
A Kinetic Assessment of the Sequence of Electron Transfer from FX to FA
and Further to FB in Photosystem I: The Value of the Equilibrium
Constant between FX and FA

Vladimir P. Shinkarev,* Ilya R. Vassiliev,† and John H. Golbeck†

*Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, and †Department of Biochemistry and Molecular Biology,
Pennsylvania State University, University Park, Pennsylvania 16802 USA

ABSTRACT The x-ray structure analysis of photosystem I (PS I) crystals at 4-Å resolution (Schubert et al., 1997, J. Mol. Biol.
272:741–769) has revealed the distances between the three iron-sulfur clusters, labeled FX, F1, and F2, which function on the
acceptor side of PS I. There is a general consensus concerning the assignment of the FX cluster, which is bound to the PsaA
and PsaB polypeptides that constitute the PS I core heterodimer. However, the correspondence between the acceptors
labeled F1 and F2 on the electron density map and the FA and FB clusters defined by electron paramagnetic resonance (EPR)
spectroscopy remains controversial. Two recent studies (Diaz-Quintana et al., 1998, Biochemistry. 37:3429–3439; Vassiliev
et al., 1998, Biophys. J. 74:2029–2035) provided evidence that FA is the cluster proximal to FX, and FB is the cluster that
donates electrons to ferredoxin. In this work, we provide a kinetic argument to support this assignment by estimating the rates
of electron transfer between the iron-sulfur clusters FX, FA, and FB. The experimentally determined kinetics of P7001 dark
relaxation in PS I complexes (both FA and FB are present), HgCl2-treated PS I complexes (devoid of FB), and P700-FX cores
(devoid of both FA and FB) from Synechococcus sp. PCC 6301 are compared with the expected dependencies on the rate
of electron transfer, based on the x-ray distances between the cofactors. The analysis, which takes into consideration the
asymmetrical position of iron-sulfur clusters F1 and F2 relative to FX, supports the FX3 FA3 FB3 Fd sequence of electron
transfer on the acceptor side of PS I. Based on this sequence of electron transfer and on the observed kinetics of P7001

reduction and FX
2 oxidation, we estimate the equilibrium constant of electron transfer between FX and FA at room

temperature to be ;47. The value of this equilibrium constant is discussed in the context of the midpoint potentials of FX and
FA, as determined by low-temperature EPR spectroscopy.

INTRODUCTION

Photosystem I (PS I) of oxygenic photosynthesis is a mem-
brane-bound protein-cofactor complex that functions as a
light-dependent plastocyanin (or cytochromec6):ferredoxin
(or flavodoxin) oxidoreductase. Light-induced electron
transfer takes place in a series of reactions between neigh-
boring electron carriers that are embedded in this protein
complex. The electron carriers include a dimeric chloro-
phyll (Chl), which functions as the primary electron donor
(P700); a monomeric chlorophyll, which functions as the
primary electron acceptor (A0); an intermediate quinone
electron carrier (A1); and three [4Fe-4S] clusters (FX, FA,
and FB), which operate as the terminal electron acceptors.
The cofactors P700, A0, A1, and FX are bound to the two
main polypeptides, PsaA and PsaB, and the terminal elec-
tron acceptors FA and FB are bound to the small PsaC
subunit (reviewed in Golbeck, 1995; Brettel, 1997;
Fromme, 1999; Manna and Chitnis, 1999).

X-ray structure analysis of PS I crystals at 4 Å resolution
(Schubert et al., 1997; Klukas et al., 1999) has revealed the
distances between the three iron-sulfur clusters FX, F1, and
F2, which function on the acceptor side of PS I. There is a
general consensus on the assignment of the FX cluster that
is bound to the PsaA and PsaB polypeptides that constitute
the PS I core heterodimer. However, the correspondence of
the F1 and F2 clusters defined by the x-ray data to the FA and
FB clusters defined by their electron paramagnetic reso-
nance (EPR) spectra and cysteine ligands on PsaC remains
controversial (reviewed in Brettel, 1997; Kamlowski et al.,
1997; Vassiliev et al., 1998). In particular, the definite
assignment of FA and FB to electron density depends on
nonsymmetry elements in the polypeptide backbone of
PsaC, which are difficult to resolve on the 4-Å map.

The following are the main kinetically based findings
concerning the function of the iron-sulfur clusters FA and FB

in PS I:
1. Removal of PsaC by treatment with chaotropic agents

leads to the loss of NADP1 photoreduction. Rebinding of
PsaC to isolated P700-FX core restores NADP1 photore-
duction (Hanley et al., 1992).

2. Treatment of chloroplasts and PS I complexes with
HgCl2, which leads to selective inactivation of FB, inhibits
NADP1 (Fujii et al., 1990), ferredoxin, and flavodoxin
photoreduction (Jung et al., 1995; Diaz-Quintana et al.,
1998; Vassiliev et al., 1998).

3. Cluster FB is the main site of electron donation to
methyl viologen (Fujii et al., 1990).
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4. Cluster FA can still be photochemically reduced despite
the absence of FB (Golbeck and Warden, 1982; Fujii et al.,
1990) and can donate electrons to methyl viologen added in
high concentrations (Fujii et al., 1990; Vassiliev et al., 1998).

