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ABSTRACT We analyze a two-state stochastic corral model for regulation of protein diffusion in a cell membrane. This
model could mimic control of protein transport in the membrane by the cytoskeleton. The dynamic corral acts as a gate which
when open permits an otherwise trapped protein to escape to a neighboring corral in the cytoskeletal network. We solve for
the escape rate over a wide range of parameters of the model, and compare these results with Monte Carlo simulations. Upon
introducing measured values of the model parameters for Band 3 in erythrocyte membranes, we are able to estimate the value
for one unknown parameter, the average rate at which the corral closes. The ratio of calculated closing rate to measured
opening rate is roughly 100:1, consistent with a gating mechanism whereby protein mobility is regulated by dissociation and
reassociation of segments of the cytoskeletal network.

INTRODUCTION

Proteins spanning cell membranes mediate transport of ma-
terials and information between the cell and its environ-
ment. Early models of the plasma membrane, notably the
fluid mosaic model (Singer and Nicolson, 1972), postulated
that proteins, homogeneously distributed within the mem-
brane, move by free diffusion in a lipid bilayer, a view in
harmony with theories of chemoreception (Berg and Pur-
cell, 1977) that optimally arrange receptors evenly or ran-
domly around the membrane. The picture that protein mo-
tion is mediated merely by the homogeneous environment
of the lipid bilayer comprising the membrane has, however,
been challenged for some time by evidence that transmem-
brane proteins also interact with heterogeneously distributed
membrane lipids and proteins, as well as with proteins in the
cytoplasm of the cell. It also appears that such interactions
may be closely connected to function (Axelrod, 1983; Mc-
Closkey and Poo, 1983; Peters, 1988; Zhang et al., 1993;
Winckler et al., 1999). Revision of the fluid mosaic model
is currently underway (Jacobson et al., 1995) as experimen-
tal information about the interactions regulating protein
transport becomes available and theories are developed to
interpret measurements.

Though numerous interactions regulate membrane pro-
tein transport (Edidin, 1990), the cytoskeleton just below
the membrane appears to play a central role in controlling
mobility in a variety of cells, such as epithelial, nerve, and
red blood cells (Fleming, 1987; Saxton, 1990b; Saxton and
Jacobson, 1997; Winckler et al., 1999). The best-studied
membrane protein for which cytoskeletal control of motion
has been well characterized is Band 3 in erythrocyte mem-

branes. The dense cytoskeletal network in erythrocytes has
long been recognized to hinder and mediate transport of
membrane proteins (Cherry, 1979; Schindler et al., 1980;
Sheetz et al., 1980; Koppel et al., 1981; Sheetz, 1983). This
view is strongly supported by experiments on the diffusion
of Band 3 in both normal erythrocytes and erythrocytes that
are deficient in spectrin, the building block for the cytoskel-
etal network. Corbett et al. (1994) studied rotational and
translational diffusion of Band 3 in normal erythrocytes,
and in erythrocytes with genetic disorders that leave the
erythrocyte with a much sparser skeletal network. Rota-
tional diffusion of Band 3 was found to be indistinguishable
in both classes of cells. Translational diffusion, about two
orders of magnitude smaller than predicted by the fluid
mosaic model in normal cells, was observed to be about an
order of magnitude faster in spectrin-deficient cells than in
normal cells. The cytoskeleton affects the motion of mem-
brane proteins in broadly two ways. Membrane proteins
may bind to the cytoskeleton, remaining essentially immo-
bile during the period in which they are tethered. For
example,;1⁄3 of Band 3 binds to the cytoskeletal network
via ankyrin at any one time. Unbound transmembrane pro-
teins are still affected by the network, appearing to be
temporarily corralled due to steric interactions with seg-
ments of the cytoskeletal network (Fig. 1). Such corralled,
but unbound, proteins diffuse in the membrane, albeit much
more slowly than envisioned by the fluid mosaic model.
Sheetz (1983) presented a matrix model for the transport of
proteins in erythrocyte membranes, which has since been
elaborated on by Tsuji et al. (1986, 1988). The “skeleton
fence model,” as it is currently called, has been shown
experimentally to characterize the control of protein trans-
port by the cytoskeleton in numerous cells (Kusumi and
Sako, 1996; Sako et al., 1998).

Evidence supporting the skeleton fence model for regu-
lation of protein transport in cell membranes has been
assembled largely by three classes of experiments: fluores-
cence recovery after photobleaching (FRAP) (Webb et al.,
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1981; Jacobson et al., 1982); single particle tracking (SPT)
(Qian et al., 1991; Saxton and Jacobson, 1997); and exper-
iments with laser tweezers (Edidin et al., 1991; Kusumi et
al., 1998). SPT, which monitors the motion of individual or
small numbers of proteins at video rates or in some cases
faster (Tomishige et al., 1998), provides particularly de-
tailed information about the nature of protein transport in
the membrane (Simson et al., 1995; Saxton and Jacobson,
1997). SPT has helped to pin down the sizes of the cytoskel-
etal regions that temporarily compartmentalize proteins,
revealing distinct time and spatial domains for diffusion of
mobile proteins. At short times and over regions of order
0.01–0.1mm2, diffusion appears as theoretically expected
for a protein in a lipid bilayer. Over longer times and
distances, diffusion of mobile proteins is often observed to
be one or more orders of magnitude slower (Kusumi et al.,
1993; Saxton and Jacobson, 1997). Laser tweezers have
been used to move small numbers of proteins up to and
beyond the boundaries of corrals (Edidin et al., 1991; To-
mishige, 1997; Kusumi et al., 1998), providing further de-
tailed information about the range of corral sizes and of the
extent of corral control over the transport of transmembrane
proteins. The cytoskeleton itself has been manipulated with
laser tweezers (Tomishige et al., 1998), dragging mobile
proteins with it, which has lent further support to the cy-
toskeleton fence model.

