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ABSTRACT A theory of molecular motors is presented that explains how the energy released in single chemical reactions
can generate mechanical motion and force. In the simplest case the fluctuating movements of a motor enzyme are well
described by a diffusion process on a two-dimensional potential energy surface, where one dimension is a chemical reaction
coordinate and the other is the spatial displacement of the motor. The coupling between chemistry and motion results from
the shape of the surface, and motor velocities and forces result from diffusion currents on this surface. This microscopic
description is shown to possess an equivalent kinetic mechanism in which the rate constants depend on externally applied
forces. By using this equivalence we explore the characteristic properties of several broad classes of motor mechanisms and
give general expressions for motor velocity versus load force for any member of each class. We show that in some cases
simple plots of 1/velocity vs. 1/concentration can distinguish between classes of motor mechanisms and may be used to
determine the step at which movement occurs.

INTRODUCTION

Molecular motors are single protein molecules that convert
chemical energy, usually in the form of adenosine triphos-
phate (ATP) into mechanical forces and motion. Most or-
ganisms have many different motors that are specialized for
particular purposes such as cell division, cell crawling,
maintaining cell shape, movements of internal organelles,
etc. A large number of biological motors and motorlike
proteins have been discovered and characterized in recent
years. (Spudich, 1994), and there is considerable variation
in design and behavior among them, ranging from the
two-headed “hand-over-hand” motion of the kinesins and
the “rowing” motion of the myosins, to the crawling of
DNA and RNA polymerases, to the proton-powered rotary
motions of bacterial flagellar motors and F1Fo ATP syn-
thases. Despite this diversity, several lines of evidence
suggest that many such “mechanochemical” proteins, which
use chemical energy to carry out mechanical processes,
share fundamental underlying features that can be under-
stood with the same basic concepts and theories.

Together with the discovery of new motorlike systems, a
growing body of experimental results has been accumulat-
ing, particularly from experiments carried out on single or
few motor molecules (Kuo and Sheetz, 1993; Svoboda et
al., 1993; Finer et al., 1994; Yin et al., 1995; Coppin et al.,
1996, 1997; Higuchi et al., 1997; Hua et al., 1997; Mehta et
al., 1997; Schnitzer and Block, 1997; Vugmeyster et al.,
1998). The variables most naturally and accurately mea-
sured in such single-molecule experiments are force, dis-
tance, and time. These are also the variables of greatest
functional significance for molecular motors. The availabil-

ity of distance, force, and velocity as direct experimental
observables is beginning to provide a body of basic facts on
which well-founded theories of molecular motor function
can be built. Recent theoretical efforts have produced both
detailed models for specific motor molecules (Derenyi and
Vicsek, 1996, 1998; Guajardo and Sosa, 1997; Elston et al.,
1998; Julicher and Bruinsma, 1998; Wang et al., 1998a),
and investigations of the basic physics of mechanochemical
systems (Magnasco, 1993, 1994; Millonas and Dyckman,
1994; Millonas, 1995; Astumian and Bier, 1994; Astumian,
1997; Julicher et al., 1997). A common theme is that motor
proteins may generate forces and vectorial motion by rec-
tifying thermal fluctuations. In such “fluctuation ratchet”
models, chemical energy does not produce force directly.
Rather, the motor diffuses along its track (or some other
position coordinate) by random walk, and the chemical
reaction merely biases the walk so that steps in the forward
direction are more probable than backward steps.

We begin by outlining the general principles by which the
theory of stochastic process is applied to molecular motors.
The motor molecule is thought of as a small machine
operating in a thermal bath, subjected to large fluctuations
in conformation and chemical state. These microscopic
fluctuations all but disappear in the long-term and large-
number ensemble averages involved in bulk experiments,
but are direct observables in experiments involving few or
single molecules. This physical picture of the motor as a
microscopic fluctuating machine corresponds to a random
walk or diffusion process on the potential energy surface of
the system. The diffusion fluxes that result from this random
walk yield both rates of chemical reaction and mechanical
velocities for the motor.

This leads to a simple but general theory by which any
molecular motor or molecular machine can be modeled. We
derive well-founded general expressions for kinetic rate
constants that depend on external force, which can then be
incorporated into kinetic schemes to predict mechanochem-
ical properties. The stochastic theory thus makes the connec-
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tion between the microscopic view in which protein confor-
mational changes, external forces, and thermal fluctuations are
explicitly accounted for, and the macroscopic and phenome-
nological view of chemical kinetics. As examples of the the-
ory, we investigate four simple classes of molecular motors,
and explore the generic behavior within each class.

