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ABSTRACT Buffered Ca21 diffusion in the cytosol of neuroendocrine cells is a plausible explanation for the slowness and
latency in the secretion of hormones. We have developed a Monte Carlo simulation to treat the problem of 3-D diffusion and
kinetic reactions of ions and buffers. The 3-D diffusion is modeled as a random walk process that follows the path of each
ion and buffer molecule, combined locally with a stochastic treatment of the first-order kinetic reactions involved. Such
modeling is able to predict [Ca21] and buffer concentration time courses regardless of how low the calcium influx is, and it
is therefore a convenient method for dealing with physiological calcium currents and concentrations. We study the effects of
the diffusional and kinetic parameters of the model on the concentration time courses as well as on the local equilibrium of
buffers with calcium. An in-mobile and fast endogenous buffer as described by Klingauf and Neher (1997, Biophys. J.
72:674–690) was able to reach local equilibrium with calcium; however, the exogenous buffers considered are displaced
drastically from equilibrium at the start of the calcium pulse, particularly below the pores. The versatility of the method also
allows the effect of different arrangements of calcium channels on submembrane gradients to be studied, including random
distribution of calcium channels and channel clusters. The simulation shows how the particular distribution of channels or
clusters can be of relevance for secretion in the case where the distribution of release granules is correlated with the channels
or clusters.

INTRODUCTION

Ca21-triggered secretion by neuroendocrine cells is known
to be a relatively slow process and with longer latencies
when compared with the secretion of neurotransmitters in
synapses (Augustine et al., 1985; Llina´s et al., 1981). In
chromaffin cells, for instance, it is known that secretion
continues during tens of milliseconds after a short pulse
(Chow et al., 1992). In pancreaticb-cells, latency between
elevation of [Ca21] and exocytosis has recently been re-
ported (Eliasson et al., 1997).

A plausible explanation for such slow mechanisms of
secretion may be found in the existence of cytosolic buffers
that delay the response by slowing down the free calcium
transient. The way in which Ca21 exogenous chelators
interfere with secretion, in both chromaffin (Chow et al.,
1996) andb-cells (Bokvist et al., 1995; Pertusa et al., submit-
ted for publication), strongly supports such a possibility.

Speaking in general terms, one can summarize the basic
ingredients of calcium signaling (Clapham, 1995) in neu-
roendocrine cells as consisting of transient of calcium ions
through the cell membrane, uptake and release of Ca21 by
internal stores, diffusion of calcium, and binding/unbinding
by endogenous (or exogenously added) buffers. When se-
cretion is studied, the dynamics of the release granules

responsible for secretion as well as their spatial distribution
also have to be taken into account.

Several studies have previously considered the problem
of buffered calcium diffusion in excitable cells, modeling
the system by means of diffusion-reaction differential equa-
tions, solved numerically using finite differences schemes
(Sala and Herna´ndez-Cruz, 1990; Nowycky and Pinter,
1993; Klingauf and Neher, 1997). Other approaches, to
mathematically simplify the models, considered different
kinds of approximations valid either for rapid buffers (Wag-
ner and Keizer, 1994; Smith et al., 1996) or in the linear
regime (Naraghi and Neher, 1997). Such previous studies
addressed the importance of the study of Ca21-buffered
diffusion both to gain insight into the secretory response
(Klingauf and Neher, 1997) as well as to correctly interpret
data from fluorescence experiments (Nowycky and Pinter,
1993; Smith et al., 1996) that use exogenous buffers as
indicators of Ca21 intracellular activities.

In this study we have adopted a Monte Carlo method to
model the buffered diffusion of calcium. Monte Carlo sim-
ulations have been previously used successfully to study
reaction and diffusion processes in biological systems (Sax-
ton, 1994, 1996; Riley et al., 1995; Kruk et al., 1997). Our
motivations for adopting such a scheme are several. First,
no a priori assumptions about the symmetry of the problem
are needed to reduce the number of spatial dimensions; in
this way, we can perform a three-dimensional simulation of
diffusion. Second, the boundary conditions of the problem
are more easily taken into account, and one can vary such
conditions with ease. For instance, with a Monte Carlo
simulation it is a simple task to model the entrance of ions
through channel pores (not necessarily regularly distributed)
and to consider the possibility of clustered channels. Third,
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Monte Carlo techniques are robust methods for solving
complex problems in which different agents come into play
together, interacting among themselves. The robustness and
versatility of the method enable us to safely study tenden-
cies when the parameters affected by large uncertainties are
varied, which is indeed the case of the diffusional and
kinetic parameters of our system. Last, but not least: as we
shall see, given the relatively small number of Ca21 ions
and buffer molecules involved, a stochastic approach to the
problem may be more appropriate and safer than the solu-
tion of the reaction-diffusion differential equations (in terms
of concentrations).

METHODS

We have built a Monte Carlo simulation to treat the problem
of 3-D diffusion and kinetic reactions of calcium ions and
buffers. The main ingredients of the simulation are

1. Selection of the geometrical configuration and distribu-
tion of channel pores

2. Selection of initial concentrations
3. Diffusion of Ca21 and mobile buffers
4. Binding and unbinding of Ca21 ions by buffers
5. Entry of Ca21 through channel pores

One can also consider extrusion mechanisms through the
membrane (Sala and Herna´ndez-Cruz, 1990; Klingauf and
Neher, 1997); however, the contribution to Ca21 concen-
tration profiles for time intervals smaller than 100 ms seems
to be irrelevant (Sala and Herna´ndez-Cruz, 1990). Other
phenomena not considered in the present simulation are the
effect of obstacles (release granules, mitochondria) in dif-
fusion (Saxton, 1994; O¨ lveczky and Verckman, 1998), se-
questration, and release by internal stores (like mitochon-
dria—see Xu et al., 1997; or granules, sarcoplasmic
reticulum, etc.). In the present study we limited our field of
investigation to the problem of buffered calcium diffusion
in a subdomain with uniformly (but not necessarily regu-
larly) distributed calcium channels (or channel clusters),
with a Ca21 influx discretized in space (the entry is re-
stricted to the pores).

Let us now discuss the different ingredients of the sim-
ulation of Ca21-buffered diffusion and how the sequence of
the simulation works.

Geometrical configuration

The only a priori geometrical simplification considered in
our study, to save computational time, is the restriction to a
conical subdomain of the whole cell, assuming zero flux on
the lateral boundaries of the cone. This is a reasonable
approximation if one assumes that the conical subdomain
(which, typically, will have from 15 to 45 channel pores) is
embedded in a larger submembrane region where the chan-

nels are more or less uniformly distributed. In such a case,
one can always find, approximately, a conical boundary
with zero flux. When a spherical cell with uniformly dis-
tributed channels is considered, the conical section should
reach the center of the cell.

The selection of such a geometrical configuration con-
siderably relaxes the assumption of symmetry around a
channel pore assumed by Klingauf and Neher (1997) and
thus allows us to consider randomly but uniformly distrib-
uted channels or channel clusters, not necessarily regularly
distributed.

We take a conical section withR 5 5 mm of depth and a
base with radiusr 5 1 mm (Fig. 1), and we assume that the
net flux of ions and mobile buffer molecules is zero on the
lateral side of the cone. The conical section would reach the
center of a typical pancreaticb-cell. We approximate the
spherical cell membrane by a plane surface (upper side of
the cone), discarding negligible curvature effects (its surface
increases by only 1% when curvature is considered).

A 3-D and orthogonal grid mapping the conical section is
considered, with length of the sidesDl 5 0.105mm (see Fig.
1). The total number of cubic compartments is 4450, 253 of
which are located at the upper slice of the cone (submem-
brane domain); the number decreases until the greatest
depth is reached, at the vertex of the cone, where there is
only one compartment.

On the upper side of the cone we distribute the channel
pores uniformly and randomly. Because of the assumption
of symmetry needed to balance the number of ions on the
fictitious walls of the conical subdomain, the distribution of
channels (or channel clusters) should preferably not break
the (approximate) uniformity in the surface distribution.

FIGURE 1 Conical domain considered for the simulation. The dots
represent the calcium channels.

14 Gil et al.

Biophysical Journal 78(1) 13–33



The typical number of calcium channel pores ranges from
15 to 45, corresponding to a density of channels ranging
from 5 to 15 pores permm2, which seems to be in the range
of physiological values (Klingauf and Neher, 1997).

Notice that when a cell of radiusR 5 5 mm with uni-
formly distributed calcium channels is considered, the rela-
tion between the whole-cell current (Iwc) and the incoming
current for our conical domain (Id) is given by the ratio of
the surface of the submembrane domain over the surface of
the whole cell, that is,Id/Iwc 5 r2/(2R)2 5 1022. In our
simulations, we always refer to the domain current (Id); the
whole-cell current would be a factor 100 larger in the
situation described.

Diffusion

The 3-D diffusion of ions and mobile buffers is modeled as
a random walk process. During every time stepDt and for
each dimension, a particle has a 50% chance of remaining in
its initial position and a 25% chance of moving in either the
positive or the negative direction.

The time step corresponding to such probabilities is given
by the relation (Kruk et al., 1997)

Dt 5 ~Dl!2/4D 5 12.5ms, (1)

whereD 5 220mm2/s the diffusion coefficient for Ca21 in
cytoplasm (Allbritton et al., 1992). To model 3-D diffusion
we have to take into account the probability of staying in the
same cubic compartment of the grid and the probabilities of
moving to the surrounding 26 cubic compartments (Fig. 2).
After each diffusional time intervalDt we decide the fate of
each ion with the probabilities of staying or moving in each
compartment of the grid as described in Fig. 2.