On the theoretical side, the mobility of membrane pro-
teins has been extensively simulated by Saxton (1987; 1989;
1990a,b; 1993; 1995; 1997). While considering a range of
traps and obstacles for proteins in membranes, Saxton
(1995) has also addressed escape of proteins from corrals.
The specific corral model studied by Saxton is akin to
standard models of chemical reactions, whereby a particle
escapes over an energy barrier that is fixed in time. In this

case, the protein diffuses inside the corral until it hits the
barrier, at which point it has a fixed probability to escape.
Saxton simulated protein dynamics in the corral and deter-
mined the mean first passage time out of the corral for a
variety of corral sizes, shapes, and escape probabilities. An
expression for first mean passage times due to Deutch
(1980) for escape over a circular static barrier closely fits
results of the simulations. A second model studied by Sax-
ton (1989; 1990a,b) describes hopping among corrals of the
“skeleton fence.” In one realization, the skeleton fence is
static and a percolation network is required for diffusion
over the membrane. Since the fraction of the erythrocyte
cytoskeleton that is dissociated is far smaller than what
would be required for percolation, Saxton suggested that
large-scale diffusion could occur only if the skeleton fence
were dynamic; for example, if segments of the cytoskeleton
could dissociate and reassociate. In a dynamic model, there
is no longer any percolation threshold (Druger et al., 1985;
Harrison and Zwanzig, 1985), and it is always possible for
an object to diffuse globally. The dynamic corral model we
investigate here predicts the hopping rate of a protein from
one corral to its neighbor in the cytoskeletal network.

In this article we study a dynamic model for protein
motion in which the corral is described as a stochastic gate.
This picture is related to models of chemical reactions in
which escape occurs over an energy barrier that changes in
time (Zwanzig, 1990). Dynamical gating models have been
applied for some time to the study of ligand-protein binding
kinetics (McCammon and Northrup, 1981; Northrup et al.,
1982; Szabo et al., 1982; Zwanzig, 1992; Wang and
Wolynes, 1993; Eizenberg and Klafter, 1995), in which the
binding rate is governed by the accessibility of the binding
site, lying inside the protein, to a ligand that has to pass
through pockets in the exterior of the protein that are reg-
ulated by variation of the protein’s conformation. For a
protein to escape from a corral, where the cytoskeleton
sterically interacts with the cytoplasmic region of the trans-
membrane protein, the gate can open when a segment of the
spectrin network corralling the protein dissociates, as illus-
trated in Fig. 1. Alternatively, a protein can escape from a
corral if the distance between the membrane and cytoskel-
eton is sufficiently large so that the cytoplasmic portion of
the protein can pass between them. This can occur through
fluctuations in the distance between the membrane and
corral, which can provide a gap large enough for the protein
to escape, or through conformational changes in the cyto-
plasmic portion of the protein. Large-scale simulations of
the cytoskeletal network by Boal (1994) and Boal and Boey
(1995) have revealed that the barrier-free path for a mem-
brane protein can be regulated by fluctuations in the shape
of the cytoskeleton. Recent laser tweezer experiments by
Tomishige and Kusumi (1999), in which the network itself
was manipulated, have been interpreted to imply spectrin
tetramer dissociation/reassociation in the gating process.
The dynamic model that we adopt and discuss in this article

FIGURE 1 Ultraschematic illustration of a mobile transmembrane pro-
tein as viewed from under the membrane. The cytoskeleton immediately
below the membrane hinders and regulates transport, confining the protein
temporarily to a corral, the typical size of which is indicated in the figure.
One hypothesis for proteins to move from one corral to a neighbor is for
segments of the cytoskeletal network to dissociate and reassociate. We
model this two-state process and predict the average time for proteins to
escape from a corral. The thickness of the corral can affect the rate of
escape. A thickness of 6 nm, representative for the cytoskeleton of eryth-
rocytes, is indicated.
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has two metastable states, one open and one closed, with
random transitions between them, so it is most appropriate
for the possible case in which opening and closing of the
gate corresponds to dissociation and reassociation of spec-
trin tetramers. This model bears some resemblance to two-
state stochastic models for ion channels (Colquhoun and
Hawkes, 1995), with the additional feature here that protein
transport in the skeleton fence involves the interplay be-
tween diffusion within the corral and the dynamics of the
skeleton fence. Results we obtain from our two-state dy-
namic model, together with available experimental data for
Band 3 in erythrocyte membranes, are consistent with a
picture in which Band 3 transport is regulated by dissocia-
tion/reassociation of the cytoskeleton fence, though we can-
not rule out other mechanisms.

In the following section we present the dynamic corral
model and theoretical methods used to solve for the escape
rate of proteins from the corral. We then briefly describe a
Monte Carlo procedure to simulate protein motion in a
dynamic corral, which we use to compare with theoretical
results. Finally, we present and discuss results for the
model, and compare these results with experimental mea-
surements for the mobile fraction of Band 3 in erythrocytes.

