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ABSTRACT Nickel has been proposed to be a selective blocker of low-voltage-activated, T-type calcium channels.
However, studies on cloned high-voltage-activated Ca21 channels indicated that some subtypes, such as a1E, are also
blocked by low micromolar concentrations of NiCl2. There are considerable differences in the sensitivity to Ni21 among native
T-type currents, leading to the hypothesis that there may be more than one T-type channel. We confirmed part of this
hypothesis by cloning three novel Ca21 channels, a1G, H, and I, whose currents are nearly identical to the biophysical
properties of native T-type channels. In this study we examined the nickel block of these cloned T-type channels expressed
in both Xenopus oocytes and HEK-293 cells (10 mM Ba21). Only a1H currents were sensitive to low micromolar concen-
trations (IC50 5 13 mM). Much higher concentrations were required to half-block a1I (216 mM) and a1G currents (250 mM).
Nickel block varied with the test potential, with less block at potentials above 230 mV. Outward currents through the T
channels were blocked even less. We show that depolarizations can unblock the channel and that this can occur in the
absence of permeating ions. We conclude that Ni21 is only a selective blocker of a1H currents and that the concentrations
required to block a1G and a1I will also affect high-voltage-activated calcium currents.

INTRODUCTION

Classification of voltage-gated Ca21 channels has relied on
their distinctive biophysical and pharmacological proper-
ties. Biophysical criteria that distinguish T-type from other
Ca21 channel types include: 1) their activation at lower
voltages (LVA), 2) inactivation at lower voltages, 3) their
transient kinetics, 4) smaller single-channel conductance in
isotonic BaCl2, and 5) their slower deactivation (Carbone
and Lux, 1984; Fox et al., 1987b; Matteson and Armstrong,
1986). Many studies have exploited their inactivation prop-
erties to isolate the T-type current, by subtracting the cur-
rents elicited during depolarizing pulses from a well-hyper-
polarized potential (290 mV) from those recorded from a
more depolarized potential (250 mV). In contrast to high-
voltage-activated calcium channels, T channels do not have
a distinctive pharmacology, because they are relatively re-
sistant to most organic calcium channel blockers, such as
the dihydropyridines that block L-type; peptide toxins, such
as the snail toxinv-conotoxin GVIA that blocks N-type;
and the spider toxinv-agatoxin-IVA that blocks P-type
channels (reviewed in Miljanich and Ramachandran, 1995).
Recently mibefradil has been suggested to be a selective
blocker of T channels (Mishra and Hermsmeyer, 1994);
however, it is only;15-fold selective, and its block is
highly sensitive to the holding potential (Bezprozvanny and
Tsien, 1995; McDonough and Bean, 1998). Low concen-
trations of Ni21 (,50 mM) have been used to selectively
block T-type currents in a number of cell types, such as

sinoatrial nodal cells (Hagiwara et al., 1988) and sensory
neurons (Todorovic and Lingle, 1998). On the contrary,
T-type currents in various neuronal cells require much
higher doses of Ni21 to be blocked (reviewed in Huguenard,
1996, and Todorovic and Lingle, 1998).

Molecular cloning of voltage-gated Ca21 channels has
revealed the existence of at least 10 genes (Lee et al.,
1999a). One goal of these studies is to correlate the bio-
physical and pharmacological properties of the cloned chan-
nels with their native counterparts. Largely based on its
nickel sensitivity and inactivation at negative holding po-
tentials, a rata1E was proposed to encode a member of the
low-voltage-activated family (Soong et al., 1993). Subse-
quent studies with mouse, rabbit, and human clones con-
cluded thata1E encoded a high-voltage-activated channel,
the native counterparts of which are called R-type (Waka-
mori et al., 1994; Williams et al., 1994; Randall and Tsien,
1997; Zhang et al., 1993). One complication to these studies
is that auxiliary subunits can alter the voltage-dependent
gating of HVA a1 subunits, and the subunit structure of
native R-type channels is not known. Notably, a novela2d
isoform (a2d-2) was shown to shift the gating ofa1E
currents to lower potentials (Klugbauer et al., 1999). There-
fore it is possible thata1E can generate low-threshold
currents, as suggested by antisense oligonucleotide studies
(Piedras-Renteria et al., 1997).