5. Both the amplitude and the decay rate of A430 of
HgCl2-treated particles are very similar to that of untreated
particles, with lifetimes in both cases of;40–45 ms (He
and Malkin, 1994);

6. The amplitude of the photovoltage change is lower in
HgCl2-treated PS I complexes than in the presence of FB

(Mamedov et al., 1998; Diaz-Quintana et al., 1998).
7. In spinach, inactivation of cluster FB by HgCl2 inhibits

electron transfer to the water-soluble electron acceptor
ferredoxin. However, the restoration of FB in PS I does not
lead to the restoration of ferredoxin and NADP1 reduction
(He and Malkin, 1994).

8. In cyanobacteria, reconstitution of iron-sulfur cluster
FB with b-mercaptoethanol, inorganic iron, and sulfide re-
sults in restoration of NADP1 (Jung et al., 1995), ferre-
doxin, and flavodoxin (Jung et al., 1995; Diaz-Quintana et
al., 1998; Vassiliev et al., 1998) photoreduction.

These findings imply that F1 [ FA and F2 [ FB. A
similar conclusion regarding the positions of FA and FB

relative to FX has been reached using site-directed mutants
with substitutions of the ligands to FA and FB (Golbeck,
1999) or charged amino acids surrounding FA and FB

(Fischer et al., 1997, 1999).
Although arguments have been put forward which state

that FA is distal to FX (values of redox potentials of FA and
FB, the absence of photoreduction of FA in chloroplasts with
FB modified by diazonium benzene sulfonate; Malkin,
1984, and others; see Brettel, 1997, and Scheller et al.,
1997, for discussions), the kinetic data are largely consistent
with the assignment of FB as the terminal electron acceptor
(particularly the requirement of the presence of FB for
NADP1 photoreduction and the accessibility of FB to ex-
ogenous (O2, MV) and endogenous (ferredoxin, flavodoxin)
acceptors).

A general consideration of the effect of distance on the
rate of electron transfer has been applied by Brettel (1997)
to the analysis of structure-function relationships in PS I
and, in particular, to electron transfer between the iron-
sulfur clusters. Here we further elaborate on these consid-
erations to assign the F1 and F2 iron-sulfur clusters in PS I
to FA and FB. It is shown that the kinetics of P7001 dark
relaxation in Hg-treated (only FA is present) PS I complexes
from Synechococcussp. are consistent with the identifica-
tion F1 5 FA. Thus the analysis of flash-induced kinetics of
P7001 based on rate versus distance relationships strongly
supports the following sequence of electron transfer on the
acceptor side of PS I: FX 3 FA 3 FB 3 Fd.

MATERIALS AND METHODS

Isolation of PS I complexes

PS I complexes fromSynechococcussp. PCC 6301 (TX-PS I) were isolated
using Triton X-100 and sucrose gradient ultracentrifugation (Golbeck,

1995). Isolated PS I preparations were resuspended in 50 mM Tris buffer,
pH 8.3, with 15% glycerol, frozen as small aliquots in liquid nitrogen and
stored at295°C before use. The preparation of FB-less, Hg-treated TX-PS
I complexes and the reinsertion of the FB iron-sulfur cluster were per-
formed as described previously (Jung et al., 1995) by adaptation of the
original protocol developed for higher plants (Sakurai et al., 1991) to
cyanobacteria. To obtain kinetic confirmation for the removal of a single
iron-sulfur cluster, we employedDA832 measurements and a multiple flash
excitation protocol developed by Sauer and co-workers (1978). An inde-
pendent estimation of FA and FB content is provided by low-temperature
EPR spectroscopy. Both approaches showed that treatment of the cya-
nobacterial PS I complexes with HgCl2 resulted in 90% destruction of the
FB iron-sulfur cluster and in the retention of 80% of the FA iron-sulfur
cluster (data not shown). Damage to the FX cluster during the PS I complex
isolation and subsequent HgCl2 treatment can be best assessed by estimat-
ing the contribution of the FX back-reaction to P7001 reduction in the
presence of methyl viologen. As follows from the kinetics measured in
previous work (Vassiliev et al., 1998) for the same material as used in the
present work, less than 8% of FA and FB is missing in the control, and less
than 10% of FX is damaged in the Hg-treated sample.

Time-resolved absorbance spectroscopy

Samples for optical experiments were suspended anaerobically in 25 mM
Tris buffer (pH 8.3) in quartz cuvettes with airtight stoppers. Triton X-100
was added to a final concentration of 0.04% to reduce light scattering.
2,6-Dichlorophenol-indophenol (DCPIP), sodium ascorbate, and methyl
viologen (all from Sigma, St. Louis, MO) were added where indicated. The
solutions were prepared in an anaerobic chamber using oxygen-free dis-
tilled water, with air replaced in a Thunberg tube by high-purity nitrogen.