THEORY

We consider a dynamic, two-state model for a membrane
protein confined to a corral in which we picture the corral as
a fluctuating gate. In one state the corral is closed and
proteins are trapped, while in the other it is open and
proteins diffusing within it can escape. Transitions between
these two states are taken to occur randomly. The time
during which the gate is closed or open is exponentially
distributed with, respectively, meanWo

21 and Wc
21, where

Wc andWo are, respectively, the mean closing and opening
rates of the gate. The shape and size of the corral and the
diffusion coefficient,D, for the protein’s motion within the
corral comprise the other parameters of the model. The
latter is just the diffusion coefficient for a protein within the
lipid bilayer, and has been estimated theoretically by Saff-
man and Delbru¨ck (1975) to be of the order 1029 cm2 s21.
The diffusion coefficient due to the lipid bilayer is, in the
context of the skeleton fence model, sometimes referred to
asDmicro (Kusumi et al., 1998), the coefficient for diffusion
within the “microscopic” corral region of the membrane, in
contrast toDmacro, the coefficient for diffusion over lengths
of order 1mm or longer in the membrane. The corral size,
D, andDmacrohave been measured by SPT, FRAP, and with
the aid of laser tweezers for various proteins and cells
(Saxton and Jacobson, 1997). A suggestive value forWo has
also been reported for erythrocytes (Tomishige, 1997; Tom-
ishige and Kusumi, 1999). We will discuss possible ranges
for Wc andWo below based on conclusions from our model,
combined with measured values for the corral dimensions
and protein diffusion.

It is often of interest to know that the protein is some-
where inside the corral at a given time. The survival prob-
ability, P(t), is the probability that a protein starting in the
corral remains there at timet. While calculation ofP(t) is
generally complicated, we can simplify it significantly by
making certain statistical assumptions, detailed below. We
can describeP(t) with these assumptions by closely follow-
ing calculations by Zwanzig (1992) and Eizenberg and
Klafter (1995) for ligand-protein binding kinetics involving
passage through a fluctuating gate.

Suppose that the concentration of proteins,C, within a
corral decays as

dC/dt 5 2K~xi!C, (1)

wherexi is a state of the corral:xo 5 open, orxc 5 closed.
Because the state of the system is changing in time, the rate
constantK is time-dependent and given by

K~xo! 5 k, (2a)

K~xc! 5 0, (2b)

where we define a rate constant,k, for decay of the protein
population from an open corral. We calculatek in the
Appendix. Justification for a simple open-state rate equation
will be provided with results of numerical simulations in the
following sections. Transitions between the open and closed
states are assumed to be stochastic. If the gate happens to be
in statexo (xc), the probability that it will remain there at
time t after opening (closing) isWc exp(2tWc)dt (Wo

exp(2tWo)dt), whereWc andWo are the rates to close and
open, respectively.

Upon averaging Eq. 1 over all stochastic trajectories, we
can express the probability of finding a protein inside the
corral asP(t) 5 Pc(t) 1 Po(t), wherePc andPo are, respec-
tively, the survival probabilities in the closed and open
states. Then

dP/dt 5 2L P~t!; P~t! 5 SPc~t!
Po~t!

D, (3)

where

L 5 S Wo 2Wc

2Wo Wc 1 k D. (4)

The solution to Eqs. 3 and 4 is

P~t! 5 c1e2m1t 1 c2e2m2t, (5)

where

c1 5
1

2
2

1

2
~Wo 1 Wc! 1 kS12 2

Wo

Wo 1 Wc
D

Î~Wo 1 Wc 1 k!2 2 4kWo

, (6a)

c2 5 1 2 c1 , (6b)
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m6 5
Wc 1 Wo 1 k

2 S1 6 Î1 2
4kWo

~Wo 1 Wc 1 k!2D. (6c)

We see, given that we can justify an open-state rate
equation with rate constantk, that the survival probability
for proteins in a corral decays biexponentially; at longer
times Eq. 5 reduces essentially to single-exponential decay.
For the range of parameters typically representative for
cells, Wc .. Wo. Then, after only a very brief transient
period, decay is simply exponential withc2 ' 1 and rate
m 5 m2.

In calculating the survival probability,P(t), we assumed
that when the corral is open we can describe the open-state
survival probability,Po(t), by dPo/dt 5 2kPo. The open-
state rate constant,k, is derived in the Appendix for a square
corral, and its variation with the parameters of the model
and its influence onm are discussed in the following sec-
tions. Our calculation ofk is simplified greatly upon intro-
ducing the convenient and, as we shall see, reasonable
assumption that, between opening events, the corral is
closed sufficiently long for proteins inside it to equilibrate.
When the corral reopens, a protein can then be found with
equal probability anywhere inside the corral. Given a cir-
cular corral of radiusR, or a square corral of half-lengthR,
the characteristic diffusion time within the corral,tD 5
R2/D, is the time for a protein to move anywhere within the
corral, and can be used as an estimate for the reequilibration
time. We will justify this reequilibration approximation
below with reference to available experimental data for the
diffusion of membrane proteins.

In summary, two approximations have gone into our
calculation of m: 1) we have assumed that the survival
probability when the gate is open can be described using a
single rate constant,k, when in fact the proteins are diffus-
ing out of the open corral; and 2) we have assumed that the
gate is closed long enough for the proteins inside the corral
to lie anywhere within it with equal probability at the time
it reopens. The second assumption can be justified for
sufficiently smallWo. The first can also be justified ifWc

21

is so small thatPo(t) changes little until the corral closes. It
is important to check the validity of both approximations in
our calculation for the escape rate, and we do this by
simulating protein escape from a stochastic two-state corral.

Numerical calculations

As a check on the theoretical predictions for our two-state
dynamic corral model, we have computed escape rates from
a corral directly by Monte Carlo simulations. We compute
the rate of escape from either a circular or square corral
superimposed on a square lattice, on which the protein
moves randomly from one site to a nearest-neighbor at each
time step. The radius of the circular corral or half-width of
the square is given by the parameterR. For two-dimensional
diffusion modeled by our simulations,s2 5 4D dt, wheres

is the distance between lattice points anddt is a time step.
As parameters for our model we have chosenR5 60 nm for
a square corral andD 5 5 z 1029 cm2 s21, both represen-
tative values for Band 3 in erythrocyte membranes (Tom-
ishige et al., 1998). We take the lattice spacing for the
square grid on which proteins diffuse in our simulations to
be 2 nm, so that 60 lattice points lie within the length of a
square corral. We chose this grid size since somewhat
denser grids with smaller lattice spacings did not affect our
results significantly. So that the areas within the square and
circular corrals are the same, we takeRcircle 5 R=4/p for
our Monte Carlo simulations using circular corrals. Given a
2-nm lattice spacing and our chosen value forD, we have
that each time step,dt, corresponds to 2z 1026 s.