MOLECULAR MOTORS AS
STOCHASTIC MACHINES

A molecular motor is an enzyme (or in some cases a
complex between an enzyme and a track such as actin or
DNA) that generates force and motion. The ensemble av-
erage behavior of a motor can be described phenomenolog-
ically by standard chemical kinetics if rates of reaction are
related to the rates of physical motion, and if rate constants
vary with external force in a known way. Thus, on the
macroscopic scale a molecular motor is seemingly simple
and well-behaved. However, if it were possible to follow in
atomic detail the actual events that take place in a single
motor protein, a very different view would emerge. On the
microscopic scale the motor protein is more naturally de-
scribed as a small mechanical device driven through a cyclic
series of conformational states by a combination of rapid
chemical events (such as binding of small “fuel” molecules,
bond-breaking processes, and unbinding processes), and
incessant, rapid thermal fluctuations. In many cases thermal
fluctuations are an essential component of the molecular
mechanism of the motor/enzyme. For example, the ability
of proteins to catalyze chemical reactions depends on ther-
mally induced crossing of potential energy barriers, and the
ability of molecular motors to generate forces may depend
on thermally driven diffusion from one site on a filament
(such as actin, DNA, or a microtubule) to the next. More
importantly, it is at the level of such microscopic fluctua-
tions that the connection between “chemical” quantities,
such as free energies of reaction and kinetic rate constants,
and “mechanical” quantities such as forces and velocities, is
most naturally made. It is the purpose of this paper to
outline the connection between these two views, in part to
justify and give a microscopic interpretation to the macro-
scopic, phenomenological view, and in part to show how the
microscopic view can be used to make detailed predictions
regarding molecular motor mechanisms.

System and bath variables

On the microscopic scale a motor molecule (and its track, if
any) is a small machine that can change conformation. All
conformations can be described by a set of conformational
variables,x1, x2, x3, etc., which should rigorously include all
the degrees of freedom (atom positions, bond angles, bond
distances, etc.) of the molecule or molecules that make up
the motor; but such a detailed description is obviously
neither practical nor desirable in most cases. In the exam-

ples below we will assume that the most important motions
of the molecule can be described with just a few parameters,
which will be called system variables. As will be seen
below, the system variables describe motions that are not at
equilibrium on the time scale of the experimental observa-
tions. They are usually large, concerted protein movements
such as the opening of a binding cleft, a change of molecular
shape, binding or unbinding of a motor domain to a polymer
track, or a movement of the protein along the track. They
may also be smaller movements that are important to chem-
ical reactions, such as the stretching and breaking of chem-
ical bonds. Some variables may, like normal coordinates,
describe more than one simultaneous motion.

Proteins contain many degrees of freedom, so the system
variables do not describe most of the possible motions of the
protein. As long as the “extra” motions are rapid, so that
they are approximately at equilibrium on the time scale of
the experiment, their effects can be accounted for as part of
the background of equilibrium fluctuations that are always
present. The extra degrees of freedom in both the protein
and the surrounding solvent will therefore be referred to as
bath variables. The bath variables do not appear explicitly in
any of the equations or results of the stochastic theory. Their
effects on the system variables are accounted for indirectly,
as fluctuating stochastic forces or as contributors to poten-
tials of mean force and to frictional forces.

Following Magnasco (1994) and Astumian and Bier
(1994) we divide the system variables into two classes,
corresponding to orthogonal axes in the conformational
space of the motor. Because a molecular motor must have a
source of chemical energy, at least one of the system vari-
ables must be a measure of progress of the chemical reac-
tion, and will be called the chemical variable. All others will
be called mechanical variables. If the chemical reaction
cannot be described by a single coordinate, more chemical
variables can be added without fundamentally changing the
theory. For motors powered by energy sources other than a
chemical reaction (for example, a proton gradient), the
chemical variables can be redefined appropriately. The op-
erative property is that progress along a chemical axis is
accompanied by a chemical change (with its associated
change in thermodynamic free energy), but does not involve
net movement of the motor as a whole.

Of the mechanical variables, at least one must give the
position of the motor. For motors such as myosin, kinesin,
and RNA polymerase, the position variable is the location of
the motor protein along its track (microtubule, actin fila-
ment, or DNA double helix, respectively). For rotary mo-
tors, such as the bacterial flagellar motor or the F1Fo ATP
synthase, the position variable is the rotational angle. As
with the chemical variable, extra position variables can be
added as needed to describe systems that are more complex.
The distinguishing characteristic in this case is that motion
along a position variable can be unbounded; that is, the
motor can move as far as it likes. For the purposes of this
paper we will designatex1 as the chemical variable andx2
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as the position variable. Thenx3, . . . , xn are mechanical
variables that describe internal motions within the motor
protein. By definition, motion along these “internal” vari-
ables is bounded.