The kinetics of the absorbance changes at 832 nm (DA832) and at 811
nm (DA811) were measured in a 10 mm3 4 mm cuvette placed in a
laboratory-built spectrophotometer described previously (Vassiliev et al.,
1998). The kinetics of the absorbance changes in the visible region were
measured with a custom-built single-beam spectrophotometer. A colli-
mated beam derived from a 400-W tungsten bulb was passed through a
5-cm water filter and a Jarrel Ash monochromator (slits set to provide 5-nm
bandwidths, FWHM), and the collimated beam was passed through a 10
mm 3 10 mm cuvette containing the sample. An identical monochromator
was placed between the sample and a negatively biased photodetector
(PIN-10D; United Detector Technology, Hawthorne, CA). The photocur-
rent was converted to voltage with a 10-kV resistor and amplified 500-fold
with an EG&G model 113A amplifier (bandwidth 100 kHz). The kinetics
were averaged 32 times and digitized with a Nicolet 4094A oscilloscope
interfaced via a NB-GPIB/TNT board (National Instruments, Austin, TX)
to a Macintosh 7100/80 computer. To reduce exposure of the sample to
actinic light, a Uniblitz VS25 shutter (Vincent Associates, Rochester, NY)
was placed between the first monochromator and the sample. The shutter
was opened 5 ms in advance of the excitation flash for a total period of 100
ms. In both NIR and visible kinetic measurements, single turnover flashes
were provided by a frequency-doubled (l, 532 nm), Q-switched (FWHM,
10 ns) Nd-YAG laser model DCR-11 (Spectra-Physics, Mountain View,
CA) at a flash energy of 10 mJ. The intervals between the flashes were 9 s
for the P700-FX core and 50 s in all other preparations. The multiexpo-
nential fits ofDA832 kinetics were performed by the Marquardt algorithm
in Igor Pro, version 3.14 (Wavemetrics, Lake Oswego, OR).

RESULTS

Kinetics of P7001 dark relaxation in control (FA

and FB present) PS I complexes in the presence
of a slow donor (DCPIP)

Fig. 1 shows typical kinetic traces of the flash-induced
absorbance change at 832 nm in an integral (FA/FB) TX-PS I
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complex fromSynechococcussp. PCC 6301 in the presence of
DCPIP and ascorbate. TheDA832 kinetics, which reflects the
P7001 dark relaxation, is presented on a logarithmic time scale
so that the charge recombination from A1

2 through FA
2 can be

visualized. The multiexponential fit of these kinetics shows at
least five different components with characteristic lifetimes of
;13 ms, 642ms, 14 ms, 98 ms, and 3.2 s and amplitudes of
;14, 5.6, 14.5, 40.3, and 25.1%, respectively.

The different components of P7001 dark relaxation can
be identified using preparations missing some or all of the
iron-sulfur clusters. P7001 reduction in P700-FX cores
(without FA/FB) is dominated by kinetic components with
lifetimes of ;0.2 ms and 2 ms, which represent, either
directly or indirectly (through A1), the back-reaction from
FX

2 (Vassiliev et al., 1997; see also Figs. 3 and 4 below).
Similarly, P7001 reduction in P700-A1 cores (without FX
and FA/FB) is dominated by kinetic components with life-
times of;10 and 70ms, which represents, either directly or
indirectly (through A0), the back-reaction from A1

2 (Brettel
and Golbeck, 1995). In addition, the decay of the triplet
state of chlorophyll (Brettel and Golbeck, 1995; Vassiliev et
al., 1997) contributes to the tens-of-microseconds kinetic
phase, but this can be differentiated from the A1 back-
reaction by a flash saturation study and a wavelength de-
pendence in the near-IR. Note that the above kinetic assign-
ments only apply to reaction centers with missing iron-
sulfur clusters; they do not pertain to reaction clusters with
prereduced iron-sulfur clusters, where electrostatic interac-
tions between iron-sulfur clusters may affect the kinetics

and/or midpoint potentials of the acceptors (see Brettel,
1997). Because freshly isolated membranes show flash-
induced kinetics with almost exclusively the millisecond
and second components present (Vassiliev et al., 1997), the
faster phases in TX-PS I complexes most likely result from
differential damage to the iron-sulfur clusters in a minority
of detergent-isolated PS I complexes. The slower millisec-
ond components (;10 and 200 ms) are due to charge
recombination between [FA/FB]2 and P7001. The slowest
(seconds) component was assigned to the reduction of
P7001 by DCPIP (for discussion see Vassiliev et al., 1997).

Kinetics of P700 dark relaxation in HgCl2-treated
(FB-less) PS I complexes in the presence of a
slow electron donor for P7001

Fig. 2 shows the kinetic trace of the absorbance change at
832 nm in a TX-PS I complex treated with HgCl2 to remove
the FB iron-sulfur cluster. The multiexponential fit of these
kinetics shows components with characteristic lifetimes of
;12 ms, 208ms, 3 ms, 18 ms, and 112 ms and amplitudes
of ;19.3, 8.3, 7.8, 44.2, and 18.2%, respectively. The
slowest component is approximated by a baseline that con-
tributes 2.2% to the overall amplitude. Thus the main effect
of the HgCl2 treatment is an increase of the contribution
from the millisecond components of the P7001 dark relax-
ation at the expense of the slow (seconds) component due to
P7001 reduction by DCPIP. The fraction of these millisec-
ond components is increased from;55% in control TX-PS I
complexes to;70% in a TX-PS I complex treated with HgCl2.