We introduce a given number of proteins into the corral
initially, and follow their survival inside the corral over the
simulation. Given a closing rate,Wc, and opening rate,Wo,
the fraction of time the corral is open over the length of the
simulation is fo 5 Wo/(Wc 1 Wo). Randomly choosing a
corral to be initially open with probabilityfo, or closed with
probability fc 5 1 2 fo, the probability that the corral will
change its state at a given time step isdt Wc and dt Wo,
respectively. We take bothdt Wc and dt Wo to be much
smaller than 1, which can in general always be satisfied with
a sufficiently small lattice spacing, as it is for our particular
grid selection.

If the corral happens to be closed when a protein attempts
to escape, the protein is reflected back to the lattice point
from which it attempted to leave. If the corral is open, the
protein is allowed to escape and continues to diffuse, walk-
ing randomly to nearest-neighbor sites at each time step.
The protein can return to the corral as long as the gate is still
open, but is removed from the simulation if it lies outside
the corral and the gate is closed. We find that removing
proteins from the simulation after the corral closes has little
effect on the escape rate if the corral is closed at least as
long as the characteristic diffusion time,tD.

RESULTS AND DISCUSSION

Protein distribution in a corral

In Fig. 2 we plot the radial concentration profile,C(r, t), i.e.,
the concentration of proteins a distancer from the center of
a dynamic circular corral at timet. We have calculated
C(r, t) to illustrate that the distribution of proteins remains
essentially flat within the corral for a range of relevant
parameters. Proteins are taken initially from a flat distribu-
tion within the corral, and we then computeC(r, t) at
discrete grid points inside and outside the corral, where
C(r, t) is propagated by the diffusion equation in each of the
two states (Zwanzig, 1990). We have chosen a corral radius
of R 5 60 nm,D 5 5 z 1029 cm2 s21, andWo 5 10 s21;
these parameter values are representative for Band 3 in
erythrocytes. An absorbing boundary is placed atr 5 120
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nm, far beyond the gate but nevertheless apparent in the
radial profiles plotted in the figure. In Fig. 2a the gate
opens att 5 0, and remains open for the length of the
calculation. Here we see simple and unobstructed diffusion
(apart from artifacts due to the absorbing boundary atR 5
120 nm). For the results plotted in Fig. 2,b andc, we have
usedWc 5 Wo and Wc 5 100Wo, respectively. The latter
closing rate is of the order of what it might actually be in
erythrocytes, as discussed below. For the slower closing
rate, shown in Fig. 2b, we observe that the concentration of
proteins near the edge of the corral is briefly lower than it is
in the center; after this transient period the distribution
within the corral is flat. When the gate closes more rapidly,
as in Fig. 2c, the distribution appears flat at all times
plotted, lending credibility to our assumption that proteins
within the corral are equidistributed. Deviations at very
short times will be seen to have a negligible effect on our
calculation of the escape rate from a corral.

Escape rate from a corral

We turn now to the decay of the survival probability of a
protein in a two-state dynamic corral. We begin by looking
first at results from Monte Carlo simulations of protein
diffusion in and escape from a corral. We have run the
simulations on a square lattice using both a square and
circular corral for comparison. For each simulation we
begin with 10 proteins placed randomly inside the corral,
and monitor their survival inside the corral over the length
of the simulation, as described above. In Fig. 3 we plot
results forP(t), where we have averaged the results over
10,000 runs. The diffusion coefficient,D, and the half-

width, R, of the square corral are 5z 1029 cm2 s21 and 60
nm, respectively. Various opening and closing rates are
indicated in Fig. 3. The results are plotted as lnP(t) versus
time, together with the theoretical predictions of Eqs. 5 and
6. We observe that, regardless of corral shape and over the
range of parameters plotted, escape of proteins from a
dynamic corral is well-described by single-exponential de-
cay to within fluctuations in the numerical results. Only at
very short times and whenWc is not very different fromWo

FIGURE 2 Radial concentration profiles are plotted at various times for three different values of the closing rate. We have chosenD 5 5 z 1029 cm2

s21, R 5 60 nm, andWo 5 10 s21, representative values for Band 3 in erythrocyte membranes. The proteins are initially equidistributed within the corral.
We have placed an absorbing boundary at 120 nm, far enough away to have little effect on escape from the circular corral. In (a) the corral remains open
and concentration profiles for normal diffusion are observed. In (b) and (c), whereWc 5 Wo andWc 5 100Wo, respectively, a flat distribution of proteins
is observed at all but very short times.

FIGURE 3 Results from Monte Carlo simulations for lnP(t) are plotted.
Broken curves are results from simulations with circular corrals, while
solid curves are results for square corrals. Gray curves are the theoretical
results of Eqs. 5 and 6. The half-width of the square corral isR 5 60 nm
andD 5 5 z 1029 cm2 s21. The areas of the square and circular corrals are
the same. From top to bottom,Wo (s21) andWc (s21) are, respectively: 5,
5120; 5, 640; 10, 1280; 10, 160; 20, 320; 20, 40.
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is biexponential decay apparent. Escape from both square
and circular corrals is seen to be well-described by a theory
for squares. That corral shape should have little effect on the
escape rate is consistent with Saxton’s (1995) results for
escape from a static corral, for which computed mean first
passage times for escape from corrals with a wide variety of
shapes were found to be nearly shape-independent.

