% EtOH; the open points and
thinner lines are for 52% EtOH in the eluent. Competing ions are as
follows: E, F and curves 3, 39, Ca/Mg/K; M, f and curves 1, 19,
Ca/Mg/Na;L, l andcurves 2, 29, 4, 49, Ca/Mg/K/Na (two experimental
series). Theoretical curves are as follows: for the HB model,curves 1–3,
dielectric constante 5 45 (65% EtOH at 20°C);curves 19, 29, 39, e 5 53
(52% EtOH at 20°C); and for the CB model,curve 4,e 5 45; curve 49,
e 5 53.

FIGURE 8 Dependencies on the ionic strength in the eluent of experi-
mental values (points) and values calculated with the GCMC method
(curves), for the K/Na ion exchange equilibrium constant,Kc

K
Na, deter-

mined in the phase of oriented DNA. The concentration of 1-1 salt is varied
from 3 to 300 mM at constant (4 mM) concentration of the divalent cation
salt. Curves and solid points are for 65% EtOH; the open points are for
52% EtOH in the eluent. Competing ions are as follows:E, F, Mg/K/Na;
M, f, Ca/K/Na;L, l, curves 1 and 2, Ca/Mg/K/Na (two experimental
series). The theoretical curves are as follows: for the HB model,curve 1;
for the CB model,curve 2. Dielectric constante 5 45 (65% EtOH at 20°C).
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dependence on the ethanol and KCl1 NaCl concentrations
or on the presence of Ca21 and/or Mg21.

DISCUSSION

Theoretical modeling of the DNA interactions
with charged ligands

The GCMC simulation approach, employing quite rough
approximations for the ion exchange experiment conditions
(dielectric continuum, empirical values of mobile ion radii,
simplified presentation of the DNA polyion), nevertheless
produces a satisfactory quantitative agreement with exper-
imental results for the monovalent-divalent ion competition
(Figs. 5 and 6). We have adjusted only a single parameter,
the sCa value, by fittingKc

Ca
Mg at C1

o 5 10 mM in 65%
EtOH for the Ca/Mg/K competition. Other ion radii were
taken from the literature (see Materials and Methods). This
success of the electrostatic model supports experimental
(Black and Cowan, 1994; Braunlin et al., 1987, 1991) and
theoretical (Jayaram and Beveridge, 1996; MacKerell,
1997; York et al., 1992) results, indicating that alkali met-
als, as well as Mg21 and Ca21 ions, interact with DNA as
hydrated ions in a delocalized dynamic manner.

However, the agreement between the GCMC simulations
and the ion exchange results for the description of compe-
tition between counterions of similar charge (K1 with Na1

or Ca21 with Mg21) is only qualitative. Obviously, this kind
of competition is much more sensitive to the molecular
details of the DNA-ion-solvent interaction. Molecular dy-
namics simulations are currently in progress in our labora-
tory. The aim is to investigate the effects of a molecular
description of the water/ethanol solvent on the hydration of
counterions and on the selectivity of DNA for counterion
binding in the presence of competition.

Implications of the metal ion-nucleic acid
interactions in vivo

Our ion exchange measurements yield the following selec-
tivity series of DNA for the metal ions in oriented DNA
fibers:

Ca21 . Mg21 .. Na1 < K1 . Li1

(we have included a result for Li1 obtained in our previous
paper; Korolev et al., 1999). Undoubtedly, for the systems
in vivo, thermodynamic affinities of DNA for counterions
can be substantially changed by interactions with numerous
DNA-binding proteins, by effects of DNA bending in the
nucleosome, and by a number of other factors. Our data
obtained in studies of oriented DNA fibers reveal that the
Kc

K
Na value is approximately constant, being independent

of the ethanol content (Korolev et al., 1999) and the pres-
ence of Mg21 and/or Ca21 (this paper) or trivalent
Co(NH3)6

31 cations (Korolev et al., manuscript in prepara-
tion). This shows that the general thermodynamic prefer-

ences in the “crude DNA phosphate” selectivity for coun-
terions are quite “conservative.”