State space of a motor molecule and the
potential of mean force

The system variables define ann-dimensional state space
for the motor,x1, . . . , xn. Each point in the state space
represents a unique conformation of the motor molecule.
Associated with each conformationx1, x2, . . . , xn is a free
energy,V(x1, x2, . . . ,xn), called the potential of mean force
(McQuarrie, 1976). It has the property that its derivatives
with respect tox1, . . . , xn are the (time or ensemble) aver-
age forces,̂Fi&, along those variables:

^Fi& 5 2SV~x1, . . . ,xn!

xi
D

xjÞxi

, all system variablesxi

(1)

The potential of mean force can in principle be calculated
(in the canonical ensemble) by integrating the Boltzmann
factor, exp[2U(x1, x2, . . . ,xn, y1, y2, . . . ,ym)/kT], over the
bath variables,y1, y2, . . . , ym, holding the system variables
constant:

V~x1, . . . ,xn! 5 2kT lnHEE
· · ·EexpS2U~x1, x2, . . . ,xn, y1, y2, . . . ,ym!

kT Ddy1dy2· · ·dymJ
(2)

whereU(x1, x2, . . . , xn, y1, y2, . . . , ym) is the full potential
for all degrees of freedom in the system, including protein,
solvent, and other solution variables. Both entropic and
enthalpic contributions to the free energy are included in
the potential of mean force, so both entropic and mechan-
ical forces are accounted for. Because the potential of
mean force is an equilibrium quantity, all bath variables
(which do not appear inV) are implicitly assumed to be
at equilibrium.

For the simplest case, where the motor is described by
only two system variables, the potential of mean force,V(x1,
x2), defines a two-dimensional potential energy surface on
which the molecular motor moves (see Fig. 1). Along a line
parallel tox1, the chemical variable, this surface will look
like a typical reaction free energy diagram, with local min-
ima representing stable species separated by free energy
barriers that determine the probability of transitions among
the minima, and hence determine the rates of chemical
reactions. After each chemical turnover the enzyme must
return to its initial state, and the free energy must have
decreased by a fixed amount (closely related to the macro-
scopic free energy for the chemical reaction). Therefore, the
free energy surface is periodic in the chemical variable
except for a linear term that accounts for the free energy of
reaction. Along a line parallel tox2, the position variable,
the surface gives the local free energy changes associated
with movement of the motor along its track. Inasmuch as the
track is periodic, the potential must also be periodic, and in
the absence of external forces the overall free energy change
in one full step along the track,d, is zero. For example, for
kinesin/tubulin,x2 would be the position of kinesin along a
microtubule, and the free energy surface alongx2 may have
a periodic series of minima representing the stable binding
sites for kinesin on the microtubule. Altogether, the poten-

FIGURE 1 (A) Hypothetical potential energy surface (potential of mean force) for a simple motor with two system variables. The surface is periodic, with
four unit cells shown. The trajectory in the lower right shows the path of a hypothetical system point executing a random walk on the surface. (B) Simulated
run of position versus time data, calculated using the Langevin equations (Eqs. (4)) for a two-dimensional system with the potential surface in (A). (C)
Kinetic scheme overlaid on the potential energy surface in (A). The fine lines show the boundaries of the regions corresponding to each macroscopic
intermediate species. Each macroscopic species is identified with a minimum of the potential, and transitions between species are associated with low
energy pathways between minima.
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tial must satisfy (Magnasco, 1994)

V~x1 1 Dx1, x2, . . .! 5 V~x1, x2, . . .! 1 DV

V~x1, x2 1 d, . . .! 5 V~x1, x2, . . .!,
(3)

whereDV is a constant,Dx1 is the period alongx1, andd is
the period alongx2 (i.e., the step size for the motor).

In a molecular motor the mechanical and chemical vari-
ables must be coupled in some way so that progress along
the chemical reaction leads to movement. The nature of this
coupling is contained in the contours ofV(x1, x2, . . . , xn)
(see below). Therefore, all the important features of a mo-
lecular motor are determined by the potential of mean force,
and the choice ofV(x1, x2, . . . , xn) defines the mechanism
and properties of the motor (see below).

Stochastic equations of motion for a motor

So far there is nothing specifically microscopic in our
description of a molecular motor. The chemical and me-
chanical operation of the motor is described by a potential
energy functionV, and the movements of the motor are
movements of a point on ann-dimensional potential energy
surface. On the macroscopic scale this motion would be
governed by classical equations of motion, which would
predict smooth trajectories through the molecule’s confor-
mation space. On the microscopic scale, however, the in-
teraction of the system with the bath variables, representing
the solvent and all degrees of freedom not explicitly ac-
counted for in the system variables, is important. At a given
temperature,T, each of the bath variables has energy of the
order ofkT. For a microscopic motor this energy is signif-
icant compared to the features of the potential energy sur-
face, and is usually much larger than the kinetic energy
associated with the system variables. The bath variables
may therefore have large effects on the motion of the system
variables, but it is assumed that these effects are random in
a sense to be defined below.