The result of the effect of HgCl2 on the kinetics of P7001

dark relaxation agrees well with similar results obtained for

FIGURE 1 Kinetics of absorbance changes at 832 nm in integral (FAFB)
TX-PS I complexes fromSynechococcussp. PCC6301. Reaction medium
(anaerobic): 25 mM Tris buffer (pH 8.3), 0.04% Triton X-100, 4mM
DCPIP, and 10 mM Na ascorbate. Chla concentration, 50mg/ml. Each
component of the multiexponential fit is plotted with a vertical offset
relative to the next component (with a longer lifetime) or the baseline; the
offset is equal to the amplitude of the latter component.

FIGURE 2 Kinetics of absorbance change at 832 nm in HgCl2-treated
PS I complexes fromSynechococcussp. PCC6301. The reaction medium
is as in Fig. 1.
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spinach (He and Malkin, 1994) andSynechocystissp. PCC
6803 (Diaz-Quintana et al., 1998). In previous experiments
on HgCl2-treated PS I complexes fromSynechococcussp.
PCC 6301 (Vassiliev et al., 1997), we reported a significant
amplitude of the submillisecond component due to electron
transfer from FX

2 to P7001 in RCs with a damaged FA

cluster. This component is practically absent (,10%) in
preparations used in the present (this work) and previous
(Vassiliev et al., 1998) studies, attesting to the low amount
of damage to FA in these preparations.

Kinetics of dark relaxation in PS I core
(FA/FB-less) complexes

To monitor the kinetics of the back-reaction between FX
2

and P7001 we studied core PS I complexes where both FA

and FB are absent. Fig. 3 shows the multiexponential fit of
the kinetics of P7001 dark relaxation in P700-FX core
complexes measured at 811 nm. The observed absorbance
change has components with characteristic times of;9 ms,
103ms, 576ms, and 3.6 ms and amplitudes;9.2, 7.6, 71.2,
and 7.2%, respectively, plus a baseline contributing;4.8%.
To definitely assign components of the P7001 dark relax-
ation to its reaction with FX

2 and to exclude A1
2 as a possible

contributor to the observed kinetics, we measured the flash-
induced changes in the blue region where the FX iron-sulfur
cluster absorbs (Parrett et al., 1989; Franke et al., 1995).

Both P700 and FX contribute to absorbance changes in
the blue region. Their individual differential spectra can be
obtained by using methyl viologen, which functions as an
electron acceptor, preventing the back-reaction between FX

2

and P7001 (Yu et al., 1995). In the spectral region from 400
to 480 nm, we found virtually no absorbance changes at 415

nm (Fig. 4) and 445 nm (not shown) in the presence of
methyl viologen. Therefore these wavelengths represent the
cross-over points of the P700/P7001 difference spectrum.
The absorbance change measured at these points in the
absence of methyl viologen should be ascribed entirely to a
change in the FX oxidation state. Fig. 4 shows a multiex-
ponential fit of kinetics measured at 415 nm. The major
decay phase has a lifetime of 550ms (61.4%); it is preceded
by a 153-ms phase (23.9%) and followed by a 3-ms phase
(10.6%) and a slower decaying component approximated
with a baseline (4.1%).

The main difference between the measurement of
P700-FX core complexes at 415 nm and 811 nm is the
presence of a fast 9-ms component at 811 nm. As we have
shown for both P700-FX core and integral PS I complexes,
components with lifetimes of;10 ms are not saturated with
flash energies that saturate the major (hundreds of micro-
seconds to milliseconds) components and hence correspond
to the decay of the triplet state of chlorophyll (Vassiliev et
al., 1997). It follows that the major kinetic components at
811 nm (576ms and 3.6 ms) and 415 nm (550ms and 3 ms)
arise from the reaction between FX

2 (directly or via A1) and
P7001. Note that the 250-ms kinetic phase of NIR absor-
bance change in PS I complexes with FA and FB (but not FX)
prereduced by dithionite before the flash was attributed to
A1

2 back-reaction and was explained assuming that the
P7001FX

2 state is lower in free energy than the P7001A1

state when FA and FB are prereduced (Brettel, 1989, 1997).
This consideration does not apply to the experimental data
presented in this paper on PS I complexes devoid of FA and
FB.

FIGURE 4 Kinetics of absorbance change at 415 nm in P700-FX core
complexes fromSynechococcussp. PCC6301 in the absence (bottom
curve) and in the presence (curve in the center) of 280 mM methyl
viologen. The reaction medium is as in Fig. 1, but the Chla concentration
was 8mg/ml.

FIGURE 3 Kinetics of absorbance change at 811 nm in P700-FX core
complexes fromSynechococcussp. PCC6301. The reaction medium is as
in Fig. 1.
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It is generally assumed that the monomolecular back-
reaction between a particular acceptor and P700 should
follow monoexponential kinetics, but in many instances
(see Figs. 1–4) the experimental data are best fitted by two
or more components. The nature of this heterogeneity in the
dark relaxation of P7001 is not fully understood, but it may
be related to the existence of different conformational (sub)
states in the reaction clusters. Such a heterogeneity has been
reported in PS I (Schlodder et al., 1998) and RCs from
purple bacteria (McMahon et al. 1998).

