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ABSTRACT The vascular endothelium is a cellular monolayer that lines the arterial walls. It plays a vital role in the initiation
and development of atherosclerosis, an occlusive arterial disease responsible for 50% of deaths in the Western world. The
focal nature of the disease suggests that hemodynamic forces are an important factor in its pathogenesis. This has led to the
investigation of the effects of mechanical forces on the endothelial cells themselves. It has been found that endothelial cells
do respond to stresses induced by the flowing blood; in particular, they elongate and align with an imposed flow direction.
In this paper, we calculate the distribution of force exerted on a three-dimensional hump, representing the raised cell nucleus,
by a uniform shear flow. It is found that, for a nonaxisymmetric ellipsoidal hump, the least total force is experienced when the
hump is aligned with the flow. Furthermore, for a hump of fixed volume, there is a specific aspect ratio combination that
results in the least total force upon the hump, (0.38;2.2;1.0; height;length;width). This is approximately the same as the
average aspect ratio taken up by the cell nuclei in vivo (0.27;2.23;1.0). It is possible, therefore, that the cells respond to the
flow in such a way as to minimize the total force on their nuclei.

INTRODUCTION

The understanding and hence treatment of atherosclerosis is
one of the major goals of current medical research. The
vascular endothelium is now understood to be crucial in the
pathogenesis of the disease (Ross, 1993). The effects of the
fluid mechanical forces, which act on the vascular endothe-
lium, on the development of the disease were initially in-
vestigated almost thirty years ago. Abnormally high shear
rates can cause endothelial damage (Fry, 1968), whereas the
location of atherosclerotic plaques is correlated with regions
of low and oscillatory shear (Caro et al., 1971; Ku et al.,
1985).

Further studies demonstrated that there were morpholog-
ical differences between endothelial cell nuclei at different
locations around the circulatory system (Flaherty et al.,
1972). In the large arteries, the nuclei are elliptical in shape
and their longest (or major) axes align with the direction of
flow. If the direction of flow is changed, the nuclei will
reorient themselves to remain aligned with the flow. In
regions of weaker hemodynamic forces, the nuclei are more
rounded and have no preferred direction. Subsequent in
vitro experiments have demonstrated that uniform, laminar
shear causes entire cells grown in static culture to elongate
and align with the imposed flow direction (Dewey et al.,
1981), together with a rearrangement of the actin cytoskel-
eton (Herman et al., 1987). Conversely, in a disturbed flow,
there is no observed alignment, but cell turnover is in-

creased (Davies et al., 1986). This increased cell turnover
renders the endothelium more permeable to large mole-
cules, leading to the cell turnover–leaky junction hypothesis
(Weinbaum et al., 1985). The precise nature of the force
transmission and transduction across the cell is still un-
known; although it is believed to depend upon tyrosine
kinase activity, intracellular calcium, and an intact micro-
tubule network (Davies, 1995; Malek and Izumo, 1996).
Friedman and Fry (1993) developed a model in which the
local permeability of the endothelium is altered during the
adaptive response to wall shear stress. This model has
subsequently shown reasonable agreement with experimen-
tal data (Henderson et al., 1994), suggesting that the details
of the adaptive response may be crucial in the pathogenesis
of atherosclerosis.

A theoretical model of the endothelium as a sinusoidal
wavy surface has demonstrated that, as might be expected,
the uneven endothelial surface leads to a nonuniform shear
stress distribution at the cellular level (Satcher et al., 1992).
The shear stress distribution was calculated by solving the
Stokes equations using a linear approximation to the wavy
surface when its displacement was small, and a numerical
method for larger surface displacements. The perturbation
shear stress due to the wavy surface was found to be as large
as 34% in some cases, with the peak wall shear stresses at
the crests of the wavy surface. The surface geometry cor-
responding to an aligned monolayer, however, was subject
to reduced forces and shear stress gradients, compared to
nonaligned geometries.