Recently our laboratory cloned three distincta1 subunits
of T-type calcium channels (Perez-Reyes et al., 1998a;
Cribbs et al., 1998; Lee et al., 1999b). Expression of these
cloned channels in eitherXenopusoocytes or HEK-293
cells led to the induction of classical T-type currents in
terms of their activation at low voltages, slow deactivation,
and small conductance in isotonic BaCl2. The goals of the
present study were to determine the Ni21 sensitivities of
these three T-type channels and to investigate the mecha-
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nisms of block. Our hypothesis was that the large discrep-
ancies reported for the Ni21 block of native T currents may
be due to inherent differences in the sensitivities of the three
subtypes. In contrast to the widespread belief that T currents
are Ni21 sensitive, we find thata1G anda1I are relatively
insensitive to Ni21. Only a1H is blocked by low micromo-
lar concentrations of NiCl2. These observations, coupled
with their distribution (Talley et al., 1999), provide an
explanation for the reports of Ni21-insensitive T-type
channels.

MATERIALS AND METHODS

Materials

Cloning of the full-length rata1G cDNA was reported previously (Perez-
Reyes et al., 1998a), as was its subcloning into pGEM-HEA (Chuang et al.,
1998). This vector contains 59 and 39 untranslated regions from aXenopus
b globin gene, resulting in high levels of expression (Liman et al., 1992).
The full-length humana1H cDNA (Cribbs et al., 1998) was also subcloned
into pGEM-HEA. Cloning of the rata1I cDNA and its subcloning into
pSP73 along with 59 globin sequences (Promega, Madison, WI) were
described previously (Lee et al., 1999b). Generation of stably transfected
HEK cell lines was described by Lee et al. (1999). All cell culture reagents
were from Life Technologies (Grand Island, NY). Nickel(II) chloride
hexahydrate (NiCl2) was obtained from Aldrich (no. 20, 386-6; Milwau-
kee, WI). All other reagents were from Sigma (St. Louis, MO).

Electrophysiological analysis of injected oocytes

Capped cRNA was synthesized from plasmid linearized using T7 RNA
polymerase (Ambion, Austin, TX). The concentration of cRNA was mea-
sured spectrophotometrically. Oocytes were prepared fromXenopus laevis
(Xenopus One, Ann Arbor, MI) by standard techniques (Leonard and
Snutch, 1991). Each oocyte was injected with 2–10 ng of cRNA in a
volume of 50 nl.

Oocytes were voltage-clamped using a two-microelectrode voltage
clamp amplifier (OC-725B; Warner Instrument Corp., Hampden, CT). The
standard bath solution contained the following: 10 mM Ba(OH)2, 90 mM
NaOH, 1 mM KOH, and 5 mM HEPES, adjusted to pH 7.4 with meth-
anesulfonic acid. Voltage and current electrodes (0.5–1.5 MV tip resis-
tance) contained an agarose cushion and were filled with 3 M KCl
(Schreibmayer et al., 1994). Data were acquired at 5 kHz with the
pCLAMP system (Digidata 1200 and pCLAMP 6.0; Axon Instruments,
Foster City, CA) and filtered at 1 kHz (no. 902 filter; Frequency Devices,
Haverhill, MA).

Electrophysiological analysis of
HEK-293-transfected cells

HEK-293 cells were dissociated by digestion with 0.25% trypsin plus 1
mM EDTA (Life Technologies) for 2 min, then diluted 20-fold with
Dulbecco’s minimum essential medium. The cells were triturated, diluted
twofold with Dulbecco’s minimum essential medium, and then plated on
coverslips. The cells were incubated for at least 4 h and for up to 2 days
before electrophysiological studies. The recording solution contained the
following (in mM): 10 BaCl2, 140 tetraethylammonium (TEA) chloride, 6
CsCl, and 10 HEPES (pH adjusted to 7.4 with TEA-OH). The standard
internal pipette solution contained the following (in mM): 55 CsCl, 75
CsMeSO4, 10 MgCl2, 0.1 EGTA, and 10 HEPES (pH adjusted to 7.2 with
CsOH). As noted, some experiments were performed with the following
internal solution (in mM): 120N-methyl-D-glucamine (NMDG), 10 EGTA,
and 10 HEPES (pH adjusted to 7.2 with methanesulfonic acid).