In the following calculations, we use the average time
determined as (t1A1 1 t2A2 1 t3A3)/(A1 1 A2 1 A3), where
ti are the lifetimes andAi are the amplitudes of the single
exponentials, corresponding to the same reaction of P1 dark
reduction. Using the multiexponential analysis data from
Figs. 3 and 2, we estimate the average lifetimes to be used
in further calculations:tXP ' 0.85 ms [5 (0.576 z 71.2 1
3.6 z 7.2)/(71.21 7.2)] for the FX

2 3 P7001 back-reaction
in P700-FX cores andtAP ' 40.7 ms [5 (3 z 7.81 18 z 44.21
112 z 18.2)/(7.8 1 44.2 1 18.2)] for the FA

2 3 P7001

back-reaction in HgCl2-treated (FB-less) PS I complexes.

DISCUSSION

Data from x-ray structural analysis of PS I and
low-molecular-mass [4Fe-4S] ferredoxins

The preliminary x-ray structure analysis of crystals of PS I
depicts the geometry of iron-sulfur clusters on the acceptor
side of PS I (Schubert et al., 1997; Fromme, 1999; Klukas
et al., 1999). The center-to-center distance is 15 Å between
Fx and F1 and 12 Å between F1 and F2. The x-ray data do
not allow one to determine the identity of F1 and F2 (see
Brettel, 1997, and Kamlowski et al., 1997, for a full discus-
sion). The distance between F1 and F2 can be modeled by
the bacterial ferredoxins for which precise x-ray structural
analysis has been carried out. For example, in the [4Fe-4S]
ferredoxin fromPeptococcus asacharolyticus(formerly P.
aerogenes; Adman et al., 1976), the closest edge-to-edge
distance between the iron atoms in different clusters is 8 Å,
while the center-to-center distance is 12 Å, which is in good
agreement with the 12-Å distance determined between clus-
ters F1 and F2 in PS I.

Application of the relationship between electron
transfer rate and distance among the electron
carriers on the acceptor side of PS I

The rate of electron transfer between electron carriers de-
creases exponentially with distance, and this dependence
has been tabulated for different reactions in proteins (see,
for example, Likhtenshtein, 1988; Moser et al., 1995; Gray
and Winkler, 1996). The most detailed “ruler” has been
suggested by Dutton and co-workers (Moser et al., 1995),
who deduced this relationship from an analysis of electron

transfer in photosynthetic proteins. According to this for-
mulation (Moser et al., 1995), the logarithm of the rate
constant of intraprotein electron transfer between two elec-
tron carriers with edge-to-edge distanceR can be described
by the following equation:

log k 5 152 0.6R2 3.1~DG0 1 l!2/l (1)

whereR is the distance in Å,DG° is the standard reaction
free energy in eV, andl is the reorganization energy in eV.
The most essential consequence of this dependency is a
one-order change in the rate of electron transfer in proteins
with a change of distance of 1.7 Å.

Schlodder et al. (1998) estimated from the temperature
dependence of electron transport that the reorganization
energy for the reaction between A1 and FX has a value of
;1 eV. In the following calculations, we assumel 5 1 eV
for reactions between all iron-sulfur clusters in PS I.

By applying Eq. 1 to the acceptor side of PS I, we can
estimate (Fig. 5) that the rate of electron transfer between
FX and F1 and between F1 and F2 is faster than 10ms (see
also Brettel, 1997). The distance between F1 and F2 and
P700 exceeds 35 Å, which requires the experimentally
observed millisecond reduction of P7001 by these acceptors
to occur indirectly via thermal repopulation of FX. There-

FIGURE 5 Dependence of the logarithm of the rate of electron transfer
in biological systems on the distance between cofactors described by Eq. 1
and the suggested rate constants of electron transfer between the acceptors
of PS I, based on data of x-ray structural analysis. Values ofl 5 1 eV and
DG0 5 0 eV were used in calculations to draw the theoretical line. The
edge-to-edge distance between iron sulfur centers (indicated byvertical
lines) is assumed to be equal to the center-center distance minus 4 Å.Inset:
Scheme of electron transfer in the PS I derived from application of the
correlation between rate of electron transfer and x-ray distances between
the cofactors to the data of x-ray structural analysis. The rates of electron
transfer from F1 to P700 and from F2 to P700 are significantly slower than
back-reactions via FX (directly or via A1).
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fore the distances between the cofactors strongly support a
linear chain of electron transfer between FX, F1, and F2
during the dark relaxation of P7001:

P7004 Fx7 F17 F2 (2)

Fig. 5 (inset) shows the scheme of electron transfer in PS I
that takes into account these considerations.

Identification of F1 as FA, based on an analysis of
the kinetics of P7001 dark relaxation in PS I
complexes containing only FA

We now analyze in detail the kinetics of electron transfer
between the iron-sulfur clusters of PS I. We make no a
priori assumptions about the sequence of electron transfer;
rather we consider the two possible positions of FA and FB.
The linearity of electron transfer between FX, F1, and F2 and
the noncontroversial identification of FX leads to only two
alternatives, either FA [ F1 or FA [ F2. Depending on the
assumption about the identity of the FA cluster, the kinetics
of the dark relaxation of P700 should be different because of
the asymmetrical positions, and hence different distances, of
F1 and F2 relative to FX. The results of our theoretical
calculations with experimental observations are compared
below.