The results plotted in Fig. 3 indicate that the survival
probability decays exponentially, as we already expected
from Eqs. 5 and 6 which, after a very brief time, describe the
escape of proteins from a dynamic corral as

P~t! < exp~2mt!, (7)

where

m 5
Wc 1 Wo 1 k

2 S1 2 Î1 2
4kWo

~Wo 1 Wc 1 k!2D, (8)

which is m2 defined by Eq. 6c. A protein’s escape rate
clearly depends on the rates at which the corral opens and
closes,Wo andWc, respectively, and on the open-state rate
constantk, which contains the influence of the other param-
eters of our model, i.e., the corral size and the diffusion
coefficient,D.

Our calculation ofk is presented in the Appendix. We
have assumed there that the corral is closed sufficiently long
between opening events for the proteins inside it to equili-
brate, so that each time the corral opens a protein can be
found anywhere within the corral with equal probability, as
illustrated by the profiles plotted in Fig. 2c. With an
equiprobable initial protein distribution, we calculate the
fraction of proteins remaining within the corral during the
period,t, in which it is open. The open-state rate constant,
k, in Eq. 8 is an average over all open periods, so we average
k(t) over an exponential distribution oft. The resulting
average open-state rate constant,k 5 k(Wc), then depends
on Wc, corral size, andD.

The open-state rate constantk for a square corral, derived
in the Appendix, is given by Eq. A3 in terms of one
numerical integral, which we compute to obtainm in gen-
eral. In the important limiting case where the gate closes
rapidly, i.e.,Wc .. DR22, whereR is the half-width of the
square corral, our expression fork simplifies to

k 5 Wc
1/2D1/2R21, Wc .. DR22. (9)

Eq. 9 for k can be easily understood in terms of the short
time,Wc

21, during which proteins can leave the corral when
the gate is open. Then essentially only proteins within a
length l ; =DWc

21 of the edge of the corral will escape, a
part of the corral that we refer to as the “transition region.”
If all proteins within the transition region of lengthl from
the edge of the corral escape when the gate closes, a fraction
1 2 2l/R of proteins that were in the corral when it opened
still remain, where we ignore contributions of orderl2. If
Wc

21 is small, Po(Wc
21) ' Po(0)(1 2 2l/R), so that the

survival probability can be approximated by an exponential.
In this case,k 5 2lWc/R ; =DWc/R. Comparing with Eq.
9, we see that the length of the transition region isl 5
1
2
=DWc

21 in the limit of fastWc. The open-state rate con-
stant,k, is simply the product of the rate to close and the
relative size of the transition region to the size of the corral;
k increases with increasing closing rates, since it takes
longer for proteins in a larger transition region to diffuse out
of the corral.

The escape rate,m, given by Eq. 8, takes on two limiting
forms that depend on the relative sizes ofk, Wc, andWo.
When the rates of closing and opening are both much faster
than the rate of escape from an open corral,

m 5 k
Wo

~Wo 1 Wc!
, Wc, Wo .. k, (10)

which is just the probability that the gate is open times the
rate of leaving an open corral. Since the average closing rate
is much greater thank in this limit, k appearing in Eq. 10 is
given by Eq. 9. If the corral is typically closed longer than
it is open,

m 5
WoD

1/2

RWc
1/2 , Wc .. Wo .. k. (11)

The escape rate is then simply the rate to open times the
fraction of proteins in the transition region of the corral. In
the limit wherek is much larger than both the rate to open
and close,

m 5 Wo, Wc, Wo ,, k, (12)

so that the rate at which the gate opens is rate-limiting. In
the slow-gating limit, Eq. 12, the escape rate is independent
of the size of the corral. Since for our assumptions to hold
Wc is typically greater thanWo, the crossover from the
limiting regimes of Eqs. 10 and 12 can be seen from Eq. 8
to occur wherek ' Wc. To estimate the location of this
crossover, we note thatk ' Wc when Wc ' DR22. The
crossover from slow to fast gating thus occurs whereWc

21 ;
R2/D 5 tD, the diffusion time, corresponding to an open
period sufficiently long for the transition region to encom-
pass the whole corral.

To assess the validity of the assumptions that underly our
prediction for the escape rate of membrane proteins from
dynamic corrals, we have compared the escape rate,m,
given by Eq. 8 with results of Monte Carlo simulations. We
have chosen two corral shapes for our simulations: a square
corral, for which our expression fork is derived, and a
circular corral whose area is the same as the square’s. We
plot the results of our simulations in Fig. 4 together withm
calculated using Eq. 8. The opening rates,Wo, used in the
simulations are 5, 10, and 20 s21; the closing rates,Wc,
range from 1 to 106 s21. The diffusion coefficient,D, and
the half-width,R, of the square corral are 5z 1029 cm2 s21

and 60 nm, respectively. The opening rates we have chosen
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for our simulations are also plausible values for the opening
rates of the “skeleton fence” that temporarily compartmen-
talizes membrane proteins (see below). For these choices of
D, R, andWo, the values ofWc over which we plot results
in Fig. 4 span a range in which the escape rate is almost
completely controlled by the rate of opening, i.e.,m ' Wo

for smallWc; to the largeWc regime wherem is given by Eq.
11. Each of these regimes is indicated in the figure. The
crossover from one regime to the other occurs whereWc ;
D/R2, which for the chosenR andD is Wc ; 100 s21. We
observe in Fig. 4 that the crossover indeed lies around this
value. To obtain good statistics, the simulations were run
with 10 proteins initially inside the corral and an ensemble
of 104 corrals. As in Fig. 3, single-exponential decay was
observed at all but very short times. The results plotted in
Fig. 4 were obtained by a linear fit to the computed lnP(t),
where the short-time contribution was excluded. Reason-
able agreement between theory and results of the numerical
simulations using both square and circular corrals is seen
over the complete range of parameters plotted in Fig. 4.