The use of atomic force microscopy has recently allowed
measurement of the endothelial surface topography in vitro
for the first time (Barbee et al., 1994). It was found that the
unsheared cells had an aspect ratio (length/width) of 1.126
0.31 and a height of 3.396 0.70 mm, whereas, after
exposure to a uniform shear flow, these became 2.166 0.53
and 1.776 0.52 mm. It has now been confirmed that the
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aspect ratios and heights for endothelial cells in situ are very
similar to those in vitro (Davies et al., 1995). Barbee et al.
(1995) used the measured endothelial surface as a boundary
condition in the numerical solution of the Stokes equations.
The results showed that the alignment of the cells resulted in
lower average peak wall shear stresses and shear stress
gradients per cell. The relative areas exposed to extremes of
shear stress and shear stress gradient were also reduced in
the aligned geometries.

Yamaguchi and Yamamoto (1995) have studied the ef-
fects of wall shear stress on the alignment of endothelial
cells using computational fluid dynamics. The shape of the
endothelial cells was modeled using a two-dimensional
(2D) Gaussian distribution, and the cells were initially dis-
tributed with their long axis at a random angle to the
direction of the oncoming flow. The wall shear stress at the
top of the cells was calculated and then the angles of
orientation were adjusted by a fixed amount in a random
direction. The wall shear stress was recalculated and, if it
was found to be higher at the new orientation, then the cell
orientation was reset to its previous value. After a long time,
it was found that the cells had all aligned in the direction of
the flow, indicating that this configuration does indeed lead
to the lowest peak wall shear stress. Yamamoto and
Yamaguchi (1997) further refined this study by allowing the
model cells to deform as well as rotate, again recomputing
the wall shear stress at the top of the cell after each mor-
phologic change. The volume of the cells was assumed to be
fixed and, after a long time, the cells were again found to
have aligned with the flow and also to have elongated in a
manner similar to that observed in in vitro experiments.

In this paper, the flow over a somewhat idealized cell,
consisting of a single nucleus, raised above the cellular
monolayer, is initially considered. The nuclei of endothelial
cells do protrude above the rest of the cellular surface, but
this surface is not perfectly flat, as assumed here. The hope
is that this model will provide a valuable insight into the
forces experienced by each cell and the mechanisms
whereby it is reduced. It is argued below that the effects of
additional nuclei upon the forces on an individual nucleus
are expected to be negligible.

The volume of the nucleus, projecting above the rest of
the cell membrane, is assumed to be constant, but this is not
necessarily the case in vivo. There are, of course, physical
limitations on the nuclear shape, because it cannot become
infinitely thin, but this does not ensure constant volume.
The measurements of Chung and Min (1998) have demon-
strated, however, that the endothelial cells retain a fixed
volume throughout the morphologic changes induced by
fluid flow in vitro. The volumes computed were based upon
microscopically visualized endothelial surfaces, rather than
entire cells, with the bulk of the volume corresponding to
the nuclear volume projecting above the rest of the cell.

MODELING ASSUMPTIONS AND METHODS

In the large arteries, the height of the endothelium,2(mm),
is very much smaller than the arterial diameter,2(mm), and
the heart rate is typically about 1–2 Hz, with the conse-
quence that the local fluid behavior is quasisteady and is
dominated by viscous forces. Moreover, the wall curvature
may be neglected. A further consequence is that, on the
length scale of the cell, the oncoming velocity profile will
be a quasisteady linear shear.

The blood is modeled as an incompressible, homoge-
neous, Newtonian fluid. The homogeneity must be ques-
tioned, because, on the cellular length scale, the presence of
red blood cells and other particles should not be ignored.
The existence of a thin cell-free zone (plasma layer) at the
edges of the blood vessels (Fåhræus, 1929) implies that the
red blood cells will not be concentrated close to the wall,
however, and this may in part justify neglecting interactions
between the endothelial cells and the red blood cells. The
Newtonian assumption is a simplification, but it is not
unreasonable, because the plasma, which will compose the
bulk of the fluid near the wall, is known to be well approx-
imated by a Newtonian model (Pedley, 1980).

The other major simplification in this model is the neglect
of the endothelial cell glycocalyx, which is a thin layer,
between 50 and 80 nm in the arteries and up to 1mm in the
capillaries (Wang and Parker, 1995), of extracellular mem-
brane glycoproteins adsorbed onto the surface of the cell.
The glycocalyx has been previously modeled as a biphasic
mixture, or porous layer, with a linearly elastic solid phase
and a Newtonian viscous fluid phase (Wang and Parker,
1995; Damiano et al., 1996). These models indicate that the
glycocalyx can act as a “force buffer,” leading to lower fluid
wall shear stresses and wall shear stress gradients at the
endothelial surface than in the absence of the layer; a
consequence of the flow being restricted in the porous layer.