Assumption that F1 [ FA

Let us assume, first, that FA [ F1. In this case the center-
to-center distance between FX and F1 [ FA is short,;15 Å,
and the edge-to-edge distance can be as short as 11 Å.
Applying the rate versus distance dependency to this case
(Fig. 5), we find that the rate constant of electron transfer
between these clusters is in the range of 105–106 s21, i.e.,
this electron transfer is significantly faster than the back-
reaction from FX

2 to P7001 (t ' 0.85 ms in P700-FX core
complexes). In this case electron transfer in Hg-treated PS I
complexes during dark relaxation can be represented by the
following scheme (we ignore the very small minority of PS
I complexes with damaged FA):

PFXF1 ¢O
kXP

P1FX
2 F1-|0

kX1

k1X

P1FXF1
2 (3)

Here P stands for P700.kXP, kX1, andk1X are the respective
rate constants of electron transfer. The system of differential
equations describing the kinetics of electron transfer accord-
ing to Scheme 3 is

5
d@P1FX

2 F1#

dt
5 2~kXP 1 kX1!@P

1FX
2 F1# 1 k1X@P1FXF1

2#

d@P1FXF1
2#

dt
5 kX1@P

1FX
2 F1# 2 k1X@P1FXF1

2#

(4)

Its solution, with the initial conditions [P1FX
2F1](0) 5 1 and

[P1FXF1
2](0) 5 0, can be written in the following general

form:

@P1FX
2 F1# 5

h 1 k1X

h 2 m
eht 2

m 1 k1X

h 2 m
emt

(5)

@P1FXF1
2# 5

kX1

h 2 m
eht 2

kX1

h 2 m
emt

whereh 5 2s 2 =s2 2 r, m 5 2s 1 =s2 2 r, ands 5
(kXP 1 k1X 1 kX1)/2, r 5 k1XkXP. Whens2 .. r, theh and
m can be approximated by the following simple expressions:

h < 22s; m < 2r/2s (6)

From Eq. 5 it follows that the normalized kinetics of the
dark relaxation of flash-induced P1 ([ [P1FX

2F1] 1
[P1FXF1

2]) according to Scheme 3 is described by two
exponential components (F stands for the relative amplitude
of the fast component, andS stands for the relative ampli-
tude of the slow component):

@P1# 5
h 1 k1X 1 kX1

h 2 m
eht 2

m 1 k1X 1 kX1

h 2 m
emt ; Feht 1 Semt

(7)

According to Eq. 7 the fraction of the fast component of
P7001 dark relaxation is

F 5 ~h 1 kX1 1 k1X!/~h 2 m! (8)

For the case considered here (FA [ F1) the estimated rate
constant of electron transfer between FX and F1 (105-106

s21) is significantly larger than the rate constant of the
back-reaction from FX

2 to P7001 (103-104 s21), i.e.,
kX1 .. kXP. From Eq. 6 it follows that in this caseh '
2(kX1 1 k1X 1 kXP), m ' 2kXPk1X/(kX1 1 k1X). Using
these approximations and Eq. 8, we find that the fraction of
the fast component is very small:

F < kXP/~kX1 1 k1X! ,, 1 (9)

Thus the kinetics of P7001 dark relaxation according to
Scheme 3 is described by a “slow” exponent with a lifetime,

tsl ; 21/m < ~kX1 1 k1X!/~kXPk1X! (10)

This lifetime of P7001 dark relaxation can be derived by
assuming equilibrium between iron-sulfur clusters FX and
F1 during dark relaxation (see, for example, Shinkarev and
Wraight, 1993).

From Eq. 10 it follows that the time of the slow milli-
second component (2–200 ms) of P7001 dark relaxation,
tsl, is determined by the lifetime of electron transfer from
FX to P700, tXP, and by the equilibrium constantLX1

(5 kX1/k1X) responsible for redistribution of the electron
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between FX and F1 [ FA:

tsl 5 tXP~1 1 LX1! (11)

The fast partitioning of the electron between FX and FA in
Scheme 3 leads to the absence of any significant FX com-
ponent (,2 ms). This agrees well with measured kinetics of
P7001 dark relaxation in PS I complexes treated with HgCl2

(Fig. 2), where the slow millisecond FA/FB component
(2–200 ms) is;70%.

Assumption that FA [ F2

Let us now assume that FA [ F2. In this case F1 5 FB is
damaged by HgCl2, and the distance between FX and FA

will be 22 Å (18-Å edge-to-edge distance). According to
Fig. 5 this distance corresponds to an optimum rate of
electron transfer in the region of 101 to 102 s21, i.e., life-
times of ;10–100 ms. The electron transfer between FX

and FA 5 F2 in this case is essentially slower than the
back-reaction between FX

2 and P7001, and we can no longer
assume a fast equilibrium between FX and F2. The scheme
of electron transfer in PS I after a single flash will be as
follows:

PFXF2 ¢O
kXP

P1FX
2 F2-|0

kX2

k2X

P1FXF2
2 (12)