Using a two-state dynamic corral model, we predict the
average escape rate,m, in terms of the dynamic properties
and size of a single corral of the membrane. In SPT or
FRAP experiments information is provided about the diffu-
sion coefficient,Dmacro, for mobile proteins over larger
regions of the membrane of the cell. Values forDmacrohave
been typically observed to be one or more orders of mag-
nitude smaller thanD, where the latter has been measured
by SPT over length scales smaller than and on the order of
the corral size (Saxton and Jacobson, 1997; Kusumi et al.,
1998). The membrane consists of a meshwork of corrals of
varying size, shape, and gating dynamics. While corral
shape seems to have only a small influence on the escape
rate, as our simulations using square and circular corrals

indicate, corral size and dynamics strongly affect escape and
thusDmacro. We can estimateDmacro in terms of the corral
size and protein escape rate calculated above asDmacro '
^R2m(R)&, where the brackets denote an average over the
membrane. For example, the medianDmacro measured in
SPT experiments on Band 3 in erythrocyte membranes is
6.6 z 10211 cm2 s21 (Tomishige et al., 1997), from which,
together with the medianRof 55 nm, an average escape rate
2.2 s21 can be deduced. [Tomishige et al. (1997, 1998)
report a hopping rate of 2.8 s21 based on these values for
Dmacro andR, but assuming elliptical corrals.]

The extent to whichDmacro is regulated by the dynamic
cytoskeleton fence depends on the average corral opening
and closing rates,Wo andWc, respectively, as well asD and
R. We can understand the range of effects these parameters
have onDmacroby turning to the limiting expressions form,
given by Eqs. 10–12. When the gating rates are slow,
Dmacro5 ^R2& Wo. In this slow-gating limitDmacrois related
only to the rate at which the corral opens and its size. If both
Wo andWc are sufficiently fast,m is given by Eq. 11 and
Dmacro 5 ^R& WoD

1/2Wc
21/2. In this fast-gating regime,

Dmacro is expressed as the product of the opening rate,Wo,
andR2 times the fraction of proteins lying in the transition
region of the corral, averaged over the corrals of the cy-
toskeleton fence. In this limit,Dmacroincreases linearly with
R. Thus, when gating is fast, corral size has a more modest
effect onDmacrothan when gating is slow. This is due to the
fact that for given fast opening and closing rates, the frac-
tion of proteins escaping from the corral decreases with
increasingR, since the relative size of the transition region
to corral area varies asR21. We shall see below that the
faster-gating limit, whereDmacro increases linearly withR,
more nearly describes Band 3 in erythrocytes than does the
slow-gating limit.

Finite size of proteins

Our calculations of the escape rate of a membrane protein
from a dynamic corral have thus far neglected the finite
width of both the cytoskeleton that corrals the protein and
the cytoplasmic region of the membrane protein that inter-
acts with the corral. As a result of the finite thicknesses of
the corral and trapped protein, each a few nanometers, there
is a minimum distance,r, that the protein must traverse
when the gate is open before it actually escapes. This
distance would be about half the sum of the thicknesses of
the protein and barrier. For example, the diameter of the
spectrin cytoskeleton in erythrocytes is;6 nm (Boal and
Boey, 1995), as indicated in Fig. 1, while the diameter of the
cytoplasmic region of Band 3 is;2–3 nm (Tomishige,
1997), so thatr ' 4 nm. Band 3 must therefore move
laterally at least 4 nm to escape from an open corral before
the gate closes.

The minimum protein traversal distance,r, due to finite
thicknesses influences the open-state rate constant,k. We

FIGURE 4 Average escape rate,m, of a protein from a dynamic corral.
Curves are results from calculations using Eqs. 8 and A3. Results from
simulations using square and circular corrals are plotted as squares and
circles, respectively.D andR are the same as those used in Fig. 3. Values
of Wo andWc are indicated in the figure.
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can easily understand this influence for the case where the
closing rate is fast, andk is given by Eq. 9 whenr 5 0. The
transition region, whoser 5 0 length isl 5 1

2
=DWc

21 from
the edge of the corral whenWc is fast, shrinks tol 2 r '
1
2
=DWc

21 2 r, which clearly limits how largeWc can be
before proteins are trapped. For example, for Band 3 in
erythrocyte membranes, wherer ' 4 nm andD ' 5 z 1029

cm2 s21, Wc should be no greater than'104 s21. Faster
closing rates, within the framework of our dynamic corral
model, would essentially permanently confine Band 3 in-
side the corral.

In the Appendix we modify our expression fork to
account for finiter. In terms of this modifiedk, we plot the
escape rate,m, in Fig. 5 where we observe that, as expected,
m drops precipitously when the closing rate,Wc, is suffi-
ciently large. This rapid drop reflects the exp(2r2Wc/4D)
probability of a protein diffusing the required minimum
distancer during the very short time the gate is open. Fig.
5 indicates thatWc cannot, as anticipated above, be faster
than'104 s21 for erythrocytes. Since the size of the tran-
sition region depends only onD, r, andWc, a limit of Wc '
104 s21 should be quite typical for cells if the cytoskeleton
is regulating the lateral motion of membrane proteins.