We consider a uniform shear flow of incompressible,
Newtonian fluid encountering an arbitrary three-dimen-
sional (3D) hump, which represents the raised cell nucleus,
on an infinite flat plate, see Fig. 1. The problem is posed in
Cartesian coordinates, where thex̂- and ŷ-axes are in the
plane of the wall,ẑ 5 0, and theẑ-axis is the normal.

The reference length scale of the hump is5̂ 5 dâ, where
â is the diameter of the tube andd ,, 1; the length,l̂, height,
ĥ, and width,ŵ, of the hump are all assumed to be2(5̂). We
further assume that there is an oncoming Poiseuille flow in
the tube, but, at the length scale of the hump, any flow will
approximate to a linear shear flow so thatû 5 Ŝẑ, the
velocity being in thex̂-direction; v̂ is the velocity in the
ŷ-direction, and wˆ is that in theẑ-direction. We define the
main flow Reynolds number, Re, to be Re5 Ŝâ2/n̂, where
n̂ is the kinematic viscosity of the fluid, and suppose that it
is much greater than one. On the length scale of the hump,
the Reynolds number is Reh 5 Ŝ5̂2/n̂ 5 d2Re which is
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taken to be much less than one. A hat denotes a dimensional
quantity and we nondimensionalize by letting:

û 5 Ŝâ@duP 1 U~dz!#, (1a)

v̂ 5 ŜâdvP, (1b)

ŵ 5 ŜâdwP, (1c)

p̂ 5 r̂Ŝ2â2Re21p, (1d)

x̂ 5 dâx, (1e)

wherer̂ is the density of the fluid,U(j) 5 j 1 2(j2) is the
nondimensional basic Poiseuille flow in the parent tube,p is
the dimensionless pressure anduP is the dimensionless
perturbation velocity field induced by the hump.

On substitution of Eqs. 1a–1e into the Navier–Stokes
equations and, neglecting the terms of2(d2Re), we obtain
the Stokes equations,

¹2uP 5 =p, (2)

together with the equation of continuity

= z uP 5 0, (3)

because we are assuming that the fluid is incompressible.
The boundary conditions are that of no-slip on the rigid

boundary,

uP 5 2lH~x, y!, vP 5 0, wP 5 0,

onz5 lH~x, y!, ~on hump!, (4a)

uP 5 0, onz5 0, ~not on hump!,

whereH(x, y) is an2(1) function describing the shape of the
hump,l 5 ĥ/5̂ is the scaled height of the hump; and also
that the perturbation to the main flow tends to zero asz3 `

uP 3 0, asz 3 `. (4b)

This model has been formulated to apply in the large
arteries, i.e., diameters of2(mm), in which atherosclerosis
tends to develop. The local fluid mechanical behavior near
endothelial cells is always dominated by viscous forces,
however, owing to the relatively small dimensions involved.
Gaver and Kute (1998) found that, in 2D channel flow, the
opposite wall does not affect the shear stresses on an ob-
stacle until the obstacle occupies more than 25% of the
channel width. Furthermore, they found good agreement
between their 2D calculations and previous 3D results,
when the gap width between the top of the cell and the
opposite wall was small. This suggests that the present
model is also applicable to the majority of in vitro experi-
ments, in which the endothelium is subjected to a linear
shear flow by means of a parallel plate or cone-and-plate
device. The gap width in these experiments is usually much
greater than four times the height of the cellular monolayer.
The model is not directly applicable to flow in smaller
arteries, arterioles, and capillaries, because the neglected
wall curvature effects will become important there, but the
qualitative results are expected to remain unchanged.

The study of creeping flow over an obstacle or cavity
surrounded by a plane wall is not a new one and it has many
applications. Important examples are: displacement of fluid
droplets from solid surfaces (Dussan, 1987; Brooks and
Tozeren, 1996; Li and Pozrikidis, 1996; Dimitrakopoulos
and Higdon, 1997), which find applications in industrial drying
processes and biological problems of cell adhesion (Basmad-
jian, 1984; Olivier and Truskey, 1993; Gaver and Kute, 1998);
and also problems in erosion, corrosion, and etching processes
(Alkire et al., 1990; Shin and Economou, 1991).