Whole-cell currents were recorded from ruptured patches, using an
Axopatch 200A amplifier, Digidata 1200 A/D converter, and pCLAMP 6.0
software (Axon Instruments). Data were digitized at 4 kHz and filtered at
1 kHz. Pipettes were made from TW-150-6 capillary tubing (World Pre-
cision Instruments, Sarasota, FL), using a model P-97 Flaming-Brown
pipette puller (Sutter Instrument Co., Novato, CA). Under these solution
conditions the pipette resistance was typically 1.5–2.0 MV. Series resis-
tance (correction and prediction) and cell capacitance were compensated
by at least 80%. The average cell capacitance was;25 pF. All experiments
were performed at room temperature.

Dose-response analysis

A 100 mM NiCl2 stock solution was used for dilutions in deionized water,
which were then diluted by at least 1:100 with the appropriate bath
solution. The stock was stored at room temperature. Dilutions were made
on the day of the experiment. The recording chamber for both oocyte and
HEK-293 experiments was a RC-25 (Warner Instrument Corp.), which has
a volume of 0.15 ml. Each test solution was either perfused at 2–4 ml/min,
or 2 ml was slowly added directly to a static bath. Similar results were
obtained with the two methods. Experiments designed to test reversibility
used continuous perfusion. Leak currents were minimal at230 mV in both
oocytes and HEK-293 cells; therefore online leak subtraction was only
used during measurement of the current-voltage (I-V) relationship (P/-6 or
P/-4) or during the unblock experiments. Rundown and time-dependent
shifts in the gating were observed in HEK-293 cells, especially fora1H;
therefore we performed these experiments with oocytes. Experiments were
only performed on cells in which the initial rate of rundown was less than
1% over the first 2 min of recording.

Data analysis

Peak currents and exponential fits to currents were determined using
Clampfit software (Axon Instruments). Dose-response analysis and graph-
ing of the data were done with Prism (GraphPad, San Diego, CA). Average
data are presented as mean6 SEM.

RESULTS

Injection of cRNAs derived from cloned T-type calcium
channela1 subunits,a1G, a1H, anda1I, induced robust
expression of T-type currents inXenopusoocytes. The
amount of cRNA injected was titrated so that the currents,
using 10 mM Ba21 as the charge carrier, were;1 mA. At
this level of expression, the possible contribution of endog-
enous currents would be less than 1% (Lacerda et al., 1994).
To determine the dose dependence of Ni21 block, several
concentrations of NiCl2 solutions were applied sequentially,
and their effects were measured every 15 s by a test pulse of
230 mV from a holding potential of290 mV. A typical
experiment using oocytes injected witha1H is shown in
Fig. 1, with representative current traces shown in the inset.
NiCl2 block was fast and reversible. NiCl2 also slowed the
inactivation kinetics, with little change in activation kinetics
(Fig. 1 B). Because we have observed significant differ-
ences in the biophysical properties ofa1I depending on the
expression system (Lee et al., 1999b), we performed similar
experiments using stably transfected HEK-293 cells. The
currents from these stable cell lines are typically greater
than 1 nA (Lee et al., 1999b), so there should be little
contribution from endogenous currents (Berjukow et al.,
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1996). Endogenous HEK-293 currents were not observed
under our experimental conditions.

Cumulative dose-response analysis was performed on
a1G, H, and I, expressed in both oocytes and HEK-293 cells
(Fig. 2). Only a1H was significantly blocked by low mi-
cromolar concentrations of NiCl2. The concentration at
which half thea1H current was blocked (IC50) was 6mM in
oocytes and 13mM in HEK-293 cells. In contrast, the IC50

values determined fora1I were 15-fold higher, and;24-
fold higher fora1G currents (Table 1). The Hill slopes for
the a1G anda1I curves were close to 1 in both systems,
while the curves fora1H had slopes around 0.7 (Table 1).
Channels expressed in oocytes were more sensitive to Ni21

block than in HEK-293 cells, witha1I showing the largest
difference (2.5-fold).