SPT and laser tweezer experiments have to date provided
most directly values forR, D, andm, the latter obtained by
observing the diffusion of mobile proteins over the cell
membrane, as discussed above. Results for our model and
the measured values ofR, D, andm can help us pin downWc

andWo. The effective limit onWc which we have calculated
also imposes an effective range of possible opening rates,
Wo. When both the opening and closing rates of the corral

are fast, the escape rate, given by Eq. 11, ism 5 WoD
1/2/

RWc
1/2. Upon measuringm, R, andD, and since the maxi-

mum Wc ' 104 s21, an effective lower limit onWo can be
determined. For example, for erythrocytes,m, R, andD have
been reported to be 2.8 s21, 55 nm, and 5.3z 1029 cm2 s21,
respectively (Tomishige, 1997; Tomishige et al., 1998). The
maximum opening rate, given the experimentally measured
rates, would beWo ' 30 s21. When, however, the gate
opens slowly,m 5 Wo. Since for erythrocytesm ' 2–3 s21,
the average corral opening rates,Wo, would range between
;3 and 30 s21. Thus the observed thickness and widths of
the corrals and proteins,D, and the observed escape rate,
together with results from our model, limit the range of
values ofWo to only about an order of magnitude. We note
that the diffusion time within the corral,tD 5 R2/D, is
'0.007 s, and much less than the smallest value ofWo

21 in
this range. Thus our assumption of reequilibration of pro-
teins prior to opening appears fully justified.

In addition to measuringD, R, and m for Band 3 in
erythrocytes, Tomishige (1997) also reports measurements
of a corral opening rate of;14.3 s21. This result was
deduced by dragging a gold bead attached to Band 3 with
laser tweezers at various rates to determine the barrier free
path (BFP), by which it could be determined if the bead was
dragged a distance of one or more corrals. A dragging rate
of ;14 s21 per corral apparently dramatically increased the
BFP. Still, for a given dragging rate a distribution of BFPs
would be expected (Edidin et al., 1991). In the absence of
BFP distributions we can at best take the reported opening
rate to be suggestive. Nevertheless, it is reassuring that this
opening rate lies within the range consistent with the mea-
sured values forR, D, andm. TakingWo ' 14 s21, we can
estimateWc from Fig. 5, where we findWc ' 2 z 103 s21.
We note thatWc ' 4.5 z 103 s21 if we neglect the effect of
finite thickness in our calculations.

CONCLUDING REMARKS

A variety of experimental studies of protein motion in cell
membranes indicates that free diffusion of transmembrane
proteins is hindered by the cytoskeletal network directly
below the plasma membrane (Jacobson et al., 1995; Saxton
and Jacobson, 1997). A skeleton fence model, whereby
proteins are temporarily corralled to regions of order 0.01–
0.1 mm2 before moving over to a neighboring region, has
been proposed and supported by recent single particle track-
ing (SPT) and laser tweezer studies on numerous proteins
and cells (Sako and Kusumi, 1995; Saxton and Jacobson,
1997; Kusumi et al., 1998). The current, if only tentative,
picture confines proteins to cytoskeletal corrals until a con-
formational change in the corral or protein structure, or
position of the membrane with respect to the cytoskeleton,
allows the protein to move within the network and over the
membrane. Motivated by this description, we have studied a

FIGURE 5 Effects of finite thickness of the corral and protein on the
escape rate are shown. Log(m/Wo) is plotted against log(Wc) for D 5 5 z

1029 cm2 s21 and, from top to bottom,R 5 60, 140, 220, and 300 nm. The
thick, black curves were calculated accounting for a half-thickness ofr 5
4 nm; the thin, gray curves were calculated forr 5 0. Estimates for the
closing rate based on the measured escape rate, opening rate and corral size
(Tomishige, 1997; Tomishige et al., 1998; Tomishige and Kusumi, 1999)
are indicated with an O, accounting for finite thickness, and X, neglecting
this effect.
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simple dynamic corral model for the lateral diffusion of
transmembrane proteins.

In the dynamic model examined here, the corral fluctu-
ates between two metastable states, one of which traps the
protein while the other allows it to escape. These states
could be, for example, the associated spectrin tetramer on
the one hand, where the integrity of the cytoskeletal corral
is maintained and the protein confined, and the dissociated
dimer state on the other, in which the corral is open. This
mechanism has for some time been suggested to regulate the
lateral motion of proteins in cell membranes (Tsuji et al.,
1986, 1988; Tomishige, 1997; Tomishige and Kusumi,
1999). For this model, we find that the rate of closing
controls the size of the region within the corral from which
proteins can escape, which we refer to as the transition
region, while the rate of opening controls the rate at which
proteins escape once there. The overall escape rate is then
given by the product of the opening rate and the probability
of lying within the transition region. Using measured values
for Dmacro, R, andWo for Band 3 in erythrocytes, we have
been able to calculateWc.

Anywhere from,1% (Sheetz, 1983) to;5% (Liu et al.,
1981; Palek and Lux, 1983) of spectrin is believed to be in
the dissociated dimer state at any one time. Thus our esti-
mate thatWc:Wo is ;140:1, so that just under 1% of corrals
would be open at any one time, is consistent with the
hypothesis that dissociation/reassociation of spectrin tet-
ramers is responsible for gating. This possibility could be
explored further by SPT and laser tweezer experiments on
cells for which the spectrin content and fraction of spectrin
dimers is different from normal cells. In this case,R, Wo,
andWc would presumably change; if the former two could
be measured, as they have been in normal erythrocytes, then
Wc could be calculated and the ratioWo:Wc checked for
consistency. Since we observe in Fig. 5 that the thickness of
the cytoskeleton appears to affect the escape rate, modest
changes in the size and dynamics of the cytoskeletal net-
work could have a sizable effect onDmacro.