It is convenient to formulate the problem as an integral
equation,

uP~x! 5 2E
*

f~x0! z GW~x0, x! dS~x0!, (5)

where* is the surface of the hump,f is the surface traction
on the hump andGW is the Green’s function tensor due to
a plane wall,

Gij
W~x0, x! 5 &ij~x0, x! 2 &ij~x0, xI!

1 2z2Gij
D~x0, xI! 2 2zGij

SD~x0, xI!, (6)

where,xI 5 (x, y, 2z), the image ofx with respect to the
wall, and

&ij~x0, x! 5
1

8pS dij

ux0 2 xu 1
~x0 2 x!i~x0 2 x!j

ux0 2 xu3 D, (7a)

Gij
D~x0, x! 5 6 3

1,2
1

8pS dij

ux0 2 xu3 2 3
~x0 2 x!i~x0 2 x!j

ux0 2 xu5 D,
(7b)

FIGURE 1 Schematic of the problem.
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Gij
SD~x0, x! 5 ~x0 2 x!3Gij

D~x0, x!

63
1,2

1

8p

dj3~x0 2 x!i 2 di3~x0 2 x!j

ux0 2 xu3 ,

(7c)

where the63
1,2 means there is a minus sign forj 5 3, the

z-direction, and a plus sign forj 5 1, 2, the x- and y-
directions.

GW(x0, x) z g is defined to be the velocity field due to a
point source of strengthg placed atx0, with the additional
constraint that the velocity is zero on the planez 5 0. This
constraint restricts the domain of integration in Eq. 5 to the
surface of the hump. The physical interpretation of Eq. 5 is
that the hump surface is approximated by a collection of
point forces of different strengths; the total velocity field is
then the sum of the velocity fields due to all the point forces.
A complete derivation of Eq. 5 from the Stokes equations
can be found in Pozrikidis (1992).

The no-slip condition, Eq. 4a, implies that the value ofuP

is known on the surface of the hump. This leads to a
Fredholm integral equation of the first kind for the surface
traction f, which is solved numerically using a boundary
element collocation method (Pozrikidis, 1992; Banerjee,
1994). The code was validated by comparing the computed
forces and torques with the analytic solutions for a hemi-
sphere (Price, 1985) and sphere in point contact with the
wall (O’Neill, 1968) and also computations for axisymmet-
ric spherical caps and spheroids (Pozrikidis, 1997).

Table 1 shows the nondimensional total force parallel to
the planez 5 0 on spherical caps of semianglea. The first
column shows the results of the axisymmetric computations
of Pozrikidis, in which 32 line elements were used. These
results are accurate to three significant figures. The second
column shows the results from the 3D boundary element
code using only 20 quadratic surface elements, or 24 in the
casea 5 1.0. The results are accurate to within a reasonably
small percentage error, giving confidence in the results. If
165 elements are used, then the results are accurate to the
three significant figures given by Pozrikidis; however, this
dramatically increases the cost of the procedure.

The numerical model is very flexible and can be used to
determine the key features of Stokes flow about an arbitrary
3D body, having at least one point of contact with a plane
wall. In this paper, we consider the effects of varying the
shape and angle to the flow of the hump upon the total force
experienced.

The linearity of the governing Eq. 5 implies that the
solution for a linear shear flow at an arbitrary angleu to the
x-axis is f 5 fxcosu 1 fy sin u, wherefx is the force when
the flow is in thex-direction (u 5 0) andfy is the force due
to a flow in the y-direction (u 5 p/2). Thus, the force
distribution, and hence the velocity field for the general
case, can be reconstructed from just two simple cases.

In all cases considered here, the obstacle is restricted to
that of a semiellipsoid, in accordance with experimental
observations of the elliptical nature of endothelial cell nu-
clei in vivo (Flaherty et al., 1972). The theoretical model of
the endothelial cell as a membrane stretched over a spher-
ical nucleus (Fung and Liu, 1993) gives a shape that falls off
in a more realistic Gaussian manner away from the nucleus.
The extra Gaussian tails are not expected to have a large
effect on the total force, however. There are three geometric
parameters that govern the problem:ll, the length-to-width
ratio, andlh, the height-to-width ratio, together with the
volume of the ellipsoid. The total force on the hump is
found by integrating the force vectors over the surface of the
hump,

F 5 E
*

f~x0! dS~x0!.