We next examined the voltage dependence of Ni21 block
of channels expressed in oocytes. Fig. 3 shows results
obtained from oocytes injected witha1G. Representative
traces taken during anI-V protocol under control conditions
and in the presence of 300mM NiCl2 are shown in Fig. 3,
A andB, respectively. The peak currents were averaged and
plotted as a function of the test potential (Fig. 3C). The data
were obtained from three oocytes under control conditions
and in the presence of 100, 300, and 1000mM (n 5 2)
NiCl2. In addition to blocking the current, Ni21 appeared to

shift the I-V curves to more depolarized potentials. This
shift can be seen when the currents are normalized to the
maximum current observed during theI-V protocol (Fig. 3
D). To quantitate this shift we calculated the chord conduc-
tance (Fig. 3E) and normalized it to the maximum (Fig. 3

FIGURE 1 Nickel block ofa1H currents expressed inXenopusoocytes.
Typical responses to increasing concentrations of NiCl2, followed by
washout. Test pulses to230 mV from a holding potential of290 mV were
delivered every 15 s. The peak current was calculated and then plotted
against time. Approximate times when NiCl2 containing bath solutions
were added are indicated (mM). Inset: Traces recorded from the same
experiment. The current traces were simultaneously fit with two exponen-
tials, with one phase representing activation kinetics (‚) and the other
inactivation (ƒ).

FIGURE 2 Dose-response analysis of Ni21 block of a1G, H, and I
currents. Responses were recorded from cloned channels expressed in
either (A) oocytes or (B) HEK-293 cells. Data represent the average
responses from four to seven cells (a1G, ‚, Œ; a1H, ƒ, �; a1I, E, F).
Smooth curves represent the fit to the data. In contrast toa1G and I, Hill
coefficients for thea1H curves were significantly less than unity (Table 1).

TABLE 1 Summary of the dose-dependent block by NiCl2
deduced from test pulses to 230 mV

Oocytes HEK-293 cells

IC50 (mM) Hill slope IC50 (mM) Hill slope

a1G 1676 15 21.126 0.11 2506 22 21.006 0.10
a1H 5.76 0.3 20.786 0.04* 126 2 20.776 0.09*
a1I 876 7 20.906 0.06 2166 9 20.896 0.03*

*Significantly less than 1.
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F). Boltzmann fits to the data were used to calculated the
voltage at which half the channels open (V0.5). The curve
obtained in the presence of 1000mM NiCl2 was shifted 15
mV relative to control. Similar shifts were deduced when
conductance was calculated using the Goldman-Hodgkin-
Katz equation (Hille, 1992). Similar results were obtained
with cloned HVA a1 subunits (Zamponi et al., 1996) and
were interpreted as Ni21 binding to two sites: one that
blocks conductance and a second site that alters channel
gating. An alternative explanation is that block is simply
voltage dependent.

To illustrate the voltage dependence of block we plotted
the percentage block of the peak current as a function of the
test potential (Fig. 4A). NiCl2 concentrations were chosen
that were slightly above the IC50 value for each channel
(a1H, 10mM; a1G and I, 300mM). Block of a1G anda1I
was greatest during test pulses to250 mV and decreased

20% to a plateau at 0 mV (Fig. 4A). In contrast, block of
a1H was essentially voltage independent over the potentials
tested (Fig. 4B). A consequence of this voltage dependence
is that the apparent sensitivity of the channel will depend on
the test potential used (Fig. 4C). The apparent IC50 of a1G
currents decreased from 200mM at 0 mV to 70mM at 240
mV. Similar results were obtained witha1I (data not
shown). In contrast, the apparent sensitivity ofa1H chan-
nels did not depend on the test potential (Fig. 4B).