This physical picture is well described by a system of
classical Langevin equations (Kubo et al., 1995; Chan-
drasekhar, 1943),

g1ẋ1 5 2
V

x1
1 F1~t! 1 dF1~t!

g2ẋ2 5 2
V

x2
1 F2~t! 1 dF2~t!

(4)

···

gnẋn 5 2
V

xn
1 Fn(t)1dFn~t!

whereg1, g2, . . . ,gn are damping constants,dF1, dF2, . . . ,
dFn are random bath forces, andF1(t), F2(t), etc. are exter-
nal forces which may include, for example, a load force

opposing the motion of the motor. These external forces
may depend on time but are assumed not to depend on the
system variables.

The classical inertial forces,miẍi, have been neglected in
Eq. 4, which means that all motions are overdamped, and
there are no oscillations or other “reactive” effects. This is
a good approximation for the relatively slow time scale of
much of the experimental data on molecular motors. Only
very fast motions (vibrations of parts of the motor mole-
cules with frequencies of a megahertz or higher) show
significant inertial behavior in proteins, and these are aver-
aged out on the slow time scale of the experimental mea-
surements (from 0.1 ms to seconds or minutes). The damp-
ing terms,giẋi, are simple frictions, and do not allow for any
“memory” (forces caused by reaction of the bath at a later
time due to motions inx at an earlier time) on the experi-
mental time scale. The effects of the bath variables appear
in three ways in Eq. 4: in the damping terms on the left-hand
side, giẋi; in the stochastic forces on the right hand-side,
dF1, dF2; etc.; and in the potential of mean force,V. The
stochastic forces are defined to have zero mean (any force
that does not average to zero is included in the “external”
forcesF1, F2, etc):

^dFi~t!& 5 0, all i (5)

In addition, the fact that the damping terms are written as
simple frictions requires that the stochastic forces have
d-function time correlation (Mori, 1965; Kubo et al., 1995):

^dFi~t!dFi~t 1 t!& 5 2gikTd~t!
(6)

^dFi~t!dFj~t 1 t!& 5 0, i Þ j

The d-function in Eqs. 6 means that a force fluctuation at
time t is completely uncorrelated with another force fluctu-
ation an infinitesimal time later. The value of the force at
any one time is taken to have a Gaussian distribution. This
is consistent with a physical situation in which the actual
forces are much faster than the time between experimental
observations, so the apparent force is the sum of many small
impulses. Notice also that Eqs. 6 do not depend on the
absolute timet, but only on the time difference,t. Thus, as
would be expected for a bath at equilibrium, the statistical
properties of the bath forces depend only on time intervals
and not on the absolute value of time. Finally, the bath
forces acting on different variablesi and j are uncorrelated
at all times.

Further insight into the nature of the stochastic forces is
provided by the spectral density of fluctuations, which is
just the Fourier transform of the correlation function:

^udFi~v!u2& 5 E
2`

`

^dFi~t!dFi~t 1 t!&eivtdt

(7)

5 2gikT

544 Keller and Bustamante

Biophysical Journal 78(2) 541–556



According to the right-hand side of Eq. 7, the intensity of
fluctuations ford-function correlated forces is independent
of frequency, and hence is often called white noise.

Both of the approximations above—neglect of inertial
forces andd-function correlation of the stochastic forces—
can be relaxed if necessary (Mori, 1965); but doing so
greatly complicates both the mathematics and the interpre-
tation of the results. In the absence of any experimental
evidence that these complications are needed, we adopt the
simpler theory.

The Smoluchowski equation

Equations 4–6 correspond to a system moving on a poten-
tial energy surfaceV(x1, x2, . . . , xn), subjected to white
noise of intensity 2gikT at all frequencies. The presence of
random forces causes the trajectory of the system point,
[x1(t), x2(t), . . . , xn(t)] to be random as well. Individual
trajectories therefore have little significance by themselves.
The important quantities are those that describe the statistics
of many trajectories, and the proper solution to the Langevin
equation (Eq. 4) is a probability distribution of trajectories.