Depending on the mobile buffer considered (EGTA,
Fura-2, etc.), the corresponding diffusion coefficient can be
typically about two to five times smaller than that for Ca21,
so that the characteristic diffusion times are about two to
five times bigger. Thus the diffusion of buffer particles can
be simulated by moving them in exactly the same way that
Ca21 ions are moved, but only after two to five simulation
steps (Kruk et al., 1997). By simply tuning the probabilities
of staying or moving for the buffer particles we could also
account for noninteger ratios of diffusion coefficients; how-
ever, given the considerable uncertainties in the actual val-
ues of diffusion coefficients in cytoplasm (Klingauf and
Neher, 1997), considering integer ratios seems to be
enough.

Typically, the total number of buffer molecules per com-
partment in our simulations is as “large” as 300. Thus to
save time it is convenient not to select the next position of
each of them, but to redistribute the bulk of buffer particles
according to the probabilities of going to the different 27
positions (see Fig. 2). When we haveN . 64 buffer parti-
cles to diffuse, we takeN 5 64c 1 R, with R , 64 (c and

Rare integers). Then we consider the “bulk” diffusion of the
64c buffer particles according to the following distribution:

c buffer particles for each corner of the cube
2c buffer particles for each middle point of an edge
4c buffer particles for each center of a side
8c buffer particles in the center of the cube,

and we decide probabilistically the position of the remain-
ing R particles according to the probabilities in Fig. 2.

For the free calcium ions, given the number of incoming
ions and the moderate expected rise of free calcium (for
instance, for 10mM there are seven ions per compartment in
average), the bulk redistribution is absent on most occasions
and only the probabilistic selection comes into play. This
fact suggests that, for the size of the grid considered, the
calcium diffusion is better described probabilistically.

Of course, we must also consider the reflection in the
boundaries of the subdomain. This effect is taken into
account by rejecting those events that result in the position-
ing of a particle outside the subdomain; in other words,
when a particle encounters a wall, we do not move it until
the next diffusion time step (in case this further step takes
the ion inside the conical subdomain).

The reflection takes place both in the physical upper
boundary (cell membrane) as well as in the fictitious walls
(lateral side of the cone); reflection in this last case is
equivalent to considering that the number of outgoing par-
ticles equals that of incoming ones.

FIGURE 2 Probabilities for a particle in the center of the cube (corre-
sponding to a given compartment of the grid) of staying in this same
compartment or moving to a neighbor compartment in a 3-D random walk
step. Notice that each vertex, middle point of an edge, center of a side, or
center of the cube in the diagram corresponds to a given cubic compart-
ment of the grid.
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Incoming Ca21 current

As previously commented, the value of the whole-cell cur-
rent Iwc is on the order of 100 times the domain current,
considering a spherical cell of radiusR 5 5 mm with
uniformly distributed calcium channels.

Typically, for a current ofId 5 10 pA the number of ions
entering the subdomain would be;400 ions per unit of
diffusion time (12.5ms). Thus, for a density of channels
rcha 5 15 channels/mm2, corresponding to 48 channels for
the conical domain, the unitary current will be;200 fA,
corresponding to an approximate number of two ions per
channel every 3ms.

We adopt a simple scheme for simulating the entry of
ions. We consider a pulse with a given initial current,
typically Id 5 2–10 pA in the conical domain, and decreas-
ing exponentially. We take

I 5 Id
0e2t/t, 0 # t # T (2)

and I 5 0 if t . T. We will also consider constant pulses.
Among other selections, in our simulation we use the

valuesId
0 5 10 pA, t 5 20 ms,T 5 50 ms, which corre-

sponds to a time-averaged current^Id& 5 3.7 pA and a
unitary current of 76 fA, within the range of physiological
values (Klingauf and Neher, 1997).

At each simulation time step, the number of incoming
ions is evaluated using the exponential (or any another
selection), and then the entries are randomly selected from
among all available channels. In this way, the number of
ions entering through each pore is obtained and the number
of free calcium ions in the corresponding compartment
beneath the pore is incremented.

This description of the incoming calcium current implies
a spatial discretization of the entry points, which, as we
have already pointed out, considerably relaxes the assump-
tions on the symmetry of the distribution of calcium chan-
nels. However, it is well known that calcium channels open
and close stochastically, so that, for a more realistic descrip-
tion of calcium currents, a discretization in time, consider-
ing open/close probabilities for the channels, would be
desirable. The time dependence of the calcium current is
determined by the variation of the open/close/inactivation
probabilities for the calcium channels. Nevertheless, as
commented by Klingauf and Neher (1997), channel gating
can be expected not to be of importance for the understand-
ing of the (relatively slow) secretory response of neuroen-
docrine cells. On the other hand, it is likely that fluctuating
channels could be important in the study of neurotransmitter
release or, in general, in the investigation of rapid responses
to calcium signals.

Our Monte Carlo simulation naturally allows a stochastic
time description of the calcium current, and as an illustration
we will present an example showing the effect of channel
gating (see section Channel gating: a simple model).

The opening and closing of calcium channels is modeled
as a Markovian process: given the mean open (to) and
closed (tc) times for the channels, we first select probabi-
listically the initial state of the calcium channels with prob-
abilitiesPo 5 to/(to 1 tc) of being initially open andPc 5
1 2 Po of being initially closed. Then, for each closed
channel we choose the time it will remain closed, using an
exponential distribution with expected valuetc (we proceed
similarly with the open channels). After the time for a
channel to remain closed has expired, the channel opens and
we decide the time it will remain open (and similarly for the
transitions open3 closed).

We are not considering inactivated states; nor are we
taking into account the possible variation of the open/closed
(and inactivation) times. The study of the dynamics of
calcium channels and its dependence on voltage, inactiva-
tion by [Ca21], and so on lies beyond the scope of this work
and deserves a separate analysis.

Kinetics

During each diffusional time stepDt and in each compart-
ment of the grid the kinetic equations that describe the
buffering processes are applied and the calcium and buffer
concentrations evolve. In terms of concentrations, one can
describe the first-order kinetics of the process

@Ca# 1 O
i

@Bi#º O
i

@CaBi#

by the system of equations

5
d@Ca#

dt
5 O

i

$k2
i @CaBi# 2 k1

i @Ca#@Bi#%

O
i

d@Bi#

dt
5

d@Ca#

dt
;

d@CaBi#

dt
5 2

d@Bi#

dt

(3)

wherek1
i is the forward binding rate for the bufferi andk2

i

is the unbinding rate.
We take the values of the kinetic constants from Klingauf

and Neher (1997), except for the endogenous buffer. We
only consider two buffering systems (as in Sala and Her-
nández-Cruz, 1990; Nowycky and Pinter, 1993): an endog-
enous fixed buffer (500mM), with the kinetic constants
given by Klingauf and Neher (1997), plus an exogenous
(and mobile) buffer (Fura-2 or EGTA). Of course, we could
have included more buffering systems, but we preferred to
keep the model within the minimum number of parameters,
given the considerable uncertainties in the kinetic constants
for the buffers (in particular for the endogenous buffer(s)).

Because the simulation is performed in terms of the
number of ions and buffer molecules, we adopt the first-
order kinetic equations in terms of the number of particles
of each species in each small cubic compartment of the grid.
In terms of the number of free calcium ionsNCa, free buffer
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moleculesNBi
, and bound buffer moleculesNCaBi

, Eq. 3
reads

5
DNCa 5 O

i

$_2
i NCaBi 2 _1

i NCaNBi%

NCaBi 1 NBi 5 NBi
T ; O

i

NCaBi 1 NCa 5 NCaT
(4)

whereNBi

T represents the total (free1 bound) number of
buffer particles of typei, NCaT is the total number of calcium
ions, andDNCa represents the variation of free calcium ions
in a given cubic compartment during a time interval dt [
Dt/n. _1

i , _2
i are defined below.

To integrate the kinetic equations we subdivide the inter-
val Dt into n subintervals of length dt, evaluating probabi-
listically the changes in the free calcium and the free and
bound buffer concentrations for each dt. During the inte-
gration of the kinetic equations inside each time intervalDt,
the total (free1 bound) number of buffer particles of type
i and the total number of calcium ionsNCaT remain constant.
These numbers can only change because of diffusion, which
is taking place for eachDt (. dt).

The effective constants_2
i and _1

i for binding and
unbinding in each time interval dt are given by

_2
i 5 k2

i
Dt

n
; _1

i 5 k1
i

Dt

nV
(5)

whereDt is given by Eq. 1,n is the number of subdivisions
of the intervalDt used to integrate the kinetic equations, and
V is the volume of each cubic compartment.

Starting from the initial conditions forNCa, NBi
, andNCaBi

and choosingn large enough (dt small enough), one can
obtain the finalNCa after each interval dt. Not only the
number of calcium ions is required; the changes in the
number of free and bound buffer molecules must also be
evaluated in each iteration of Eq. 4 and actualized for the
next step dt. Because the effects of binding and unbinding
for the two buffer species are coupled, the solution to the
safe integration of Eq. 4 seems to consist of taking a very
small dt and splitting Eq. 4 into different equations for each
of the effects (binding-unbinding) and the buffers. Indeed,
for small enough dt the small variations due to each of the
effects (binding/unbinding) and buffers should have a small
impact on the rest. However, given the small number of ions
and buffer molecules in each compartment (in particular, the
almost nonexistent Ca21 before influx), the variations in
each dt could be too small to record any single change when
DNCa is considered to be an integer number and finite
differences are used to integrate Eq. 4. In fact, using finite
differences implies thatDNCa (andNCa, NBi

, etc.) is a real
and not necessarily integer number. In other words,DNCa,
NCa, etc., should be interpreted as average values (or ex-
pected values); in this way, a macroscopic description in
terms of concentrations (Eq. 3) would be equivalent to Eq.
4. However, given the small number of ions and buffer

molecules per compartment of the grid, the more straight-
forward interpretation ofNCa, NBi

, etc., as actual numbers of
ions and buffer molecules in a given compartment of the
grid is a feasible one.