Balance of divalent and monovalent cations

Our data (Table 1, Fig. 5) show that real competition (sim-
ilar degrees of binding to DNA) between divalent and
monovalent cations occurs just at the “physiological” con-
centrations of K1, Na1, Mg21, and Ca21 observed in sea-
water or blood serum. This means that the salinity of the
medium and capacity of the cell for osmotic regulation can
govern the composition of inorganic cations in chromatin. It
also means that Ca21 can be most effectively replaced by
K1 just at the concentrations of cations observed in cytosol.
Our data confirm recent suggestions about the role of
Ca21-K1 ion exchange in an “anionic matrix” for controlled
(by ionic channels) release of Ca21 during Ca-dependent
signaling in the cell (Nguyen et al., 1998). (One can con-
sider the DNA in the cell nucleus as some kind of “anionic
matrix.”)

For a 0.1–0.3 M concentration of monovalent cations in
the eluent, the part of M221 bound to DNA corresponds
roughly to the M2/M1 proportion determined in the analy-
ses of the total content of ions in the cell. This proportion is
;160 mM of K1 1 Na1 to 40 mM of Mg21 1 Ca21 (the
amount of ions is expressed in a mean cell concentration)
(Collins, 1997). Thus, for such organisms as bacteria (where
most of the polyelectrolyte charge is on nucleic acids;
Record et al., 1998a, b), the M221/M11 ratio is quite close
to the equilibrium thermodynamic value of the dominant ion
exchanger.

Differences in the binding of Ca21 and Mg21 to DNA

At a given concentration of K1 and/or Na1, the degree of
Mg21 and Ca21 binding to DNA depends mainly on the
nature of divalent cation and is not influenced significantly
by the dielectric constant of the solvent or by the nature of
the monovalent cation. The type of cation (Ca21 or Mg21)
is especially important when nearly half of the DNA charge
is neutralized by these ions, i.e., at a “natural” concentration
of salts (100–300 mM). At the same time, DNA shows
weaker selectivity for Ca21 in Mg/Ca mixtures compared
with the carboxylic and sulfonic ion exchangers.

Charge neutralizing or nonspecific and, in particular,
selective (by specialized proteins) binding of Ca21 to other
natural “cation exchangers” show much higher affinity for
Ca21 than for Mg21 and monovalent cations. Combining
our results with data on Ca/Mg binding to proteins, one can
conclude that to compete for binding with Ca21, the DNA
concentration should be very high. In this context, we doubt
that DNA in vivo can influence Ca21 binding by such a
Ca-selective protein as calmodulin, as has been suggested
recently (Dobi and Agoston, 1998).
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K/Na equilibria

The absence of a significant DNA selectivity for either K1

or Na1 (Kc
K

Na ' 1 under all conditions we have studied)
indicates that DNA has some specific (nonelectrostatic)
binding mode in its interaction with Na1 and that this mode
compensates for the preferential electrostatic binding of K1

to the polyion, which is predicted by polyelectrolyte theo-
ries and confirmed in experiments on systems with “purely
electrostatic” binding of ions. We also have found that in
experiment,Kc

K
Na is usually slightly lower than 1.0 (Table

1). This result has been obtained for a K/Na ratio equal to
1:1 in the eluent. In might be possible that for K/Na.. 1
(e.g.,;15:1, as in the living cell), the selectivity of DNA
and RNA phosphate groups for Na1 can be substantially
enhanced (as reported, for example, for carboxylic ion ex-
changers; Gregor et al., 1956) in accordance with the ion
exchange chromatography rule of the preferential sorption
of the minor component. This phenomenon could be con-
nected with the observation that the distribution of K1 and
Na1 is uneven inside the cell, with Na1 being concentrated
in the nucleus (Dawson and Smith, 1986). In the cited
reference it has been shown that the sequestration of Na1

from cytosol to the nucleus influences the energetics of the
nutrient transport by the specialized Na1-gradient-depen-
dent pumps on the cell membrane.

On the whole, our experimental data and theoretical cal-
culations reveal that DNA fibers do not possess any partic-
ular selectivity for K1 or Na1. In this context it is of interest
to consider this result in relation to the distribution of Na1

and K1 in vivo. Na1 and K1 are slightly different in ionic
size and behave differently in their interaction with water
molecules. These differences have been suggested to be the
origin of the selective permeability of the living cell mem-
brane (Collins, 1997; Doyle et al., 1998). If one considers a
cell as a small grain of ion exchange resin, then the value of
Kc

K
Na for this “ion exchanger” is equal to 600 or higher,

when calculated from the mean concentrations of Na1 and
K1 in extracellular liquids (seawater, blood serum) and
intracellular fluid. Our data do not support the hypothesis
(Ling, 1994) that cation exchange groups of biological
polyelectrolytes can exhibit high selectivity for K1 under
special conditions of the cell cytosol.
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