If the axes of the ellipsoid in the planez 5 0 are chosen
to lie along thex andy axes, then the inherent symmetries
imply that Fx 5 (^x, 0, 0) andFy 5 (0, ^y, 0). It follows
thatF 5 (^xcosu, ^ysin u, 0) and, hence, the magnitude of
the total force on the hump is

uFu 5 Î^x
2cos2u 1 ^y

2 sin2u.

Elementary calculus shows that the extrema ofuFu occur
whenu 5 0 or p/2, so that

uFumax 5 max$^x, ^y% and uFumin 5 min$^x, ^y%.

In other words, the minimum total force on the hump, for a
shear flow at an arbitrary angle is the minimum of the two
casesu 5 0 (flow in x-direction) andu 5 p/2 (flow in
y-direction). Equivalently, it is the minimum of the two
extreme cases when the semimajor axis of the ellipsoid in
the planez 5 0 is aligned with the flow or perpendicular
to it.

RESULTS

Numerical studies were performed to determine the values
of ^x and^y for a variety of geometric parameters. It was

TABLE 1 Comparison of nondimensional force on spherical
caps for axisymmetric and 3D boundary element methods

a Axisymmetric 3D Percentage Error

1.0 10.2* 10.2 0.0
0.9 9.92 9.85 0.7
0.8 9.07 8.97 1.1
0.7 7.73 7.61 1.6
0.6 6.06 5.94 2.0
0.5 4.30* 4.21 2.1
0.4 2.69 2.64 1.9
0.3 1.41 1.38 2.1
0.2 0.555 0.545 1.8
0.1 0.118 0.114 3.4

*These results correspond to the analytical results given by O’Neill (1968)
and Price (1985), which are 10.205 and 4.30, respectively.
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found that the maximum total force is experienced when the
major axis of the ellipsoid is perpendicular to the flow and
the minimum when it is aligned. Thus, for any nonaxisym-
metric semiellipsoid, the minimum force occurs when the
major axis is aligned with the flow.

Figure 2 shows contours of the total nondimensional
force, uFu, on an aligned hump with a fixed volume plotted
against the aspect ratioslh andll.

The dimensional force ispm̂Ŝ5̂2uFu, where m̂ is the
viscosity of the fluid, Ŝ is the shear rate and̂5 is the
reference length scale (see Modeling Assumptions and
Methods), which is chosen to be the radius of the hemi-
sphere with the same volume as the hump. In this case, the
flow is always in thex-direction, the length is in thex-di-
rection, width in they-direction, and height in thez-direc-
tion (see Fig. 1). Thus, ifll . 1.0, the cell is aligned with
the flow, whereas, ifll , 1.0, the cell is perpendicular to
the flow. If ll 5 1.0, the cell is axisymmetric about the
z-axis. Note that, in the case of the hemisphere (ll 5 1.0,
lh 5 0.5), the nondimensional force is 4.30, agreeing with
the previous results of Price (1985).

For a fixedll and a sufficiently largelh, there is a drop
in total force, with decreasinglh, which is due to the
corresponding drop in height of the hump. This trend con-
tinues until the drop in peak traction is balanced by the
increase in surface area owing to the fixed volume con-
straint. Whenlh is very small, the surface area must be
large and hence the total force is large, despite the fact that
the peak traction will be small.

For a fixedlh and a sufficiently smallll, there is a drop
in total force with increasingll, because the hump becomes
more and more elongated in the flow direction; effectively,
the width of the hump is decreasing. Once again, there is a
minimum point, after which the decrease in peak traction
can no longer be balanced by the increasing surface area.

There is an overall minimum of the total force atll ' 2.2
and lh ' 0.38. This compares very well with the average

aspect ratio of the cell nuclei throughout the circulatory
system, which isll 5 2.23, where the width is 6.6mm and
the length is 14.8mm (Flaherty et al., 1972). The recent
atomic force microscopy data indicates that, in shear flow
conditions both in vitro and in situ, the height of the cell
nucleus is approximately 1.77mm (Barbee et al., 1994),
corresponding tolh 5 0.27. Thus, the estimated average
aspect ratios of the nuclei in vivo are very close to the
theoretical minimum force configuration.