To implement such a microscopic interpretation, one
should describe the system probabilistically, evaluating the
probabilities associated with each of the processes and
generating events according to such probabilities.

Taking a large enoughn one can then split Eq. 4 as
follows.

Binding: For each buffer speciesi one can write the
variation in Ca21 ions (DiNCa) due to binding with such
buffer speciesi as

DiNCa

NCa
5 2_1

i NBi (6)

which in terms of the binding probability means that each
Ca21 ion has a probability

Pb
i 5 _1

i NBi ,, 1 (7)

of being bound by any of theNBi
free buffer molecules

during the time dt. Such binding probabilities can change
after each step dt because the number of free buffer mole-
culesNBi

can vary.
Unbinding: On the other hand, bound buffer molecules

can suffer unbinding and increase the number of calcium
ions by the amount_2

i NCaBi
; but this variation equals

2DNCaBi
, so that

DNCaBi

NCaBi

5 2_2
i ; (8)

in other words, each bound buffer particle of typei has a
probability

Pu
i 5 _2

i (9)

of becoming unbound in the interval dt. Notice that the
unbinding probability is constant in time, in contrast to the
binding probability (arising from the nonlinear terms of the
system of equations).

Restrictions: During each diffusional time step, the total
number of calcium ions (bound1 free) or buffer mole-
cules (bound1 free) of each kind is held constant in each
compartment.

After evaluating the probabilities of binding or unbinding
in a time dt, one can decide the number of ions that undergo
any of the processes described. Given a probabilityp for
each ion to be bound (or for a buffer molecule to become
unbound), the probability for the binding ofk ions of a total
of N ions (or unbinding ofk buffer molecules of a total of
N bound buffer molecules) in a time interval dt is given by
the binomial distribution

P~k; p, N! 5 SNkDpk~1 2 p!N2k (10)

Simulation of 3-D Buffered Ca21 Diffusion 17

Biophysical Journal 78(1) 13–33



Then we can select the number of ions and buffer mole-
cules that become bound or unbound in each time interval dt
according to the binomial distribution (for algorithms to
generate random deviates that follow binomial distributions,
see, for instance, Press et al., 1992, pp. 285–286).

To safely integrate the kinetic equations, a large enough
n is selected for every diffusion timeDt. Such a valuen is
evaluated every time and for each compartment before the
kinetic equations are integrated. Therefore, the effective
constants_2

i and _1
i can be different at different time

intervals of the simulation, though keeping the same ratio.
The selection of the appropriate number of subdivisions of
the interval is made by requiring that all binding (and
unbinding) probabilities are smaller enough than 1; that is,
we set n by bisectioning the interval as many times as
required to fulfill the inequalities:

Max~Pb
i , Pu

i ! , Pmax, i 5 1, 2 (11)

Let us stress that this subdivision is performed locally, both
in time (at each diffusion time step) and in space (at each
compartment of the grid).

Numerical experiments suggest thatPmax 5 0.1 is a safe
selection that guarantees proper convergence of the method.
Indeed, we do not find any changes in our results by limiting
the probabilities by smaller values ofPmax.

In summary, we have considered that, in each time inter-
val Dt, each bound buffer molecule has a constant proba-
bility of becoming unbound while each free calcium ion has
a probability of becoming bound, by a given buffer species,
proportional to the number of free buffer molecules in a
region surrounding the calcium ions (in our simulation, a
compartment of the grid). The differential equation (Eqs. 3
and 4) can thus be interpreted as giving statistical averages
for the variation of the number calcium ions. In the Monte
Carlo simulation we stay at the probabilistic level. The
interval Dt is divided inton subintervals dt 5 Dt/n in such
a way that all probabilities are small enough. The number of
calcium ions that become bound in each interval dt or
become unbound is evaluated using the corresponding prob-
abilities and following the distribution in Eq. 10.

The algorithm gives priority to the fastest effects during
eachDt (a waiting time can be considered as done when the
buffers are diffused). For instance, unbinding is normally so
slow that the probabilistic selection of the number of buffer
molecules that undergo unbinding can be made at the end of
each intervalDt and not necessarily each dt # Dt. In case
two or more effects have the same priority in a given time
dt, the order in which they act is generated considering
equal probabilities for those effects.

Initial conditions

Initially, we consider the number of Ca21 ions and buffer
molecules needed to achieve equilibrium for each of the

buffer species; in each compartment the condition of equi-
librium is given by

_2
i NCaBi 2 _1

i NCaNBi 5 0 3 NBi 5
NBi

T

~_1
i /_2

i !NCa 1 1
(12)

whereNCa should be understood as the average number of
ions in each compartment of the grid. Assuming that the
initial concentration of free Ca21 is the basal concentration,
[Ca21] 5 0.1 mM, which is equivalent to only 310 ions in
the whole conical subdomain and 0.07 ions per compart-
ment, Eq. 12 can only be interpreted as giving the average
number of free and bound buffer molecules in each com-
partment. As the expected average number of Ca21 ions in
each compartment is by far smaller than 1, locally (in each
compartment) there is no possible equilibrium; however, in
the whole conical subdomain, equilibrium exists. Of course,
because we are following the fate of each ion, there can be
one or more ions in each compartment or none at all, but
never fractional values.

Regarding the buffers: the typical concentration consid-
ered for the fixed endogenous buffer will be 0.5 mM, which,
in terms of the number of molecules, means;350 buffer
molecules (free1 bound) in each compartment.

These estimations clearly suggest that, at the beginning of
a Ca21 pulse, starting from the basal concentration for free
Ca21, there is no way local equilibrium of Ca21 with the
different buffer species can be reached in each compartment
of the grid. Equilibrium has to be interpreted as an average
over the whole conical domain, regardless of how fast the
binding/unbinding of each buffer species takes place. Only
when the number of Ca21 ions is large enough could local
equilibrium possibly be found. Therefore, the assumptions
of the rapid buffer approximation (RBA) are not expected to
be met on the submicron scale at short times after the
beginning of a pulse; however, RBA succeeds in estimating
local average concentrations for fast in-mobile buffers, as
we will later discuss.

As input data, we consider the basal concentration of
calcium and the concentration of the different buffer species
as given in Table 1. We distribute the corresponding number
of Ca21 ions and buffer molecules (free and bound) ran-
domly and uniformly in the conical subdomain. This is the
starting point of our Monte Carlo simulation.

Sequence of the simulation

The sequence of the simulation is carried out as follows.
Presimulation: The number of ions and buffer molecules

given by the equilibrium conditions are distributed ran-
domly and uniformly along the conical domain. To ensure
that global equilibrium is reached, the distributions of ions
and buffers develop during 1 ms according to the kinetic
equations; during this presimulation lapse all channels re-
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main closed. The system follows its course by means of the
same procedures that apply to the actual simulation (except
the entrance of ions).

Simulation: For each simulation step, the following ac-
tions are taken and repeated in this same order until the end
of the simulation.
Entry of ions: The incoming calcium flux is modeled as
previously discussed. On most occasions, except when ex-
plicitly stated otherwise, the time dependence of the Ca21 is
varied continuously according to an exponential decay.

Kinetics: The binding and unbinding are calculated in
each compartment, following the previously discussed
scheme.

Diffusion of Ca21: Ca21 ions and mobile buffers are
diffused by using the previously discussed random walk
scheme. As we mentioned before, diffusion of buffers is
delayed with respect to ions, that is, we diffuse the mobile
buffers (assuming the ratio of diffusion coefficients isk)
after k diffusion cycles have been completed.

RESULTS AND DISCUSSION

In the following, we discuss the effect of the different
parameters involved in the simulation. Unfortunately, there
is considerable uncertainty as to the actual values of the
physical constants describing the endogenous buffers (Klin-
gauf and Neher, 1997; Xu et al., 1997; Naraghi and Neher,
1997). However, our simulation, being valid quite indepen-
dently of the possible values, can be used safely to study the
tendencies when the parameters are varied.

To illustrate the kind of results that can be obtained from
our Monte Carlo method, we adopt as standard values those
given by Klingauf and Neher (1997) for chromaffin cells.
These values, together with the rest of the parameters of the
simulation, are summarized in Table 1. We will vary these
values to study the effect of the parameters defining the
model.

We will show the time courses for free calcium, endog-
enous (fixed) buffer, and exogenous (mobile) buffer corre-
sponding to short pulses with a duration of 50 ms and
different shapes and total currents. Although the simulation
is carried out in terms of the numbers of calcium ions and
buffer molecules, the results are presented in terms of more
easily readable concentrations. However, the fact that we
are dealing with a discrete stochastic simulation that moves
particles becomes apparent in the dispersion observed when
we plot the data generated by the simulation (every 12.5
ms). Each such point corresponds to the concentration at a
given time step of the simulation; the number of each type
of particle in any given compartment of the grid suffers
stochastic fluctuations but gives overall smooth variations
when average values are considered. The Monte Carlo sim-
ulation not only gives average values for concentrations but
also shows the uncertainty of the simulations. The time
fluctuations can be interpreted as dispersions in the concen-

trations when results averaged over time intervals are con-
sidered, possibly limited by the temporal resolution of a
given experiment (which is expected to be larger than the
time step of the simulation).