The approximations made in the previous section—the
fact that the bath forces lose all correlation after an infini-
tesimal time, and the neglect of inertial forces so that the
equations of motion (Eq. 4) are first-order in time—mean
that the system loses all memory of previous positions after
each step. The motion ofx1(t), x2(t), etc. is therefore a
Markov walk or diffusion process (Kubo et al., 1995),
described by a probability density,w(x1, x2, . . . , xn; t), for
observing the walker at locationx1, x2, . . . , xn at time t,
given that it had distributionwo(x1, x2, . . . ,xn) at the initial
time, to. Because probability is conserved,w must obey a
continuity equation:

w

t
1 ¹ z J 5

w

t
1 O

i51

n
Ji

xi
5 0 (8)

where¹ 5 (/x1, /x2, . . . , /xn) is an n-dimensional
gradient, andJ 5 (J1, J2, . . . , Jn) is the n-component
probability current density. For ann-dimensional biased
diffusion process the current density is:

Ji 5 2
kT

gi

w

xi
1

fi
gi

w (9)

wherefi is the force acting along theith dimension of the
state space due both to the potential and external forces, but
not the stochastic force:

fi 5 2
V

xi
1 Fi~t! (10)

The first term in Eq. 9 is a diffusion current with diffusion
constantDi 5 kT/gi, in accordance with the Einstein relation
betweenD andg. The second term is a drift current due to

forces acting on the random walker. The sign of the external
force,Fi(t), is chosen so that a positive force gives rise to a
positive contribution to the current,Ji. In the molecular
motor field it is conventional to express measured quantities
in terms of load force, which is effectively the negative of
Fi as written in Eqs. 9 and 10. We adhere to general usage
for the sign of the force in the present section, but will
switch to the molecular motor convention in the next and
subsequent sections, where the application is more specifi-
cally to molecular motors.
Substituting Eqs. 9 and 10 into Eq. 8 yields the Smolu-
chowski equation:

w

t
1 O

i51

n S2 kT

gi

2w

xi
2 1

1

gi



xi
~fiw!D 5 0 (11)

In the one-dimensional case this reduces to

w

t
2

kT

g

2w

x2 1
1

g



xFS2 V

x
1 F~t!DwG 5 0 (12)

The Smoluchowski equation is a second-order partial dif-
ferential equation that can be solved forw(x1, x2, . . . ,xn; t)
at any timet, given a known distribution,wo, at the initial
time to. Oncew is known,J can be found from Eq. 9.

Physical interpretation of the stochastic theory
for molecular motors

Equations 8–12 govern all the behavior of a molecular
motor, including its chemical kinetics, the average force and
velocity generated by the motor, and the fluctuations about
these mean values. The functionw(x1, x2, . . . , xn; t) is the
probability that the motor will be found in the conformation
given byx1, x2, . . . , xn at time t, and contains all informa-
tion on both the average motion of the molecular motor, and
on its statistical fluctuations.

Consider the hypothetical potential energy surface for a
molecular motor,V(x1, x2), shown in Fig. 1A. The motor
has only two degrees of freedom (one chemical variable and
one mechanical variable), so the free energy surface is also
two-dimensional. According to the stochastic theory, the
operation of a single motor during a single cycle is a random
walk on this surface. The surface shown in Fig. 1A is
periodic along the chemical axis (except for a uniform tilt)
and along the position axis, as is required for periodic
chemical turnovers and periodic movement. For clarity, we
have constructed a case where the distances between fea-
tures along the chemical axis are similar to those along the
mechanical axis, but the scales may be very different in real
motors. For example, the movements involved in chemical
bond breaking are usually on the angstrom scale, while
motor stepping movements can be several nanometers.
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Four unit cells are shown, each of which contains three
potential energy minima (labeled A, B, and C in the unit cell
in the upper right). Each minimum can be reached from the
neighboring minima by low-energy “passes” between them.
Together these passes define a low-energy path through the
conformational space of the motor. The low-energy path, in
turn, defines the most probable sequence of conformational
changes as the motor goes through one mechanochemical
cycle. During a cycle the diffusing system point will tend to
stay near the minima of the deep wells, but will occasionally
make transitions between wells through the passes. Hence
the wells correspond to the stable states that would be found
in kinetics experiments, and the low-energy passes between
the wells define the reaction coordinates for transitions
between kinetic intermediates.

The entire surface has a uniform tilt along the chemical
axis. The drop in energy in one unit cell is the constant
energy,DV, in Eq. 3. The tilt represents the thermodynamic
driving force for the chemical reaction, and biases the
diffusion process toward the products of the chemical reac-
tion and away from reactants. At a given instant of time the
system point may step in any direction, but over many steps
the system will, on average, drift in the direction of the tilt.

The long trough in the center of Fig. 1A is the crucial
region where chemistry is coupled to mechanical motion. As
long as the low-energy path is parallel to the chemical variable
(as it is for transitions between the three closely spaced wells)
no net change in position takes place. Experimentally, the
motor would be seen to fluctuate about a fixed location on its
track while purely chemical processes take place; but in the
trough region the tilt of the potential in the chemical direction
drives movement along the mechanical direction, and chemical
energy is transduced into mechanical motion.