From the analysis shown in Fig. 3,E andF, we plotted
the dose dependence of nickel’s block of the maximum
conductance and its apparent shift in gating and then fit the
data with the dose-response equation. The IC50 values cal-
culated from the maximum conductance were similar to the
values obtained from a single pulse to230 mV (Table 1):
a1G, 1696 10 mM; a1H, 6 6 2 mM; and a1I, 168 6 2
mM. Plots of the shift inV0.5 versus NiCl2 concentration did

FIGURE 3 Voltage dependence of Ni21 block.
Data were recorded from oocytes injected witha1G.
Currents were obtained during anI-V protocol in the
absence (A) and presence (B) of 300 mM NiCl2. For
display purposes, the data were decimated by a factor
of 4, using pClamp software. (C) Average peak cur-
rents from three oocytes recorded for control (M) and
in the presence of 0.1 (‚), 0.3 (ƒ), and 1 mM NiCl2
(L). (D) The data inC were normalized to the max-
imum peak current observed in each cell and then
averaged. (E) Conductance was calculated by dividing
the observed current by the driving force (reversal
potential minus the test potential) and then averaged.
A constant reversal potential of 40 mV was used for
all data sets. Measurement of the reversal potential in
oocytes is complicated by small outward currents. The
data inE were normalized to the maximum conduc-
tance observed during eachI-V protocol and then
averaged. Smooth curves inE andF are fits to the data
calculated with the Boltzmann equation.
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not reach saturation at the doses tested (up to 1 mM);
therefore this IC50 can only be estimated:a1G, 6826 47
mM; a1H, 35 6 9 mM; and a1I, 454 6 100 mM. For all
three channels the IC50 for block of the maximum conduc-
tance was lower than the shift in gating. This difference was
largest fora1H (sixfold). The ability of Ni21 to shift the
V0.5 was similar fora1G and I channels. In contrast, the
shift in a1H gating occurred at lower concentrations.

If Ni 21 is blocking inward current by binding in the pore,
then we reasoned that outward currents may knock it off, as
observed previously for charybdotoxin block of Ca21-acti-
vated K1 channels (MacKinnon and Miller, 1988). Expres-
sion of cloned T channels in oocytes and HEK-293 cells
leads to the appearance of outward currents during test
potentials above140 mV. These currents decay with the
same kinetics as the inward current (Fig. 5,A andB). It is
likely that these currents are carried by K1, because oocytes
contain 150 mM K1 (Dascal et al., 1986). For botha1G and
a1I, 300mM Ni21 produced over 50% block of the inward
current, with little block of the outward current. This effect
was most pronounced fora1I: block approaches a voltage-
independent value of 60% at210 mV (Fig. 4 A) and
continues up to120 mV, then abruptly disappears at test
potentials beyond the reversal potential (Fig. 5F; 160 mV,
3%). In contrast, there is still significant block of the out-
ward current carried bya1G (160 mV, 72%). Another
difference betweena1G anda1I was the apparent reversal
potential, which was 10 mV more positive fora1G. These
differences suggest that T channel subtypes may differ in
their permeability properties, and this may account for the
difference in nickel’s ability to block the outward current.
For example, the pore ofa1G may bind Ba21 and Ni21

more tightly, thereby reducing outward currents in control
and leading to less Ni21 block of the outward currents.

An alternative hypothesis for explaining the unblock is
that large depolarizations induce changes in channel struc-
ture, leading to a conformation with lower affinity for Ni21.
Although such changes in T-type channel gating have not
been reported, large depolarizations have been reported to
affect L-type gating, driving the channels into a high activ-
ity mode (Pietrobon and Hess, 1990). In this case, unblock
would occur even in the absence of permeant ions, as
observed for the unblock of P-type channels byv-agatoxin
IVA (McDonough et al., 1997). To gain control of the
intracellular milieu, we switched to the ruptured-patch
clamp ofa1I-transfected HEK-293 cells. Experiments using
Cs1-based intracellular solutions and cells stably trans-
fected witha1I yielded results similar to those observed in
oocytes (Fig. 6,A andB), that is, outward currents during
test depolarizations above140 mV that had kinetics similar
to those of the inward currents, and little or no block of
these outward currents, even at concentrations that blocked
more than half of the inward current. To induce unblock, we
inserted a step depolarization during a230-mV step, then
varied its potential in 20-mV steps (Fig. 6A, inset). We used
a 230-mV step because we measured maximum block at
this potential (Fig. 4A). Further depolarization during the
prepulse led to an increase in the amplitude of the tail
current that decayed monoexponentially under control con-
ditions (Fig. 6C). One explanation is that not all channels
are activated at230 mV, so that further depolarization
activates more channels, producing a larger tail current. An
alternative explanation is that there is a blocking ion in
control solutions. In the presence of 300mM Ni21 (Fig. 6
B), the tail currents after the depolarization approached the
amplitude observed in control, then decayed biexponen-
tially. These results suggest that the large depolarization had