DISCUSSION

The results indicate that, for any semiellipsoidal hump in a
shear flow, the least total force is experienced when the
longest axis is aligned with the flow direction. This config-
uration minimizes the width of the obstacle encountered by
the fluid and, therefore, minimizes the pressure force on the
hump, which is related to its frontal area. Consequently,
there will be lower peak tractions and hence a lower total
force on the obstacle. The nature of this mechanism sug-
gests that the same result will hold for a general obstacle.
That is, the least total force will be experienced when the
smallest overall width is perpendicular to the flow. The
experimental results of Flaherty et al. (1972) and Dewey et
al. (1981) indicate that the cells do indeed orient themselves
in this manner. Note also that, if the nuclear shape is a direct
consequence of hemodynamic forces, the reversibility of
Stokes flow implies a fore–aft symmetry, as observed.

For a hump of fixed volume, decreasinglh results in a
decrease in peak traction. This is due to two effects. First,
the viscous stresses in a linear shear flow increase with
height, and, so, reducing the height of the hump will result
in a lower shear force on it. The area of the hump perpen-
dicular to the flow is also reduced, which will result in a
lower viscous pressure force. Increasingll leads to a de-
crease in peak traction, which is due purely to the reduction
in width of the obstacle and the consequent reduction in
pressure force.

It was also found that, for a fixed volume of hump, there
is a specific aspect ratio combination that results in the
lowest total force experienced. This minimum arises as a
balance between the lowering of the peak tractions, as the
height and width of the hump are reduced, and the accom-
panying increase in surface area due to the fixed volume
constraint. The calculated minimum agrees very well with
the average aspect ratio taken up by endothelial cell nuclei
in vivo. The minimum is very broad, however, and therefore
small changes in aspect ratio will not have a great effect on
the total force. In fact, the range of nuclear aspect ratios,ll,
observed by Flaherty et al. (1972) is 1.39 to 2.91, which, for
realistic values oflh, is enclosed within the contour line
representing a nondimensional total force of 3.80. The de-
viation from the minimum total force value is less than 5%
over this entire range of aspect ratios.

FIGURE 2 Contours of total force on an aligned hump of fixed volume
in ll–lh parameter space.
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This relative insensitivity of force to shape has also been
observed by Basmadjian (1984) and Olivier and Truskey
(1993). Basmadjian (1984) collected results, both theoreti-
cal and experimental, on the forces experienced by various
obstacles on plane walls. It was found that, in the case of
small protrusions, the drag coefficients were similar for
quite different geometries. Olivier and Truskey (1993) cal-
culated the forces and torques on four different 2D endo-
thelial cell shapes, representing stages of cell spreading
during adhesion to a flat plate. They found that the drag
force varies little with cell shape and was only reduced by
a factor of two in the rather extreme transition from initial
attachment to a fully spread cell.

There are several simplifications in this model. First, the
endothelial cell nuclei are not isolated in vivo and exist in
confluent monolayers. The linearity of Stokes flow allows
the case of several nuclei in a monolayer to be constructed
by addition of the velocity fields for isolated nuclei in
different locations. The force on each hump will be that due
to itself, plus contributions from the velocity fields due to
the surrounding humps. The typical internuclear spacing is
2(10 mm), several times the typical nuclear dimensions,
which are 2(1 mm). Expansion of the Green’s function
indicates that the velocity field decays as2(1/r2), as the
distance,r, from the hump increases. This results in decay
of the perturbation pressure and shear stress as2(1/r3).
Thus, the contribution to the force on the nucleus from other
nuclei will be approximately 1000 times smaller than the
force due to itself, and the force on a cell nucleus in a
confluent monolayer will be approximately that experienced
by a single nucleus. This result will hold only if Stokes flow
is a valid approximation throughout the monolayer, how-
ever. At a distance far enough away from the cell nucleus,
the Stokes equations break down, and weak inertial effects
become important. Estimates suggest that this distance is
2(50 mm), a cellular, rather than a nuclear, length scale. The
presence of such inertial effects may explain why the en-
dothelial cells are not of a uniform shape even in in vitro
experiments, where the macroscopic flow conditions are
uniform (Levesque and Nerem, 1985; Davies et al., 1995).
The Stokes flow calculation would suggest that, if the cells
are aiming to minimize the total force on their nuclei, they
would all adopt the same shape, and this is not the case.
Thus, although the average total force on an endothelial cell
nucleus will be approximated well by the Stokes flow
solution, the individual cell-to-cell variability may be a
consequence of inertia, which will certainly affect the local
distribution of wall shear stress.