Fig. 1B is a run of simulated single molecule data (motor
position versus time) for a motor with the potential surface
in Fig. 1 A. The simulation was carried out by numerically
integrating the Langevin equations (Eq. 4) for the chemical
and position variables,x1 andx2, with V given by the surface
in Fig. 1A, zero external forces,Fi(t), and a stochastic force,
dFi(t), given by Eqs. 5 and 6. Only the intrinsic fluctuations
of the system itself are shown; no attempt has been made to
add the instrumental noise present in experimental data.
While the motor goes through the purely chemical part of its
cycle, its position fluctuates rapidly, but the average veloc-
ity is zero. As the system enters the trough region a rapid
stepping motion is observed with a large positive velocity.
A second, smaller step occurs as the system falls from the
left-hand well (labeled A in Fig. 1C) to the lower well (C
in Fig. 1 C). After these steps the average position again
becomes constant and the average velocity drops to zero.
Though this is a purely hypothetical example, the qualita-
tive behavior—rapid steps separated by relatively long
pauses—is similar to that observed in real motors (for
examples see Coppin et al., 1996, 1997; Hua et al., 1997;
Schnitzer and Block, 1997).

Connection to chemical kinetics: first-order
rate constants

From the discussion above it is clear that the detailed,
mechanical view that comes naturally from the stochastic
theory is closely related to the simpler view that comes from
chemical kinetics. Fig. 1C shows the potential energy
surface in Fig. 1A overlaid with a kinetic scheme. Each
potential well is identified with a kinetic intermediate, and
the population,pi, of each intermediate is the integral of the
probability densityw(x1, x2) over the zone surrounding the
corresponding well:pi 5 *zone i w(x1, x2)dx1dx2, etc. The
kinetic scheme is thus a “coarse-grained” version of the
stochastic picture. In place of a continuous diffusion pro-
cess, we now have transitions among discrete states A–C. In
place of the continuous probability density,w(x1, x2), we
now have a set of discrete populationspA, pB, pC; and in
place of the continuous current density,J(x1, x2), we have
discrete currents (rates of reaction)dpA/dt, dpB/dt, dpC/dt.
The potential energy surface thus determines the kinetic
mechanism for the motor. Conversely, knowledge of the
kinetic mechanism gives information about the main fea-
tures of the potential.

It is therefore possible to use a mixture of stochastic theory
and kinetic information (from experiments) to build a detailed
model for any molecular motor. In particular, the stochastic
formalism can be used to calculate the rate constants for each
kinetic transition. The calculated rate constants depend on the
shape of the potential energy surface and on externally applied
forces. Thus, the stochastic theory makes it possible to find rate
constants as functions of external force,F.

Consider a single first-order chemical process, say, be-
tween species C and species A through the trough in the
middle of Fig. 1 C. In the region between C and A the
potential energy surface is shaped like a mountain pass (i.e.,
a saddle point), with negative curvature along the minimum
energy path and positive curvature in the orthogonal direc-
tion. The boundary between A and C is defined to go
through the saddle point at the top of the pass. Lets be the
distance along the minimum energy path between C and A,
and lett be a variable perpendicular tos at all points. If the
transitions between C and A are slow compared to the
diffusion time within the well, the system point will wander
up and down the walls of the pass as it approaches the
saddle point. It is then reasonable to make the approxima-
tion that the system is at equilibrium with respect to move-
ments alongt (perpendicular to the minimum energy path),
and the nonequilibrium dynamics are accounted for by
movements alongs alone. The potential of mean force can
then be redefined in the neighborhood of the pass by aver-
aging overt:

e2V~s!/kT 5 Ee2V~s,t!/kTdt,

where V(s, t) is the potential of mean force for the full
two-dimensional surface, andV(s) is the new, one-dimen-
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sional potential of mean force for movements only alongs.
The variables now plays the role of a one-dimensional
reaction coordinate that involves concerted changes in both
the chemical state of the motor and the physical position of
the motor. Thus, for local transitions along the path from C
to A, the problem has been reduced from two dimensions to
one. As long as equilibrium is rapid alongt, V(s) still
(implicitly) accounts for the effects of two dimensions.
Effectively, t has been included in the bath variables.
The kinetic rate constants for a one-dimensional, first-order
transition between any two species,

A %
kf

kr

B,

can readily be found from the Smoluchowski equation (see
above). Consider a steady-state process for which all quan-
tities, including the currents and probability densities, are
constant in time. Lets 5 0 at the leading edge of the region
corresponding to A,s 5 , at the boundary between the A
and B regions, ands 5 L at the far edge of region B. For a
one-dimensional system at steady state, the current density,
J, must be constant ins, so from Eq. 9 we have