This scheme is analogous to Scheme 3 considered above.
Therefore, the general solution for P7001 dark relaxation
(Eqs. 5–8) is valid here, too, if one replaceskX1 with kX2

andk1X with k2X. However, in the case considered here the
rate of electron transfer between FX and P700 is essentially
larger than the rate of electron transfer between FX and FA,
i.e.,kXP .. kX2. In this caseh ' 2(kXP 1 k2X 1 kX2), m '
2k2X, and the fraction of the fast component is close to 1:

F <
kXP

kXP 1 kX2
< 1 (13)

Thus, for the case considered here, the fast component will
have a time' tXP and a relative amplitude oftX2/(tX2 1
tXP) ' 1. UsingtX2 ' 10–100 ms (estimated from Eq. 1 or
from Fig. 5) andtXP ' 0.85 ms, we can estimate that the
fraction of the fast component must be greater than 0.92 and
the slow component smaller than 0.08. Thus we see that the
assumption that FA [ F2 leads to the conclusion that the
amplitude of the slow (;10 and 200 ms) components
should be practically zero. This contradicts the experimental
data on the kinetics of P7001 dark relaxation in HgCl2-
treated PS I complexes presented in Fig. 2. The fraction of
the millisecond components (;10 and 200 ms) of P7001

dark relaxation in these preparations is;70%. This fraction
will become even higher after exclusion of the fastest com-
ponent (12ms) that arises from either3Chl formation or
from damage to some of the PS I clusters. The presence of

a significant fraction of slow component(s) (.70%) coin-
cides well with other results (Fujii et al., 1990; He and
Malkin, 1994; Vassiliev et al., 1997; Diaz-Quintana et al.,
1998).

Similarly, this scheme predicts that the relative amplitude
of the fast component must be greater than 92%. Our
experiments (Fig. 2) show that no more than;8.3% of the
submillisecond (0.2–2 ms) phase is present in the kinetics of
PS I after treatment with HgCl2. This is significantly less
than 92%, which should be observed in this case.

Therefore, we must draw the conclusion that the identity
FA [ F2 suggested above is inconsistent with the experi-
mental data. Only the identity FA [ F1 can explain the
absence of a significant fast submillisecond (0.2–2 ms) FX

component and the presence of a significant millisecond
(2–200 ms) FA/FB component, providing a reasonable, non-
contradictory description of the dark relaxation of P7001

observed experimentally in HgCl2-treated PS I complexes.
Even with the large uncertainties in the theoretical treatment
(the value ofl, the geometry of the cubane clusters, and
hence the precise edge-to-edge distance), we suggest that
the correlation between the rate of electron transfer and
distances between cofactors and the theoretical analysis of
electron transfer in PS I strongly supports the following
sequence of electron transfer: FX 3 FA 3 FB 3 Fd. The
above considerations are summarized in the flow chart
shown in Fig. 6.

From the chart in Fig. 6 one can see that the above
conclusion for the sequence of electron transfer on the
acceptor side of PS I will be valid insofar as the rate
constant of electron transfer between FX

2 and P1 is larger
than the rate constant for the electron transfer between FX

and F2 and less than the rate constant of electron transfer
between FX and F1, i.e., kX1 . kXP . kX2, or

log~kX1! . log~1/tXP! . log~kX2! (14)

Assuming the validity of Eq. 1, we can solve the latter
inequality for (DG° 1 l)2/l:

0.36# ~DG0 1 l!2/l # 1.72 (15)

Assuming thatDG° 5 20.1 eV, we have the following
range for reorganization energies for which this inequality
will hold (we used here the relationship (DG° 1 l)/l ' l 1
2DG°, which is valid whenulu .. uDG°u): 0.56# l # 1.92.

Thus our conclusion about the sequence of electron trans-
port will hold for a wide range of reorganization energies.

Estimation of equilibrium constant of electron
transfer between FX and FA

The established sequence of electron transfer between the
iron-sulfur clusters in PS I allows one to determine the value
of the equilibrium constant of electron transfer between FX
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and FA from the kinetics of P7001 dark relaxation. Accord-
ing to Eq. 11 the equilibrium constant of electron transfer
between FX and FA (LXA) can be estimated from the values
of the lifetimes of P7001 dark reduction by FA

2 (tsl) and by

FX
2 (tXP):

LXA 5
tsl 2 tXP

tXP
<

tsl

tXP
(16)

Based on the kinetics of the P700-FX core complex (Fig.
3), we estimate thattXP ' 0.85 ms. Based on the P7001

reduction kinetics of the HgCl2-treated PS I complex (Fig.
2), we estimate thattAP ' 41 ms. ThusLXA 5 (41 2
0.85)/0.85' 47. This value corresponds to a;100-mV
difference between the midpoint potentials of FX and FA at
room temperature. Note that this calculation uses data from
preparations where FB and where FA/FB are missing,
thereby avoiding problems with electrostatic interaction
from prereduced electron acceptors. A considerably higher
value of this equilibrium constant is estimated based on the
generally accepted midpoint potentials of the iron-sulfur
clusters (FX, 2705 mV (Chamorovsky and Cammack,
1982); FA, 2540 mV (Evans and Heathcote, 1980)),
measured using EPR at low temperatures:LXA 5
10(7052 540)/60 ' 562.