To display our results, we consider two kinds of presen-
tation. The most immediate one consists of directly showing
the output of the simulation, with the appearance of scatter
plots; the second presentation consists of averaging the time
courses (with binning of 10 points) and giving the average
value and, eventually, error bars (22 s confidence level).
We choose the first kind of presentation when considering
local studies and the second one for showing data averaged
over given regions.

Dependence on the intensity of the Ca21 current:
saturation levels

Fig. 3 A shows the free Ca21 concentrations for the values
listed in Table 1 with varying initial domain currentsId

0 and
considering Fura-2 as an exogenous buffer. We consider a
current given by Eq. 2, witht 5 20 ms,T 5 50 ms, andId

0

5 10, 5, 2.5 pA. Fig. 3,B andC, shows, respectively, the
concentration of free endogenous buffer and exogenous
buffer (Fura-2). All of the figures show the averages over
the submembrane domain; that is, the results are averages
down to 0.105mm . 100 nm of depth.

The selection of an exponentially decaying pulse for the
simulation is only one possibility among many others. It has

TABLE 1 Parameters used in the simulation

Geometrical parameters
Radius r 5 5 mm
Length of the grid Dx 5 0.105mm

Calcium current parameters
Incoming current I 5 Id

0e2t/t t # T
Id
0 5 10 pA (p)

t 5 20 ms (p), T 5 50 ms
Density of Ca21 channels rcha 5 15 mm22 (p)

Kinetic parameters
Calcium

Basal concentration [Ca21]0 5 0.1 mM
Diffusion coefficient DCa 5 220 mm2/s

Endogenous buffers
Total concentration [B]5 500 mM
Forward binding rate k1 5 5 3 108 M21 s21 (p)
Dissociation constant KD 5 10 mM (p)

Exogenous Buffer
Fura-2

Total concentration [Fura-2]5 100 mM
Forward binding rate k1 5 5 3 108 M21 s21

Dissociation constant KD 5 0.24 mM
Diffusion coefficient DFura 5 50 mm2/s (p)

EGTA
Total concentration [EGTA]5 1 mM
Forward binding rate k1 5 1 3 107 M21 s21

Dissociation constant KD 5 0.15 mM
Diffusion coefficient DEGTA 5 200 mm2/s (p)

The parameters marked withp are varied in the simulation.
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the theoretical benefit that, as our results will show, the
Ca21 concentration near the membrane peaks before the
pulse ends. This fact is interesting when different time
courses for different kinetic parameters are compared. Con-
stant intensities (as in Sala and Herna´ndez-Cruz, 1990;
Nowycky and Pinter, 1993; Klingauf and Neher, 1997) will
also be considered.

In Fig. 3 A one observes that the free calcium concentra-
tion is far from responding linearly when currents in the
range of 5–10 pA are considered; in fact, a reduction by a
factor of 2 in the incoming current involves a reduction by
a factor of 4 in the increase of free Ca21. This fact can be

understood by looking at Fig. 3C: for 10 pA the exogenous
buffer saturates rapidly and then the increase in [Ca21]
becomes faster. Under such saturation conditions, the
[Ca21] can be expected to depart from the linearized buff-
ered approximation (Naraghi and Neher, 1997), which as-
sumes low variations of buffer concentrations. For lower
currents the response of Ca21 gradually becomes more
linear, as can be seen by comparing the rise of [Ca21] for
incoming currents of 5 pA and 2.5 pA; observe also that
Fura-2 does not saturate for such currents.

The effect of the exogenous buffer saturation is also
shown in Fig. 3D, where the [Ca21] time course (without

FIGURE 3 Effects of the amplitude of the incoming current on the average concentrations of free calcium and free buffer molecules at depths between
0 and 100 nm. Average values with binning of 10 points, corresponding to time intervals of 103 12.5ms, are shown. Error bars (2-s confidence level)
for some selected points are displayed for the [Ca21] time courses; the uncertainties for the buffer time courses are small (lower than 1%), and they are
not shown. (A) [Ca21] time course (with 100mM Fura-2 added) and for three different exponential currents (see Table 1):Id

0 5 10, 5, 2.5 pA. (B) Time
course for the free endogenous buffer for the same conditions ofA. (C) As in B, for the time course of Fura-2. (D) As in A, without Fura-2.
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Fura-2) is plotted. As can be seen in the figure, the nonlinear
effects shown in Fig. 3A have now become attenuated.

Notice also the steep decrease in free Fura-2 concentra-
tion (Fig. 3C), in contrast to the smoother relative variation
of endogenous buffer concentration (Fig. 3B). The endog-
enous buffering system rapidly becomes accommodated to
the concentration of free Ca21, as can be inferred by notic-
ing that [Ca21] and [Bendo

free ] follow a similar pattern of
temporal variation (compare Fig. 3,A andB); [Bendo

bound] also
demonstrates this pattern (not shown), reaching its maxi-
mum when [Ca21] does. In contrast, the exogenous buffer
is not able to keep track of the rapid variation in [Ca21]
(Fig. 3 C).

Shape of the Ca21 current

Let us now briefly discuss the importance of the shape of
the calcium pulses. Until now, we have chosen an exponen-
tially decaying current as described in Eq. 2, witht 5 20 ms
andT 5 50 ms, which forId

0 5 10 pA gives a time-averaged
current^Id& 5 3.7 pA. Let us compare such a result with the
corresponding one for a constant pulse with a same duration
T 5 50 ms and a same total influx charge; that is, we take
I 5 3.7 pA for T , 50 ms, and we switch off the pulse at
T 5 50 ms. The comparison between the result of these two
different pulses is shown in Fig. 4,A and B (considering
Fura-2), and Fig. 4C (for EGTA).

Fig. 4A shows the average calcium concentrations, vary-
ing in time, for the submembrane domain (0–100 nm). After
the pulse has been disconnected, one can observe that the
same equilibrium is reached for both the exponential and the
constant pulses, which clearly indicates that the same
amount of Ca21 ions has entered the cell, and thus the same
whole-cell equilibrium has to be reached. However, for the
exponential pulse the peak is reached at;20 ms, while the
concentration for the constant pulse (slightly larger in the
peak) increases steadily until the end of the pulse (50 ms).
The importance of the shape of the macroscopic calcium
current becomes manifestly important in determining when
the peak is reached and, to a lesser extent, in determining
how high the peak is. Of course, as deeper regions are
considered (for instance, 300–400 nm, Fig. 4B), the peak
for the exponential current is delayed and approaches the
peak for the constant current. In any case, for determining
concentrations near the membrane a detailed simulation of
the calcium current seems to be necessary; not only it is
important to know the magnitude of the current, but a good
description of the shape of the current is also needed. This
will be the subject of further study.

Ca21 concentrations as a function of depth

In Fig. 5 A, we can observe the Ca21 concentrations at
different depths. Notice how, as expected, the increase in

[Ca21] becomes smaller as the depth grows. In addition, the
[Ca21] peak becomes more delayed as deeper regions are
considered. As we go deeper into the cell, the peak of
[Ca21] begins to disappear. In such deep regions, Ca21 ions
arrive with considerable delay, and the Ca21 concentration
increases steadily to reach the values given by the equilib-
rium in the whole subdomain.

In Fig. 5 the calcium and free buffer time course for an
exponential pulse (Id

0 5 10 pA, t 5 20 ms,T 5 50 ms) and
a total simulated time of 1 s are shown. As can be observed,
the concentrations at different depths tend to the same value
as the time elapsed becomes longer. Notice, however, that
for such “long times” the effect of extrusion of Ca21 should
be noticeable. We have not implemented this effect in our
simulation because we are mainly concerned with the study
of calcium time courses in time intervals on the order of
50–100 ms. The results shown for times of;1 s, without
extrusion, will be used in Appendix A to show that our
simulation converges properly at long times. We will show
that the final concentrations are in full agreement with the
solution of the reaction diffusion problem at long times.

The average values for different depths (Figs. 4 and 5)
display the behavior described by Sala and Herna´ndez-Cruz
(1990) and Nowycky and Pinter (1993). However, such
values are not sufficient to explain the secretory response of
cells to calcium influx: as discussed by Klingauf and Neher
(1997), the study of submembrane gradients is essential. For
such a purpose, the versatility of the Monte Carlo simulation
is very useful. We will consider such gradients later. First,
let us study the validity of the RBA, focusing on the
submembrane domain.