J 5 const.5 2
kT

g

dw

ds
2

1

gSdV

ds
1 FDw (13)

whereF is an external load force along the local reaction
coordinate,s. The form of Eq. 13 assumes that the motor
molecule is rigid enough so that force components along
directions other thans have no significant effect on the
kinetics. The sign ofF has been chosen opposite to the usual
convention for force (and also opposite to the convention
used in Eqs. 4–12), but is in keeping with the usual defi-
nition of force in the molecular motor field, where a positive
(load) force opposes the movement of the motor, and hence
contributes negatively toJ.
Solving for w(s) we obtain

w~s! 5 2e2~V~s!1Fs!/kTFE
0

s

e~V~s9!1Fs!/kTds9
Jg

kT
2 eV~0!/kTw~0!G

(14)

Now we require that the integral ofw(s) over the A region
equal the population of the (biochemical) state A,pA, and
the integral over the B region equal the population of state
B, pB:

E
0

,

w~s!ds5 pA, E
,

L

w~s!ds5 pB (15)

Taking the integral of Eq. 14 over regions A and B yields a
set of two linear equations that can be solved forJ as a

function of pA andpB:

pA 5 2
Jg

kT
SA 1 NAw~0!

(16)

pB 5 2
Jg

kT
SB 1 NBw~0!,

where

NA 5 E
0

,

e2~V~s!2V~0!1Fs!/kTds, NB 5 E
,

L

e2~V~s!2V~0!1Fs!/kTds

(17)

SA 5 E
0

,

e2~V~s!1Fs!/kTs~s!ds, SB 5 E
,

L

e2~V~s!1Fs!/kTs~s!ds,

and

s~s! 5 E
0

s

e~V~s9!1Fs!/kTds9. (18)

Solving for J yields

J 5 SkT

g

NB

NASB 2 NBSA
DpA 2 SkT

g

NA

NASB 2 NBSA
DpB (19)

Comparing this to the form expected for a first-order reac-
tion at steady state,J 5 kfpA 2 krpB, gives the desired
expressions for the forward and reverse rate constants as
functions of load force:

kf~F! 5
kT

g

NB

NASB 2 NBSA
,

(20)

kr~F! 5
kT

g

NA

NASB 2 NBSA

Fig. 2 b gives examples of howkf(F) and kr(F) vary with
force for a simple piecewise-linear potential that has two
wells separated by a barrier. The potential is of the type
shown in Fig. 2a, but with symmetric wells (Dsf 5 Dsr 5
Ds 5 2.5 nm,L 5 2, 5 10 nm,DV0 5 0, DV‡ 5 V(L) 5
12.5 kJ/mol). When the applied force is large and negative,
the forward rate constant is approximately linear in force:
k } (Fc 2 F)/g, whereg is the damping constant andFc is
a constant offset force. Likewise, at large positive forces the
reverse rate constant is approximately linear. This limit
arises when the drift velocity alone dominates the transition
rate, and both the potential energy barrier and back diffusion
are unimportant.

When the applied force is positive, the forward rate
constant,kf(F), appears approximately exponential, consis-
tent with the Arrhenius form,k } exp[(DG‡ 2 FDs)/kT],
whereDG‡ is an activation free energy andDs is a charac-
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teristic length. Similarly, the reverse rate constant appears
approximately exponential at negative forces. Because it is
simple and familiar, the Arrhenius form is commonly used
in molecular motor theories (Wang et al., 1998a, b). The
activation free energy,DG‡, is usually interpreted as a
barrier height andDs is interpreted as a step size for the
motor. However, log plots of many calculations like the one
in Fig. 2 b show that the rate constants are not exponential
in force. In particular, a fit of the rate constants to an
exponential function yields different values ofDG‡ andDs
from one range of forces to another. The Arrhenius form is
thus useful as a generic fitting function over a limited range
of forces, but the values ofDG‡ and Ds should be inter-
preted with caution.

For a potential with two wells separated by a barrier, as
in Fig. 2 a, the rate constants are most sensitive to the
distances from the well bottoms to the barrier top (Dsf and
Dsr), the size of each well (, andL 2 ,), the barrier height
(or activation energy,DV), and the energy difference be-
tween wells (DV0). Once these parameters are specified, the
detailed shape of the potential has relatively little effect.

Second-order rate constants

The results above apply only for first-order processes, but
many models for molecular motors and molecular machines
will include second-order steps that are affected by external
force. For example, consider a motor for which movement

and binding of a fuel molecule occur on the same step:

M 1 T ^
k1~F!

k21~F!