This discrepancy cannot be resolved by using the lifetime
of the main (largest) component of the P1 reduction by FX

2

instead of the average time used above for the calculation of
equilibrium constantLXA. Indeed, according to the data in
Fig. 4 this time is equal to 0.55 ms, which corresponds to an
equilibrium constantLXA 5 (41 2 0.55)/0.55' 73.5.

One possible reason for the discrepancy is that the mid-
point potential of FX may be affected by electrostatic inter-
action with FA

2 and FB
2. This potential was determined by

low-temperature EPR under conditions where both FA and
FB were prereduced (Chamorovsky and Cammack, 1982). A
proper comparison with the kinetics of P7001 dark relax-
ation should use the measurement of midpoint potential of
FX under conditions where both FA and FB are oxidized.
The influence of an electrostatic interaction between the
iron-sulfur clusters on the kinetics and thermodynamics of
electron transfer is consistent with the fact that the FX

back-reaction, measured under conditions where both FA

and FB are reduced by dithionite, is consistently faster than
when measured in a P700-FX core complex. In control and
HgCl2-treated TX-PS I complexes in the presence of dithio-
nite at pH 10, where FA and FB (when present) are both
reduced, thetXP ' 0.35 ms and 0.56 ms, respectively (data
not shown).

This agrees well with the lower value of the midpoint
potential of FX (2670 mV) estimated for the P700-FX core
complex by transient optical spectroscopy (Parrett et al.,
1989). The equilibrium constant estimated using the lat-
ter value of the midpoint potential of FX (LXA 5
10(6702 540)/60' 147) is closer to the value estimated here
from the kinetics of P7001 dark relaxation at room temper-
ature. The other reason for the discrepancy may be a pos-
sible temperature dependence of the equilibrium constant of
electron transfer between FX and FA.

FIGURE 6 The flow chart of the logic for determining the sequence of
the electron transfer in the PS I, based on the analysis of the kinetics of
P7001 dark relaxation.
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Rationale for uphill electron transfer on the
acceptor side of PS I

The values of midpoint redox potentials of iron-sulfur clus-
ters in PS I (2540 mV for FA and2590 mV for FB) indicate
the presence of an uphill electron transfer between FA and
FB. This needs to be examined from a functional point of
view. Such an uphill electron transfer step assumes that the
redox equilibrium between FA and FB will be shifted toward
FA. Low-potential exogenous acceptors of electrons in PS I
can interact with oxygen and produce superoxide O2

2. The
interaction of FA with oxygen is slower than with FB (at
least in the presence of MV) (Fujii et al., 1990; Vassiliev et
al., 1998). Thus redistribution of the electron to the FA

cluster will decrease the rate of electron donation from FB to
oxygen when ferredoxin is not in its binding site and should
thereby maintain a high quantum yield of NADP1 reduction
relative to formation of O2

2. It may also protect the reaction
center from oxidative destruction by O2

2. At the same time,
the total driving force for electron transfer to ferredoxin
bound to the FB site is energetically favorable and will be
sufficient for nearly irreversible transfer of the electron to
ferredoxin.

Using an equation similar to Eq. 16, we can estimate the
equilibrium constant of electron transfer between FA and FB

at room temperature as 0.8# LAB # 4.5. The range of
values of the equilibrium constant is determined by the
range of average lifetimes of the main components of
P7001 dark relaxation. This estimate shows that the energy
difference between FA and FB at room temperature is less
than that predicted by the values of the redox potentials.
This is likely because the redox potential of FB was exper-
imentally determined by EPR in the presence of reduced FA.
The redox potentials of FA and FB were also determined
under conditions where ferredoxin (or flavodoxin) is not
bound to the PS I complexes. Binding of ferredoxin (or
flavodoxin) may change the equilibrium constant of elec-
tron transfer between FA and FB. We will report elsewhere
a study of the thermodynamics of electron transport be-
tween FA and FB at room temperature in an attempt to
further explore the issue of uphill electron transfer on the
acceptor side of PS I.

CONCLUSIONS

We show that the kinetics of P7001 dark relaxation in the
presence of FA only and in the presence of both FA and FB

can be used to identify the sequence of electron transfer
through the iron-sulfur clusters FA and FB. By applying the
dependence of the electron transfer rate versus distance to
the kinetics of electron transfer in PS I, and by taking into
consideration the asymmetrical position of iron-sulfur clus-
ters FA and FB relative to FX, we are able to determine that
the sequence of electron transfer is FX 3 FA 3 FB (3 Fd).
Using this sequence of electron transfer during P7001 dark

relaxation, we estimate that the equilibrium constant be-
tween FX and FA at room temperature is;47 in HgCl2-
treated (FB-less) PS I complexes.

Note added in proof: On the basis of a comparison between experimental
and theoretical values of spin relaxation enhancement effects on P7001 in
PS I particles containing and lacking the FB cluster, Lakshmi, Jung,
Golbeck, and Brudvig recently showed that iron-sulfur cluster FA is closer
to P700 than the FB cluster. This agrees with the orientation for FA and FB

determined in the present study. Biochemistry 1999, 38: 13210–13215.

This work was supported by a grant to JHG from the National Science
Foundation (MCB-9723661).
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