Study of local equilibrium and the RBA
hypothesis

Let us consider the following four different kinds of sub-
membrane compartments:

1. Type A: Compartments beneath a channel pore with an
extra neighbor pore

2. Type B: Compartments beneath a pore with no extra
neighbor pores

3. Type C: Compartments not corresponding to a pore but
with a neighbor compartment having a pore

4. Type D: Compartments that have no pore and no neigh-
boring pore

Such characterization of the submembrane compartments
enables us to study the local equilibria of the buffering
systems with the calcium ions. The percentage deviation
from equilibrium of a given species of buffer (i) at given
time (and spatial location) reads

devi 5 100S1 2
@Bi#

@Bi
0#D (13)
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where [Bi
0] is the concentration of free bufferi that would be

in equilibrium with the calcium concentration [Ca]. By con-
sidering the equilibrium equationk1[Ca][Bi] 2 k2([Bi

T] 2
[Bi]) 5 0, Eq. 13 can be rewritten in terms of the concentration
of free buffer, total buffer, and free calcium. To study the local
equilibrium in the different types of compartments (k 5 A, B,
C, D), we use Eq. 13 in terms of the number of free calcium
ions and buffer molecules:

devi
k 5 100S1 2

NBi

k

NBi
T

k F_1
i

_1
i

NCa
k

Ncom
k 1 1GD (14)

whereNBi

k , NBi
T

k , andNCa
k represent, respectively, the number

of free endogenous buffer molecules, total (free1 bound)
endogenous buffer molecules, and free Ca21 ions, summed
over all of the compartments of the kindk (k 5 A, B, C, D).
Ncom

k is the number of compartments of the typek. We apply
Eq. 14 to study local equilibrium for both the endogenous
buffer and the exogenous buffers; a negative deviation will
mean that there is an excess of free buffer molecules.

Fig. 6, A and B, shows that, regardless of the type of
compartment considered, the endogenous buffer reaches
equilibrium rapidly and “locally” (but averaging over ho-
mologous compartments); this fact suggests that RBA is
valid for such a rapid buffer, at least in the average over
compartments of the same kind. Notice, however, the dis-
persion in the plots, which becomes larger as the number of
compartments that enter into the average is smaller (A- and
B-type compartments). Such stochastic fluctuations will
have a larger impact on [Ca21] concentrations as lower
influx currents are considered. Let us stress again that for
typical free calcium concentrations of 10mM an average
value of around seven free calcium ions is to be expected in
each compartment of the grid; thus, for smaller concentra-
tions there are not enough free calcium ions to meet a stable
local equilibrium at scales on the order of 100 nm or
smaller. The hypothesis of rapid and local equilibrium for
the endogenous buffer is thus seen to be valid as an average
over homologous compartments, with typical deviations
larger as fewer compartments enter into the average and as
lower calcium concentrations and incoming currents are
considered. In Appendix B we will discuss how the finding
of average local equilibrium of the endogenous buffer is
explained by estimating the time the endogenous buffer
requires to reach equilibrium, starting from a situation away
from equilibrium.

Although equilibrium is reached locally, at least on the
average, in general there is no average equilibrium in the
whole submembrane domain; this is an effect of the discrete
distribution of ion channels that limits the validity of shell
models (which assume that Ca21 enters continuously all
along the cell membrane). In Fig. 6D, the equilibrium test
for the endogenous buffer was performed by counting cal-
cium ions and buffer molecules in the whole first slice of the
conical subdomain and for two different currents (Id

0 5 10,

FIGURE 4 Effects of the shape of the current. Average values with
binning of 10 points are shown with error bars (2-s confidence level) for
some selected points. (A) [Ca21] time course averaged down to 100 nm of
depth, considering an exponentially decaying calcium current and a con-
stant current (Fura-2 added). (B) As in A, but for depths between 300 and
400 nm. (C) As in A, but considering EGTA (parameters given in Table 1)
instead of Fura-2.
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5 pA). The observed displacement is in fact nothing but a
manifestation of the [Ca21] gradients along the submem-
brane domain (0–100 nm of depth). Such gradients are
believed to be fundamental to explain the secretory response
of neuroendocrine cells (release-ready granules are located
beneath the membrane). Notice that the higher the current
the more pronounced the deviation becomes at the begin-
ning of the pulse, which indicates that higher submembrane
gradients appear. Later, we will discuss such submembrane
gradients in more detail.

In contrast to the endogenous buffer, Fura-2 (with the
parameters from Table 1) is not “fast enough” to reach
“locally” instantaneous equilibrium. Initially, the exogenous
buffer deviates considerably from equilibrium, even in the
average over homologous compartments. Such local devia-
tion reflects the fact that Fura-2 (100mM) has relatively
slow kinetics, and it cannot account for all of the incoming
calcium current (see Appendix B for more details on equil-
ibration times and the RBA hypothesis). In addition, be-
cause Fura-2 is a mobile buffer, bound and unbound Fura-2
can approach the membrane coming from deeper regions,
changing the ratio of bound/unbound and hence displacing
equilibrium, especially when high [Ca21] gradients are
present. In this way, the mobility of Fura-2 helps to main-
tain and enhance the deviation of Fura-2 from equilibrium.

It is also worth noting that the kinetics of the endogenous
buffer affects the way Fura-2 deviates from equilibrium, as
shown in Fig. 6,E and F. The equilibrium condition is
shown for Fura-2; one can observe that displacement from
equilibrium changes considerably in the first 10 ms, chang-
ing KD (taking a fixedk2) for the endogenous buffer. The
free Ca21 concentration profiles, of course, become smaller
asKD is taken smaller (not shown). As expected, displace-
ment from equilibrium for Fura-2 persists even when the
endogenous buffer is not considered in the simulation (not
shown), because, as discussed in Appendix B (see also
Naraghi and Neher, 1997), the origin for such a displace-
ment is to be found in the relatively slow equilibration time
for Fura-2.

Equilibrium for Fura-2, particularly near the membrane,
was shown to depend strongly on the diffusion coefficient.
When we performed a simulation considering a buffering
system with the same properties as Fura-2, but taking a null
diffusion coefficient, we again observed an initial departure
from local equilibrium. However, in this case, equilibrium
for such a buffer was reached in less than 2 ms in the
presence of endogenous buffer (not shown).

FIGURE 5 Time courses (100mM Fura-2 added) at different depths
(0–100 nm, 100–200 nm, 200–300 nm, 500–600 nm, 1000–1100 nm) for
an exponential calcium current lasting 50 ms. A time interval of 1 s is
simulated. Averages with binning of 10 points are shown in the bottom-

figures, while in the top figures the direct output generated by the simu-
lation is displayed. (A) (Bottom) [Ca21] time courses at different depths.
The [Ca21] averaged over the whole conical domain is also shown. As the
depth becomes larger the rise in [Ca21] is smaller and the calcium peak is
delayed. (Top) detail for long times at 0–100 nm and 1000–1100 nm. (B)
As in A, for the free endogenous buffer. (C) As in A andB, for free Fura-2.
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Regarding EGTA, because this buffer is slower than
Fura-2 (see Appendix B) and it has a considerably larger
mobility, even more deviation from local equilibrium is
expected, as indeed happens (Fig. 6G). Considering a
buffer with the same properties as EGTA (Table 1) but with

a zero diffusion coefficient, we can see in Fig. 7D (as
happened with Fura-2 with the same change) that the initial
displacement from equilibrium is much smaller and has a
smaller duration compared to the real case in which EGTA
moves. It becomes clear that mobility is acting against local

FIGURE 6 Tests of equilibrium for the endogenous buffer as well as for Fura-2 (100mM). For every 10 steps of simulation the output given by the
simulation is plotted. (A) Deviation from equilibrium (in %) for the endogenous buffer forI0 5 500 pA and Fura-2 (100mM) added; the equilibrium is
tested both for A-type and B-type compartments (see text). (B) As in A, for compartments of type C and D. (C) Percentage deviation time course of the
exogenous buffer (Fura-2) with the conditions ofA andB. The deviation is tested for compartments of type A, B, C, and D; the largest deviations occur
for the compartments nearest the channels (A and B compartments, which are almost indistinguishable in the figure); the deviation for C-type is larger than
for D-type. (D) Percentage deviation from equilibrium of the endogenous buffer as an average at depths between 0 and 100 nm. Two incoming currents
are considered:Id

0 5 10 pA (largest deviation at small ts) andId
0 5 5 pA. (E) Deviation from equilibrium for Fura-2 in the first 15 ms of the pulse for

compartments of type B and two choices of the endogenous buffer kinetic parameters:k1 5 5 3 108 M21 s21, KD 5 10 mM, andk1 5 1 3 108 M21

s21, KD 5 50mM. The largest deviation occurs ask1 becomes larger (k2 is the same in both cases). (F) As in E, for compartments of type C. (G) Percentage
deviation time course of EGTA for compartments of type A, B, C, and D. For A and B compartments the deviation is the largest and the plots overlap;
the smallest deviation is for D compartments.
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equilibrium when concentration gradients are present; such
an effect is, of course, more important, as the buffer con-
sidered has slower kinetics.

Notice how EGTA approaches saturation levels when a
zero diffusion coefficient is assumed (Fig. 7C). When
EGTA is forced to be fixed in the simulation, no unbound
EGTA can approach, and, given the smallKD and k2 for
EGTA, it rapidly saturates near membrane.

Given that exogenous buffers are used as indicators of
[Ca21], the departure from equilibrium of exogenous buffer
concentrations indicates that the measurement of [Ca21] in
fluorescence experiments (assuming equilibrium of such
buffer with calcium) could grossly underestimate the actual
free calcium concentration (as suggested by Smith et al.,
1996). Indeed, the equilibrium test is displaced to negative
values, which shows that there is less exogenous bound
buffer than expected from equilibrium. Such displacement
is related to the previously discussed “blindness” of both
Fura-2 and EGTA to the calcium time course (Nowycky and
Pinter, 1993).

Mobility of buffers

In Fig. 7, A andB, the effect of the mobility of buffers on
the [Ca21] time course can be observed.