FIGURE 4 Nickel block is voltage dependent. (A andB) The percentage block by NiCl2 was calculated for each potential. Conductance was calculated
from I-V protocols as described in Fig. 3. The data were obtained from oocytes expressing eithera1G (‚, n 5 3, 300mM NiCl2), a1H (ƒ, n 5 6, 10mM
NiCl2), or a1I (E, n 5 3, 300mM NiCl2). Smooth curves represent Boltzmann fits (V50 5 221 mV, k 5 27, for a1G, H, and I). (C) The dose response
of a1G (Œ, �, l) anda1H (‚, ƒ, L) to NiCl2 was calculated from data obtained during test pulses to240 (‚, Œ), 220 (ƒ, �), and 0 mV (L, l). Smooth
curves represent fits to the data, assuming a Hill coefficient of 1.
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caused unblock of the channel, and that upon repolarization
the channels were rapidly reblocked, as observed previously
for Cd21 block of high-voltage-activated Ca21 channels
(Thevenod and Jones, 1992). By fixing the first exponential
to that observed in control (31 ms), we calculated a second
exponential of 2.76 0.5 ms (n 5 3), which at this concen-
tration would correspond to a bimolecular association con-
stant of 3.73 106 M21 s21. The unblock of channels during
a pulse might explain why Ni21 slows inactivation kinetics
(Fig. 1 B).

Surprisingly, we also observed unblock in experiments in
which the intracellular solution containedN-methyl-D-glu-
camine (NMDG) instead of Cs1 (Fig. 6, D and E). No
outward currents were detected even at1110 mV, indicat-
ing that NMDG does not permeatea1I channels. As ob-
served with intracellular Cs1 solutions, the tail currents in

the presence of Ni21 decayed biexponentially. We calcu-
lated the fractional unblock using the equation

Fractional unblock

5 ~maximal block2 residual block!/maximal block

where the maximum block was the block observed during
the 230-mV pulse, and the residual block was the block
observed at the peak of the tail current. Unblock was ap-
parent after depolarizations to210 mV and approached a
maximum after1110-mV steps. Fractional unblock after
1110-mV depolarizations was greater in Cs1-containing
solutions than in those containing NMDG (Fig. 6F). These
results indicate that two mechanisms are responsible for
unblock, one that is voltage dependent, and a second that
involves outward monovalent cation flux.

FIGURE 5 Nickel does not block
outward currents. Representative
traces obtained during anI-V proto-
col are shown for control and in the
presence of 300mM NiCl2. (A) Cur-
rents recorded froma1G-injected oo-
cytes under control conditions (left)
and in the presence of NiCl2 (right).
(B) Currents recorded froma1I-in-
jected oocytes under control condi-
tions (left) and in the presence of
NiCl2 (right). (C, D) data fromA and
B, respectively, for test depolariza-
tions to 220 and 160 mV in the
absence and presence of NiCl2 (dark
lines) are superimposed. Average re-
sults for a1G are plotted inE, and
those obtained fora1I are shown inF.
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DISCUSSION

The major finding of the present study is that of the three
cloned T channels, onlya1H is blocked by low micromolar
concentrations of Ni21. We also studied the biophysical
properties of Ni21 block and showed that these properties
are similar to those observed previously for HVA channels.
These similarities exist despite the low level of sequence
conservation, indicating considerable structural conserva-
tion. We present evidence that Ni21 blocks less during
positive test potentials. As a consequence, Ni21 appears to
be affecting channel gating (Zamponi et al., 1996). We also
show that Ni21 blocks the outward current much less than
the inward current. Unblock of the channel at positive
potentials can occur in the absence of permeating ions.
Similar results were obtained with block of HVA channels
by Cd21 (Thevenod and Jones, 1992) and byv-agatoxin
IVA (McDonough et al., 1997).