We must bear in mind, however, that the available body
of experimental data by no means rules out alternative
mechanisms for intercompartmental transport. SPT experi-
ments on cleaved Band 3 (Tomishige et al., 1998), where
the cytoplasmic portion of Band 3 is largely removed, reveal
Dmacroto be about six times larger than for normal Band 3,
though still an order of magnitude smaller thanDmicro. Thus
fluctuations in the distance between the cytoskeleton and
the membrane, or protein conformational changes, may be
the operative gating mechanism, at least to some degree. An
interesting alternative dynamic corral model appropriate for
this picture would describe the dynamic corral in terms of a
“gap” whose motion diffuses according to the thermal fluc-
tuations of the membrane, cytoskeleton, or protein. In this
model, the corral would open when the gap between the
membrane protein and cytoskeleton reaches a value large
enough for the protein to escape. A diffusive gate model has

been proposed and analyzed in the context of ligand-protein
binding kinetics (Zwanzig, 1992; Wang and Wolynes, 1993;
Eizenberg and Klafter, 1995).

Saxton (1995) has investigated protein escape from a
corral that could be described as static. Protein escape in this
model occurs with a certain probability every time the
protein enters a transition region at the edge of the corral. If
the escape probability from the transition region is much
less than 1, as it would typically be for the lateral diffusion
of proteins in cell membranes (Saxton, 1995), then the
escape rate for proteins from static corrals can be described
as the product of the escape probability from the transition
region and the attempt frequency, i.e., the average rate of
entering the transition region from the rest of the corral. The
size of the transition region would sensibly be about the
thickness of the cytoskeletal segment that has to be over-
come for the protein to escape; then what is left to determine
the escape rate is the probability that a protein can push its
way through to the other side of the barrier.

There is only indirect evidence, such as effects of tem-
perature on the barrier free path (Edidin et al., 1991), to
support a dynamic cytoskeleton fence model over a static
one, such as that studied by Saxton (1995) for the regulation
of diffusion of membrane proteins. Deciding between a
dynamic or static barrier for the cytoskeleton fence model
requires going beyond calculation of the average rate of
escape. To distinguish between these pictures, we need to
consider the fluctuations in the escape rate, which we ad-
dress in a future study.

APPENDIX

Our calculation of the survival probability of a protein in a dynamic corral,
Eqs. 1–6, requires a rate constant,k, for escape from an open corral. We
calculate the open-state rate constant for a square corral assuming proteins
within the corral are equidistributed when the corral opens. We choose a
square corral for convenience, since the number of proteins within it at a
given time is simply the product of the number within two one-dimensional
corrals. We thus first solve for the escape rate from the ends of an open
one-dimensional corral, assuming proteins to be equidistributed inside it
when it opens. The corral spans a length from2R to R.

We assume that the number of proteins,N(t), inside a corral that has
remained open a periodt has decayed exponentially,

N~t! 5 N~0!e2kt. (A1)

Then averagingN(t) over the distribution of open times,

Po~Wc
21! 5 Wc E

0

`

dt e2(k1Wc)t, (A2)

gives the rate constant,k, in terms of Po(Wc
21) 5 ^N(Wc

21)/N(0)&, the
open-state survival probability at the closing timeWc

21.

k 5 Wc

~1 2 Po~Wc
21!!

Po~Wc
21!

. (A3)
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If we assume that the proteins are found with equal probability any-
where in the corral when the gate opens, the number of proteins within a
one-dimensional corral at timet is

N1D~t! 5
N1D~0!

2R E
2R

R

dLE
2(L1R)

R2L

dxW~x, t!, (A4)

whereW(x, t) is the probability that a protein at timet has moved a distance
x from where it started (van Kampen, 1981)

W~x, t! 5
1

2~pDt!1/2 e2x2/4Dt. (A5)

Solving for N1D(t) we find

N1D~t!/N1D~0! 5 FS R

ÎDtD 1 SDt

p D1/2

R21~e2R2/Dt 2 1!, (A6)

whereF(x) 5 2/=p *0
x ds e2s2

is the error function.
To obtaink using Eq. A3, we need to first averageN(t)/N(0) over the

distribution of open times,t. For the one-dimensional corral,Po
1D(Wc

21) 5
Wc *0

` dt e2Wct [N1D(t)/N1D(0)]. Inserting Eq. A6 and solving the integral
(Gradshteyn and Ryzhik, 1980; Abramowitz and Stegun, 1965) we have
for the survival probability at timeWc

21

Po
1D~Wc

21! 5 1 1
D1/2

2Wc
1/2R

~e22RWc
1/2/D1/2

2 1!, (A7)

Inserting Eq. A7 into A3, we obtaink for a one-dimensional corral.
N(t)/N(0) for a square corral is the square ofN1D(t)/N1D(0). The open-

state survival probability at timeWc
21 for the square corral is found by

integrating

Po~Wc
21! 5 Wc E

0

`

dt e2WctSN1D~t!

N1D~0!D
2

. (A8)

Inserting Eq. A6 into A8, we solve Eq. A8 numerically and introduce the
result forPo(Wc

21) into Eq. A3 to obtaink.
Finally, it is straightforward to generalize our calculation ofk to the case

of a corral and proteins with finite thicknesses. To account for this
important size effect on the escape rate, we change the limits of integration
in Eq. A4 to account for the extra distancer that the protein must traverse
in order to escape before the gate closes. Then

N1D~t! 5
N1D~0!

2~R2 r! E
2(R2r)

R2r

dLE
2(L1R)

R2L

dx W~x, t!,

(A9)

for which we find, using Eq. A5,

N1D~t!/N1D~0! 5
1

2~R2 r! S~2R2 r!FS2R2 r

2ÎDt D
1 2SDt

p D1/2

~e2(2R2r)2/4Dt 2 1!D. (A10)

We solve for the open-state survival probability at timeWc
21, Po(Wc

21), by
numerical integration of Eq. A8 using Eq. A10 forN1D(t)/N1D(0). We then
insert this result into Eq. A3 to obtaink for the more general case where the
corral and proteins have finite thicknesses.
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