In Fig. 7 A, we consider the choice of parameters from
Table 1 for Fura-2 and the possibility of having a buffer
with the same parameters as Fura-2, except that its diffusion
coefficient is taken to be approximately equal to the coef-
ficient for calcium; the calcium peak is then observed to be
lower as the diffusion coefficient is taken to be larger. This
reflects the fact that Fura-2 can now transport calcium to
other regions much more rapidly because the diffusion
coefficient is larger. The effect of considering higher mo-
bilities is then to produce a more rapid washing out of the
regions of high Ca21 concentration. In Fig. 7B, we repeat
the simulation, but now for EGTA (with the values of Table
1). We also consider the possibility of having immobile
EGTA (zero diffusion coefficient), to show the effect of
mobility. As before, the calcium peak becomes smaller as
the mobility is higher.

As previously discussed, the mobility of buffers has a
considerable impact on the ratio of unbound to bound buffer
molecules, especially when high concentration gradients are
present (as happens at the start of the pulse). The relatively
slow exogenous buffers (Fura-2, EGTA) show larger devi-
ations from local equilibrium at the beginning of the pulse
as their mobility is taken higher (Fig. 7D). Notice, further-
more, that this fact can affect the saturation levels of the
buffer (Fig. 7C). Thus, if the mobility of exogenous buffers
was restricted in cytoplasm, the time course of the free
buffer could change considerably in the submembrane re-
gion, where high gradients appear.

FIGURE. 6 Continued.
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Submembrane [Ca21] gradients and dependence
on the density and distribution of
calcium channels

As was previously suggested (Klingauf and Neher, 1997),
submembrane gradients depend on the density and distribu-
tion of channel pores. One of the advantages of our Monte
Carlo simulation lies in the easy and natural implementation
of the entry of calcium ions through channel pores and the
flexibility with which one can distribute the calcium chan-
nels over the membrane. On the contrary, the solution of
differential equations can be a hard task when the boundary
conditions do not show some regularity or symmetry; be-

sides, there exists the intrinsic difficulty of describing dis-
crete entries for the calcium ions when continuous quanti-
ties (as concentrations) are being considered. Such a
difficulty becomes even greater if one wishes to discretize
the entry of calcium in time, that is, if one wants to consider
the probabilities of the opening and closing of the channels.
A Monte Carlo simulation is able to deal with such situa-
tions. However, although in reality channels open and close
stochastically, it is believed that this is not a major effect in
neuroendocrine cells (see Klingauf and Neher, 1997). Not-
withstanding, examples will be given for a simple model of
stochastic opening and closing of calcium channels.

FIGURE 7 Effects of the diffusion coefficient of buffers; averages with binning of 10 points are shown, except inD. (A) Averaged [Ca21] time course
considering two different diffusion coefficients for Fura-2 (DFura-25 42 mm2/s andDFura-25 200 mm2/s) at different distances from the pores (from top
to bottom: 0–100 nm, 100–200 nm, 200–300 nm). The uncertainties are similar to those displayed in Fig. 3A, and they are not shown here. (B) [Ca21]
time course averaged over the submembrane domain (0–100 nm), considering two diffusion coefficients for EGTA:DEGTA 5 200 mm2/s andDEGTA 5
0 mm2/s. (C) As in B, for the concentration of free EGTA. (D) Percentage deviation time course for free EGTA, considering the diffusion coefficients of
B andC. The test of equilibrium is performed over A-type compartments; the points plotted correspond to the output of the simulation (every 10 steps).
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At this stage, we keep to a continuous time description of
the calcium current and a discrete spatial treatment of the
influx that copes with different distributions of channels,
regularly distributed or not.

Let us now study the [Ca21] time courses, both as an
average over the submembrane domain (depth 0–100mm)
and at different locations in such subdomain. Let us con-
sider an incoming current given by Eq. 2 withId

0 5 10 pA;
thus, the time-averaged current per channel will be 76 fA for
a density of channelsrcha5 15mm22 (48 channels). Fura-2
(100 mM) will be the exogenous buffer.

Different distributions of channels with different densi-
ties, keeping the total current fixed, will be taken into
account. Together with the selection of our standard (Table
1) valuercha5 15 mm22, we will considerrcha5 5 mm22,
corresponding to 16 channels. In this last case, the unitary
current through each pore will be three times bigger. This
last distribution can also be interpreted as a distribution of
small groups of three channels, clustered in regions smaller
than 0.1053 0.105mm2, with a unitary average current 76
fA through each of the 48 channels. We also consider the
possibility of having the 48 channels clustered in groups of
four channels, giving rise to 12 clusters; we place each of
the four channels for each cluster in squares of side 23
0.105mm (one channel in each of the four compartments
forming such square). In all cases we distribute the location
of the channels or channel clusters randomly and uniformly
along the membrane of our conical domain, checking that
the resulting distributions are statistically representative and
approximately uniform. We do not allow overlapping of
channels or clusters (notice, however, that the casercha5 5
mm22 corresponds to the overlapping of three channels in a
region smaller than 0.1053 0.105mm2).

Fig. 8A shows the [Ca21] time course, averaged over the
submembrane domain, corresponding torcha 5 15 mm22

and rcha 5 5 mm22. Notice that the [Ca21] time course
averaged over the submembrane domain is very similar in
the two cases. When the distribution of 12 channel clusters
is considered, the resulting averaged [Ca21] is very similar
and lies between the two curves in Fig. 8A (not shown). As
a result, the average submembrane concentrations do not
depend crucially on the distribution of calcium channels,
which validates the use of radial models (Sala and Herna´n-
dez-Cruz, 1990; Nowicky and Pinter, 1993) to evaluate such
averages.

However, for the different types of submembrane com-
partments (Fig. 8,B and C), the differences in the [Ca21]
time course are evident whenrcha 5 15 mm22 (48 entries)
with rcha5 5 mm22 (16 entries) are compared, not surpris-
ingly, because, for a same total current, the Ca21 current
through each entry is larger when fewer entries are consid-
ered. As can be seen, the more pores a compartment has in
its neighborhood, the higher the [Ca21] peak is at the
compartment; besides, the [Ca21] is delayed when the com-

partment is located further off the pores, similar to what
happened when we considered averages at different depths.

From now on, let us interpret the casercha 5 5 mm22 as
the result corresponding to small clusters of three channels.
When compared with the time course forrcha 5 15 mm22

(in particular for B compartments), it becomes evident that
[Ca21] beneath each of these clusters cannot be obtained by
adding the [Ca21] due to each isolated pore. This fact
indicates that the system is far from being in a linear regime
(Naraghi and Neher, 1997). Such failure of the superposi-
tion principle can also be observed by comparing the cal-
cium time course for compartments A in Fig. 8D with the
time course for compartments B in Fig. 8B. Indeed, the free
calcium concentrations are smaller than those obtained by
summing the separate effects of the different channels form-
ing the cluster.

Further information can be obtained by comparing the
time courses for the three different distributions of channels.
First, let us observe that for A-type compartments the cal-
cium peak is higher for higher local concentrations of chan-
nels. The same is true for type B compartments (however,
there are no B compartments in the case of four-channel
clusters). Notice also (Fig. 8,B andC) that for each distri-
bution of channels, the calcium time course is very similar
for A-type and B-type compartments, and, in fact, such time
courses are almost indistinguishable in Fig. 8C. This means
that the [Ca21] in each compartment having a pore (or
several pores) depends mainly upon the current entering
into such compartments through the membrane and depends
little upon the entrance of ions through pores that are at
neighbor compartments (at an average distance of 100 nm).
In other words, the endogenous buffering system has
enough capacity to buffer most calcium ions within dis-
tances of;100 nm because it is still relatively far from
saturation (on the contrary, Fura-2 totally saturates before
10 ms below the pores in all of the cases shown). The slight
difference between type A and B in Fig. 8B (the difference
unobservable for Fig. 8C) is related to fine details of the
configuration of channels. Forrcha 5 15 mm22 (Fig. 8 B)
A-type compartments having two or more neighbor A com-
partments are quite probable, while forrcha5 5 mm22 such
configurations are infrequent and indeed do not happen in
our configuration; all A-type compartments happen to have
only one neighbor A compartment.

Interestingly, the similarity between A-type and B-type
[Ca21] time courses would drastically alter if the endoge-
nous buffer system approached saturation below the pores.
This effect can be observed when three-channel clusters (for
rcha 5 5 mm22) appear in three neighbor type-A compart-
ments, resulting in a total of nine channels in three neighbor
compartments (not shown). The free endogenous buffer
falls below 50mM at the calcium peak for such compart-
ments, and the concentration for A channels almost doubles
that appearing in Fig. 8C (not shown).
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When comparing the C-type calcium time courses in Fig.
8, B, C, andD, we again observe that the peak is higher as
the clusters have a greater concentration of channels; how-
ever, the difference between the different types of cluster-
ization is smaller than for the case of A and B compart-
ments. The difference between C-type and A,B-type is thus
larger as the degree of clusterization becomes higher. This
means that, as expected, the submembrane gradients become
higher as the channels are more concentrated in clusters.

With respect to D-type compartments, observe that the
[Ca21] time courses in Fig. 8,B, C, andD, are very similar.
The calcium concentrations at distances larger than 200 nm
from the pores depend very little on the actual distribution

of channel pores; however, it is clear that forrcha5 5 mm22

there will be D compartments farther away from any pore than
for the casercha5 15mm22. The concentration is liable to fall
to lower values and with higher gradients, starting from higher
values near the pores, as the degree of clusterization increases.
However, the overall values in the submembrane domain are
very similar in all cases (Fig. 8A).