The notion that T-type channels were selectively blocked
by low concentrations of Ni21 began with the classic studies
of Hagiwara et al. (1988). Using rabbit sinoatrial nodal
cells, they showed that 40mM NiCl2 selectively blocked the
transient, low-voltage-activated Ca21 current (T-type), with

little effect on the long-lasting, dihydropyridine-sensitive
(L-type) current. They then went on to show that T-type
channels contributed to the late phase of the pacemaker
depolarization. Although detailed dose-response relation-
ships have not been published, many studies of mammalian
cardiac myocytes have reported complete block of the T
current by 30–50mM NiCl2, with little or no effect on the
L-type current (Zhou and Lipsius, 1994; Satoh, 1995).
Based on the present results and the fact that we cloneda1H
from a human heart cDNA library (Cribbs et al., 1998), we
suggest thata1H is the predominant isoform expressed in
heart. Similarly, sensory neurons of the dorsal root ganglia
predominantly expressa1H (Talley et al., 1999), and their
T currents are completely blocked by 100mM NiCl2 (Fox et
al., 1987a; Todorovic and Lingle, 1998). T currents in
cardiac Purkinje fibers have been reported to be less sensi-
tive to Ni21, with 50 mM producing 47% block and only
72% block at 500mM (Tseng and Boyden, 1989), although
Hirano et al. (1989) reported that 100mM produced nearly
complete block. Northern blot analysis indicates that heart
also expresses mRNA fora1G (Perez-Reyes et al., 1998a),
which we show encodes T channels that are relatively Ni21

FIGURE 6 Relief of nickel block at extreme positive voltages. Representative traces were obtained froma1I-transfected HEK-293 cells, using Cs1 as
the main intracellular cation in the absence (A) and in the presence (B) of 300mM NiCl2 in the bath solution (2 mM BaCl2, 140 TEA-Cl, 6 CsCl, and 10
HEPES, pH adjusted to 7.4 with TEA-OH). (C) Reblock of Ca21 channels by Ni21 at 230 mV after unblocking by depolarization to1110 mV. Tail
currents generated by repolarization to230 mV were fit (solid lines) with one (control) or two (1 Ni21) exponentials. The same data are shown inA and
B. (D, E) Current traces obtained using the same protocol, but using NMDG as the main cation in the pipette solution. Traces were obtained from the same
cell in the absence (D) and in the presence (E) of 300mM NiCl2. Although with NMDG outward currents were not produced, some unblock still occurred.
(F) Percentage of fractional unblock induced by a depolarization to1110 mV with Cs or NMDG. The initial amplitude of the exponential fits (as shown
in C) was used to calculate the fractional unblock. Results represent the mean6 SEM (n 5 3 for each cation).
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insensitive. Therefore it is likely that Purkinje fibers express
a1G channels. We plan to investigate this hypothesis fur-
ther using immunolocalization.

Similar to T-type channels in pacemaker cells, relatively
Ni21-sensitive T-type currents were reported from rat aorta
smooth muscle cells (IC50 5 10 mM; Akaike et al., 1989),
rat amygdala (IC50 5 30 mM; Kaneda and Akaike, 1989),
and medullary thyroid carcinoma (TT) cells (IC50 5 5 mM;
Mlinar and Enyeart, 1993). We suggest that these cells
predominantly expressa1H. In agreement with the present
results obtained witha1H, Mlinar and Enyeart (1993)
showed that Ni21 block of the TT cell current was relatively
voltage independent, and that its dose dependency had a Hill
slope of20.6. Additional support for this conclusion comes
from the recent work of Williams et al. (1999), who cloned
an a1H cDNA from a TT cell cDNA library, which is
99.2% identical to oura1H at the nucleotide level (Cribbs
et al., 1998). Nickel was also a potent blocker (IC50 5 6.6
mM; 15 mM Ba21 as charge carrier) of their cloneda1H
expressed in HEK-293 cells.