The assumption of a fixed volume is also to be viewed
critically. The assumption corresponds to the volume of the
nucleus that projects above the rest of the cell being con-
stant, and the good agreement between the theory and the in
vivo measurements indicates that this may be the case,
assuming that the cells are aiming to experience the mini-
mum total force. The lack of change in this volume may be

a consequence of the cell volume regulatory mechanisms.
These mechanisms control the volume of the entire cell,
rather than that of the nuclear bulge protruding above it, but
may still be of some relevance. There are several such
volume-regulatory mechanisms in cells, because a major
change in volume will damage the integrity of the cell (see
the review given by Lang et al., 1998). The regulatory
cell-volume increase and decrease is mainly accomplished
by the transport of ions, particularly potassium and sodium,
across the cell membrane, altering the osmotic potential of
the cell, and hence the volume, within minutes. A large ion
imbalance will interfere with numerous cell functions, and
so, cells also produce osmolytes, molecules that change the
osmotic potential without compromising other cell func-
tions even at high concentrations. The accumulation of
these molecules is a much slower process than ionic trans-
port, taking hours or days. The ionic transfer mechanism
will certainly be active over the time scales taken for the
morphologic change and would be expected, therefore, to
keep the cell volume approximately constant.

The presence of a glycocalyx has been shown to lead to
reduced forces on the endothelial surface in theoretical
models of flow in capillaries (Damiano et al., 1996). The
flow is restricted through the glycocalyx, which is often
modeled as a porous layer, and this leads to the lower fluid
stresses. The aspect ratio leading to the minimum total force
is, however, a relative result and, although the presence of
a glycocalyx will undoubtedly alter the actual values of the
forces on the nucleus, the location of the minimum is
unlikely to change.

It is also interesting to note that the nuclear shape leading
to the minimum total force is independent of the magnitude
of the shear stress, something that is certainly not true of the
endothelial cell alignment observed in vitro (Dewey et al.,
1981). At low values of wall shear stresses, the cells do not
exhibit any morphologic changes. The mechanical force-
detection mechanism of the cell, which is likely to involve
strains induced in the cytoskeleton, will almost certainly
have a threshold level and is not activated at low wall shear
stresses. It is also possible that this threshold is due to other
elements in the cell, which respond to the signals emitted by
the primary wall shear stress transduction mechanism. As
the wall shear stress increases, the cells are observed to
elongate further (Levesque and Nerem, 1985). This may be
a consequence of an impairment of the volume regulatory
mechanism. It is also possible that the cells will not tolerate
a shear stress above a certain level anywhere on the cell
surface. To reduce the peak wall shear stress, the height
must be reduced, leading to further elongation, assuming the
volume constraint is valid. It should also be noted that the
results of Levesque and Nerem (1985) concern the entire
cell shape, not the nuclear behavior, and that the shape of
the nucleus may remain unaltered, while the cells them-
selves continue to elongate.
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There are, of course, several other factors that will affect
the forces experienced by the cells. The cells are tethered to
a basement substrate and will experience forces at this
location, as well as at the surface exposed to the blood. The
precise response of the cells to mechanical forces will
depend upon the internal distribution of these forces; a
distribution determined by the structural and mechanical
properties of the cells. These properties are still incom-
pletely understood, although progress has been made via the
models of Ingber (1998) and Fung and Liu (1993).

In conclusion, numerical studies were performed to de-
termine the force distribution on hump shapes of varying
aspect ratios, representing the raised cell nucleus of a vas-
cular endothelial cell. For a nonaxisymmetric semiellipsoi-
dal hump, the least total force occurs when the major axis is
aligned with the flow direction. Furthermore, for a fixed
volume protruding above the cell membrane, there is a
specific aspect ratio that gives a minimum total force on the
cell nucleus. This is approximately the same as the average
aspect ratio taken up by cell nuclei in vivo and we therefore
postulate that the cells respond to flow in such a way as to
minimize the total force experienced by the nuclei.
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