Channel gating: a simple model

Finally, let us briefly discuss the effect of the stochastic
opening and closing of channels as an illustration of the

FIGURE 8 Effect of the density of channels. (A) Averaged [Ca21] time course (0–100 nm) forrcha 5 5 channels/mm2 andrcha 5 15 channels/mm2

(average values with binning of 10 points are shown). The [Ca21] plot for rcha 5 5 channels/mm2 peaks slightly before that forrcha 5 15 channels/mm2.
(B) [Ca21] time course at compartments of type A, B, C, D (from higher to lower concentrations) andrcha 5 15 channels/mm2. In this figure, as well as
in C andD, we show the direct output of the simulation each 10 steps of simulation. (C) As in B, for rcha 5 5 channels/mm2. A and B compartments are
indistinguishable in this case. (D) As in B, but for clusters of four channels (see text). In this case there are no B-type compartments.
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potential of our model. As discussed by Klingauf and Neher
(1997), the opening and closing of channels is not expected
to be of great relevance for secretion in chromaffin cells,
and the same is expected to be true for pancreaticb-cells.
However, although probably beyond the scope of the
present paper, we will show how one can, quite naturally,
take into account the stochastic character of the calcium
current. It is believed that the modeling of this effect can be
of importance in neurotransmitter release (Yamada and
Zucker, 1992), and future efforts will be in that direction.

The opening and closing of calcium channels is modeled,
as we explained before, as a Markovian process. A simple
simulation consisting of two-state (opened/closed) channels
with constant mean open and close times is considered.
Results will be shown for a mean open timeto 5 0.5 ms and
for two different selections of the closing timetc 5 0.5 ms
and tc 5 2 ms, which seem to be within the range of
physiological values for L-type calcium channels (Smith et
al., 1989). As before, we consider a density of channels
rcha 5 15 mm22, and we distribute the channels randomly
and uniformly. The unitary currents per channel and unit
time are fixed in such a way that their average over the
duration of the pulse is, approximately, 76 fA. That is, the
unitary current for the constant pulse is 76 fA, and for the
fluctuating current withtc 5 to, the unitary current is 23
76 fA during the time a channel remains open, while for
tc 5 4to the unitary current is 53 76 fA. In this way, one
can compare the [Ca21] time course for the constant pulse
(Fig. 4A) with 10 pA for the whole conical domain with the
time courses when opening and closing channels are con-
sidered. Let us consider a calcium pulse lasting 50 ms.

In Fig. 9 A we have a sample (from 30 to 50 ms) of the
calcium currents in the three cases studied; the number of
incoming ions (in the whole conical domain) per unit of
diffusion time is shown as a function of time. The currents
for tc 5 0.5 ms andtc 5 2 ms fluctuate around the constant
current, showing that approximately the same number of
calcium ions enter the cell during the calcium pulse. As
expected, fortc 5 0.5 ms the current fluctuates more
rapidly than fortc 5 2.0 ms. Higher peaks are reached for
tc 5 2.0 ms because a higher unitary current is considered
in this case to have a similar time-averaged current.

As can be seen in Fig. 9B, the calcium time course for
tc 5 0.5 ms oscillates around the values corresponding to
the constant current more rapidly than in the case of the
simulation fortc 5 2 ms. In addition, given that fortc 5 2
ms the current reaches higher peaks than fortc 5 0.5 ms,
the calcium time course shows larger departures from the
value for the constant pulse fortc 5 2 ms. We can see that

FIGURE 9 Effects of the opening and closing of channels; we show the
averages with a binning of 10 points. (A) Number of incoming ions during
each simulation time step (12.5ms) for three different selection of average
open and closed times:topen5 0.5 ms andtclose5 2 ms;topen5 0.5 ms

andtclose5 0.5 ms; all channels open (tclose5 0). (B) [Ca21] time course
at compartments of type A for the parameters ofA. (C) As in B, for the
average over the submembrane domain (0–100 nm).
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for the spatiotemporal resolution of our simulation, the
effect of opening and closing channels is to produce tran-
sient deviations from the simpler modeling of calcium in-
flux consisting of a uniform distribution of ions over the
randomly distributed entries.

In Fig. 9 C we compare the free calcium concentration
time courses, averaged down to 100 nm of depth, for the
three cases described. The average values show, as ex-
pected, that the fluctuations are softened as larger spatial
domains are considered. The main noticeable effect is that
the Ca21 concentration fortc 5 2 ms lies below the one
corresponding to the constant pulse and that, correspond-
ingly, the decline after the pulse is switched off is different.
This effect is due to the fact that, although the total incom-
ing calcium should be similar for the two cases, because of
the probabilistic nature of the opening and closing, they are
not necessarily equal. In other words, the difference be-
tween the result for the constant pulse and the pulse with
tc 5 2 ms is due to the finite size of our system, which
consists of 48 channels and a relatively short (50 ms)
fluctuating current.

The differences in the total number of incoming calcium
ions would be smaller (fixing the unitary currents to have
the same time-averaged unitary current) if the pulse lasted a
longer timeT and thento/T, tc/T became very small, if the
number of channels was larger, or in the case wheretc

became much smaller thanto; in connection with this,
notice that the difference with respect to the constant pulse
is smaller for the case wheretc 5 0.5 ms.

It is important to stress again that the results shown
correspond to a particular spatial distribution of channels
and to a particular stochastic calcium current. By perform-
ing several simulations, with different random sequences
for the Ca21 current, we observed, as expected, that the
number of simulations withtc 5 2 ms that gave average
(0–100 nm) calcium time courses above the constant cur-
rent [Ca21] time course tends to be equal to the number of
simulations below it. Furthermore, the peaks and valleys
observed change their position and intensity for different
randomly selected spatiotemporal configurations.

CONCLUDING REMARKS

We have modeled 3-D buffered diffusion of calcium ions,
using a random walk algorithm and a probabilistic interpre-
tation of the kinetic reactions. This is a safe interpretation,
even for low calcium currents and concentrations, and thus
seems appropriate for a microscopic description of the 3-D
buffered diffusion under physiological conditions.

Such a scheme enables us to study the influence of the
kinetic, diffusional, and geometrical parameters of the
model, considerably relaxing the assumptions about the
symmetry of the system that have been considered so far.
The flexibility of the simulation allows us, for instance, to
study submembrane calcium gradients for different config-

urations of channels that are not necessarily regularly dis-
tributed. In addition, the incoming calcium currents can be
discretized in time in such a way that channels open and
close with given probabilities. An example of such stochas-
tic description has been given that can serve in the future to
analyze the calcium transients in the vicinity of calcium
channels for realistic descriptions of channel dynamics.

Our method has enough generality to serve as a test for
other previous approximations, not necessarily in the con-
text of spherical neuroendocrine cells. For instance, we have
checked that radial (shell) models are appropriate for de-
scribing average calcium concentrations in the submem-
brane domain, at least for regions of 100 nm thickness. We
have also studied local equilibrium of the buffering systems to
test the RBA hypothesis (rapid buffering approximation), and
we have investigated the nonlinearity of the response to cal-
cium influx (testing the linearized buffering approximation).

Conclusions that can be drawn from our simulations are
as follows.

1. There is a highly nonlinear response of free [Ca21] at
buffer saturation levels; the response becomes more lin-
ear as the buffers are farther from saturation. For the
typical Fura-2 concentration (100mM), such a buffer is
seen to saturate in the submembrane region for domain
currents on the order of 10 pA.

2. The different shapes of the free calcium time course for
different shapes of the macroscopic incoming currents
with the same total influx of Ca21 suggest that a detailed
modeling of physiological calcium influxes can be im-
portant in understanding the secretory response of neu-
roendocrine cells.

3. For the standard values given by Klingauf and Neher
(1997), the endogenous buffer time course closely fol-
lows the shape of the free [Ca21] time course. This is
related to the fact that RBA for the endogenous (and
immobile) buffer considered here is a reasonable approx-
imation, at least as an average. However, both Fura-2
and EGTA (slower than the endogenous buffer and mo-
bile) are rather blind to the calcium time course. Given
that exogenous buffers are used as indicators of [Ca21]
in fluorescence experiments, this relative “blindness”
can be of experimental relevance, given that the assump-
tion of equilibrium usually considered will lead to an
underestimation of [Ca21]. Because the displacement
from equilibrium increases as the mobility becomes
higher, slowly moving buffers seem preferable.

4. The increase in [Ca21] due to a number of clustered
channels cannot be obtained by adding the effect of the
different (isolated) channels. Thus the superposition
principle is not valid in general, and the free calcium
concentration below a cluster ofN channels is smaller
thanN times the increase in [Ca21] below one isolated
channel.
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5. Larger free Ca21 concentrations are found near the ion
pores, with steeper gradients in the submembrane do-
main as the density of channels is taken to be smaller for
the same macroscopic (domain) current. When the chan-
nels form clusters, the gradients become steeper and the
calcium concentrations near the clusters become higher
as more channels are clustered in a smaller region. How-
ever, the [Ca21] time course, averaged over the submem-
brane region, is similar regardless of the existence of
clusters. Furthermore, the calcium time course averaged
over the submembrane regions at distances larger than
200 nm from the nearest pores is similar for different
clusterizations. Thus the effect of the presence of clusters
can affect the secretory response mainly when the dis-
tribution of secretory granules is correlated with the
distributions of calcium channels and clusters. Clusters
could facilitate secretion, given the appearance of higher
calcium concentrations near them. On the other hand,
nonclustered channels could give rise to a higher total
number of free calcium ions near the channel pores. As
a consequence, clusterization would be efficient for se-
cretion by the granules near the pores if a relatively high
threshold has to be surpassed to trigger secretion. A
contrary situation of no clusters would be more interest-
ing in a scenario where secretion by the granules near the
pores increases with total increasing free calcium below
the pores and the threshold to trigger secretion is low.
The possible advantage of clusterization fades away at
distances from the cluster larger than 200 nm.