The reported Ni21 sensitivity of neuronal T channels is
quite variable (Huguenard, 1996). One possible explanation
for this variability is that each study used a different charge
carrier at different concentrations, which may affect block.
For example, studies used either Ca21 or Ba21 at concen-
trations ranging from 2 to 50 mM. However, many studies
used 10 mM, so a comparison to the present results can be
made. Our results indicate that there are two other explana-
tions: 1) the apparent affinity will depend on the test voltage
and 2) distinct isoforms have very different sensitivities. In
situ hybridization studies indicated thata1G is the predom-
inant isoform expressed in brain (Talley et al., 1999) and is
expressed in the same regions where Ni21-insensitive T
currents have been recorded, such as hippocampus (IC50 5
230mM; Ye and Akaike, 1993), frontal cortex (IC50 5 260
mM; Takahashi and Akaike, 1991), and thalamus (83%
block at 500mM; Suzuki and Rogawski, 1989). In many
brain regionsa1G is coexpressed witha1I, as in cerebellum
and the inferior olive, while hippocampus and olfactory
bulb express all three isoforms. Based on their distribution,
we conclude that Ni21 block of the cloned T channels
correlates well with the Ni21 sensitivity of native T
currents.

This conclusion is supported by our results that the bio-
physical properties of the cloned channels in HEK-293 cells
are nearly identical to those reported for native T currents
(Lee et al., 1999b). In contrast, the biophysical and phar-
macological properties of cloned high-voltage-activateda1
subunits do not match native currents, and numerous studies
have documented the important role of auxiliary subunits in
determining these properties. Currents througha1I channels
were more sensitively blocked by Ni21 when expressed in
Xenopusoocytes than those in HEK293 cells. A plausible
interpretation for the difference is that HEK-293 cells ex-
press unidentified auxiliary subunits for T-type channels,
which might alter Ni21 sensitivity. The presence of auxil-
iary subunits for T-type channels was previously proposed

from the kinetic differences ofa1I currents between the two
expression systems (Lee et al., 1999b). Regardless of the
mechanism,a1I currents in oocytes activated and inacti-
vated much more slowly, which would allow for more
channels to be in the open state during a test depolarization.
Because Ni21 is in part an open-channel blocker, these slower
kinetics may in part explain the differences in sensitivity.

Zamponi et al. (1996) performed a detailed study of the
nickel block of the cloned HVAa1A, B, C, and E subunits
(Zamponi et al., 1996). They concluded that Ni21 had two
actions: it blocked currents and it shifted the voltage depen-
dence of gating. They also showed thatb subunits dramat-
ically altered nickel’s ability to shift gating. Of these chan-
nels, the apparent gating ofa1E was the most dramatically
affected by Ni21, being shifted by over 30 mV. We have
obtained similar results with humana1E (Lee and Perez-
Reyes, unpublished observations). One difference between
these studies is that we find block occurring at lower con-
centrations than the shift, while they had the opposite result.
Despite the fact that T channels are only 15% identical to
HVA a1 subunits at the amino acid level, the consequences
of Ni21 block are similar. This suggests that Ni21 is binding
to regions that are conserved between the channels. Two
regions that are likely to be involved, the S4 and pore loops,
are well conserved (Perez-Reyes et al., 1998b). These re-
gions are more highly conserved between the members of a
subfamily; for example, the four pore loops ofa1H are 96%
identical to a1G, making it difficult to deduce a Ni21

binding site. A second difference between the studies is in
the interpretation of the results; we suggest that the shift in
gating is due in part to Ni21 block of closed states followed
by unblock of the open state at potentials higher than230
mV. Clearly the effects of Ni21 are complex, with more
than one mechanism. At one extreme are channels likea1H
that can be blocked with little effect on gating, while at the
other extreme there are channels likea1E, where the ap-
parent shift in gating occurs before substantial block of the
peak current. In any case, combining the results of these two
studies allows us to deduce the following rank order of
nickel sensitivity:a1H .. a1C . a1I . a1G . a1E .
a1A .. a1B. We conclude thata1H is the subunit that
forms the most Ni21-sensitive Ca21 channels.
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