APPENDIX A: PERFORMANCE AND VALIDATION
OF THE MONTE CARLO CODE

Our Monte Carlo code, written in Fortran 77, was run in a SUN Enterprise
3000 computer. For a run of 80 ms, the program typically spends 45 min,
depending on the parameters of the simulation. The program requires
moderate computational and storage requirements and can be run on a
personal computer. In a PC with a Pentium II (350 MHz) processor, an
80-ms simulation can be performed in;2 h and 15 min.

The different modules of the program have been both separately and
jointly validated. The main subroutines of the program are the subroutine
for 3D diffusion and the subroutine for the kinetics of the buffering system.
The subroutine for 3D diffusion was tested by checking that free diffusion
of particles (initially at a given compartment of a grid) resulted in Gaussian
distributions for each of the spatial dimensions, with widths correctly given
by the diffusion coefficient and the elapsed time. The algorithm for
simulating kinetics was tested for different values of the kinetic constants
and different initial concentrations by checking that equilibrium was rees-
tablished starting from concentrations far from equilibrium, and that once
it is reached, the equilibrium is stable.

For the full simulation, several validations were taken into account.
Among them are the following.

The gradients due to the discrete spatial distribution of entry channels
becomes less noticeable as deeper regions are considered, and the concen-
tration profiles tend to those predicted by shell models. The fast and fixed
buffering systems are found to be in local equilibrium with Ca21, while the
exogenous buffers are displaced from equilibrium at the start of a pulse;
this displacement is expected from qualitative arguments (see Appendix
B). The concentrations after the end of the pulse tend to the same equi-

librium values for any shape of pulse with the same total incoming number
of calcium ions.

We have performed additional tests to check that the code converges
properly at long times. We have performed simulations lasting 1 s for
different buffering systems and different calcium currents. In Fig. 5, the
results are given for a 1-s simulation consisting of an exponential pulse of
50 ms duration with 100mM Fura-2 added. We have checked that the
concentrations of total calcium (free1 bound) and total buffer molecules
are consistent with the initial conditions, and the incoming current and the
concentrations given by the simulations at 1 s agree with what is expected
from the equilibrium conditions once all gradients have disappeared.

The total concentration of calcium (free1 bound) in the whole conical
domain ([CT]) at the end of the pulse is easily obtained by adding to the
initial concentration of total calcium (obtainable from the initial concen-
tration of free calcium [Ca21] 5 0.1 mM and from the equilibrium
condition with buffers) the contribution given by the integration of the
incoming calcium current. For the parameters of the simulation shown in
Fig. 5, this calculation gives [CT] 5 219 mM, in full agreement with the
simulated result (218.5mM).

The concentration of free calcium at long times can be obtained by
considering that, because of diffusion, all gradients will have disappeared,
and then the system will be in global equilibrium. Indeed, we observe in
Fig. 5 that the different average concentrations for the free calcium [Ca] at
different depths converge to the same values at long times; the same is true
for the concentrations of free (or bound) buffers. Because [CT] is a constant
of movement (after the end of the pulse), the global equilibrium at long
times implies that

@CT# 5 @Ca#S1 1 O
i

@Bi
T#

KD
i 1 @Ca21#D (15)

where [Ca] is the concentration of free Ca21 in equilibrium with the buffers
i 5 1, 2, . . . , with total (fixed) concentrations [Bi

T] and dissociation
constantsKD

i .
For the case shown in Fig. 5, the solution of the third-degree equation

(Eq. 15) for [Ca21] gives the real solution [Ca]5 3.1 mM, in agreement
with the simulated result at long times. By using the equilibrium equations
it is straightforward to verify that the concentrations of free and bound
buffers are also correctly given by the simulation.

We have considered this kind of numerical check for different buffering
systems and for different calcium currents. With all of these tests, we have
full confidence in the correct performance of our algorithms.

APPENDIX B: ON TIME SCALES AND RBA

It is tempting to compare our results for the deviation from equilibrium
near the calcium channels with the time-scale hypothesis of RBA (Wagner
and Keizer, 1994), which serves to estimate the range of validity of such
approximations.

As discussed, RBA assumes that each buffering system is in local
equilibrium with calcium. Thus it is reasonable to think that RBA is a good
approximation when the characteristic times for the kinetic reaction of
Ca21 with the buffers are much smaller than the characteristic times for
diffusion. A key point then is to conveniently define such time scales.

To obtain a time scale for the kinetic reactions, let us consider the
kinetic equations for a single buffering system:

d@Ca#

dt
5 2k1@Ca#@Bi# 1 k2~@Bi

T# 2 @Bi#! (16)

and let us define a new variablea such that

@Ca# 5 @Cao# 2 a; @Bi# 5 @Bi
0# 2 a (17)
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where [Cao] is the calcium concentration in equilibrium with a free buffer
concentration [Bi

o]. Substituting Eq. 17 in Eq. 16 and considering the
equilibrium relation for [Ca0] and [Bi

o], we have

a~t! 5 a~0!e2t/te (18)

wherea ,, [Bi
T] 1 KD, with te 5 k1Bi

T 1 k2. This means that, if the
system is perturbed from equilibrium, it will come back to equilibrium after
a time on the order ofte (provided the deviation is not large enough to
oversaturate the buffer). Then we can callte the equilibration time and use
it as the characteristic time for the kinetics.

Notice that to obtain such a characteristic time a single perturbation
from equilibrium (a) has been considered; furthermore, we have consid-
ered only one buffer species.

For our selection of the kinetic parameters the following equilibration
times for the three buffering species considered are obtained:

tendo
e . 4 ms, tFura-2

e . 20 ms, tEGTA
e . 100ms

Such characteristic times explain the observed deviation from equilib-
rium at the start of the pulse for compartments below the pores. At the start
of the exponential pulse, with an initial domain currentId

0 5 10 pA, around
eight calcium ions enter through each of the channels for each simulation
time step (12.5ms), and the initial average number of ions per compart-
ments is as low as 0.07; thus, for equilibrium to be instantaneously
established before the next simulation time step, the buffering system
should act on time scales smaller than such a time step. This is the case for
the endogenous buffer; however, the kinetics for Fura-2 (and EGTA) is not
rapid enough to reestablish equilibrium every 12.5ms. Moreover, it is
reasonable to think that this deviation from equilibrium will increase in
time at the start of the pulse until the average number of free calcium ions
per compartment becomes at least comparable with the number of incom-
ing ions per simulation step, so that the deviation from equilibrium caused
by the incoming current becomes relatively smaller. This is indeed the
case, as can be seen from Fig. 6: one can observe that the RBA hypothesis
below the pores is met for the endogenous buffer while the same does not
hold for the exogenous buffers considered; as expected, the deviation is
greater as the incoming current is increased. This suggests that, to estimate
whether local equilibrium will be met below the pores, the time scale for
equilibration should be compared with a certain time scale associated with
the incoming current. It is also reasonable to consider that, at the start of the
pulse and below the pores, such characteristic times for the incoming
current are of greater relevance than the diffusional time scale that we are
discussing next.

The third type of time scale that comes into play is the diffusional time
scale. Provided that we consider local equilibrium in a region were no Ca21

sources are present (or they are of low intensity), we are left with two types
of scales that can serve to decide whether local equilibrium can be met: the
equilibration time scale defined above and the diffusional time scale.

The diffusional time scales can be defined by considering the diffusion
coefficient for a given species (Ca21 or mobile buffers) and combining it
with a characteristic length scaleL, depending on the gradients of the
system, to give:

tD 5 L2/D (19)

Local equilibrium of a buffering system will hold as long astD .. te,
meaning that the variations in the concentrations due to diffusion are much
slower than those caused by the kinetic reactions with buffers.L can thus
be thought of as being a characteristic distance defined in such a way that
the diffusion of calcium ions (and/or mobile buffer) from a distanceL to
the point in consideration would change the equilibrium relation signifi-
cantly. Clearly, such a characteristic distance not only depends on the
gradients of the system but also on the kinetics of the system and degree of
saturation of buffers, because, for example, the same increase in Ca21 due
to diffusion can give rise to a considerably different free Ca21 after the
calcium undergoes buffering (depending, for instance, on the degree of

saturation of buffers). For this reason a precise definition of the length scale
appears to be rather difficult to achieve.

As a reference, let us takeL to be equal to the length of the grid; this
could serve to test equilibrium at C-type compartments (compartments not
having a pore but with a neighbor pore), in the (reasonable) belief that the
main source for deviation from equilibrium would the presence of a pore,
at an average distance to the nearest pore equal to the length grid. In this
case (L 5 105 nm) we get

tCa
D . tEGTA

D . 50 ms, tFura-2
D . 250ms

Considering the fastest characteristic diffusion time (for Ca21) to be the
most relevant, we observe thattFura-2

e is not much smaller thantD, and the
situation is even worse for EGTA. Thus local equilibrium for Fura-2 and
EGTA cannot be reached in the submembrane compartments of type C
when high submembrane gradients are present (especially at the beginning
of the pulse). In fact, there is displacement from equilibrium in any type of
submembrane compartment. The amplitude of the initial displacement is
observed to be smaller as larger depths are considered.
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