MT mechanochemical binding

whereM is the motor molecule,T is the fuel molecule, and
k1(F) and k21(F) are force-dependent rate constants. The
fact that the rate constants depend on force implies that the
binding step involves net motion. Part of the binding energy
is therefore converted into mechanical work.

Every binding process must involve at least two parts: a
purely second-order process in which two molecules come
into loose contact by diffusion alone, and a first-order
process in which the two molecules undergo conformational
changes that result in a more strongly bound state. We
therefore divide the single step above into an equivalent
two-step process:

M 1 T^
kD

k2D

M9T ^
k1~F!

k921~F!

MT

whereM9T is a short-lived, loosely bound intermediate. The
rate constants for the first step,kD andk2D, are assumed to
be large compared tok91 andk921, soM9T is approximately
at equilibrium with the free speciesM andT. Assuming that
the diffusion process is not affected by external force (i.e.,
that external force acts on the protein but not on the fuel
molecule directly), onlyk91 and k921 are force-dependent.
Therefore (M9T) > (kD/k2D)(M)(T) and the effective rate

FIGURE 2 (a) Piecewise linear potential energy function with two wells separated by a potential energy barrier. The potential is defined by eight
parameters (DV(0), DV, DV0, DV(L), Dsf, Dsr, ,, andL) as shown in the figure. (b) Forward and reverse rate constants and reaction free energy as functions
of load force. The curves were calculated from a potential of the type shown in (a) with DV(0) 5 DV0 5 DV(L) 5 0, DV 5 12.5 kJ/mol,Dsf 5 Dsr 5
2.5 nm,x 5 5 nm,L 5 10 nm. The forward (reverse) rate constant is linear at large negative (positive) loads. The free energy is proportional to the natural
log of the ratio of the forward and reverse rate constants. In the case shown the free energy is linear even in regions where one or both of the rate constants
is nonexponential.
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constants for mechanochemical binding,k1 andk21, are

k1~F! >
kD

k2D
k91~F! 5 KDk91~F!

and (21)

k21~F! > k921~F!,

whereKD is the equilibrium constant for the diffusive part
of the process. Thus the effective second-order rate con-
stant, k1, is approximately proportional to the calculated
first-order rate constant,k91.

Force and the free energy of reaction

The results above also yield an expression for the standard
free energy of reaction for

A%
kr

kf

B

as a function of force. At equilibrium the net probability
current,J, must be zero, and

pB

pA
5

kf

kr
5 Keq 5 e2DGrxn

0 ~F!/kT

(22)

5
NB

NA
5

*,
L e2~V~s!1Fs!/kTds

*0
, e2~V~s!1Fs!/kTds

which yields

DGrxn
0 ~F! 5 2kT lnS*,

L e2~V~s!1Fs!/kTds

*0
, e2~V~s!1Fs!/kTdsD (23)

If we takeDGrxn 5 DGrxn
0 1 kT ln(pB/pA), thenDGrxn

0 (F) is
the free energy of reaction at load forceF under conditions
where species A and species B have equal populations.

Suppose that the potential,V(s), has two wells separated
by a barrier (Fig. 2a), and let the wells be deep enough so
that e2V(s)/kT is significant only in the neighborhood of the
well bottoms. Suppose also that the well bottoms are of
nearly identical shape, so that they differ only by a constant
offset,

V~s!unear bottom of well 1> V~s!unear bottom of well 21 DV0,

whereDV0 is the constant energy difference from well 1 to
well 2. Then the integrands in Eq. 23 are approximately
d-functions centered on the well bottoms, and the free
energy reduces to

DGrxn
0 > DV0 1 Fx, (24)

where x is the distance between the bottoms of the two
wells. Thus the free energy is linear inF, as would be
intuitively expected. Calculations using Eq. 23 show that if
the wells are shallow or differ in shape, Eq. 24 is often still

approximately correct, but the values ofDV0 andx no longer
have the same simple physical interpretation. In other cases
DGrxn

0 is not linear in force and Eq. 23 must be used. Fig. 2
b shows the calculated free energy of reaction for the same
potential that was used to calculate the rate constants (a
symmetric two-wells-with-barrier potential). The free en-
ergy is linear in force as expected from Eq. 24. Nonlinear
free energies are easily obtained by varying well shape,
however, especially if the wells are made unequal in size or
shape. It is worth noting also that a linear free energy
function does not imply an exponential form for the indi-
vidual rate constants, though this has often been assumed.
For example, in Fig. 2b DGrxn

0 is linear even at very high
and very low forces, where the rate constants are strongly
nonexponential.

Stalling force

The stalling force for the motor,Fstall, is the value ofF for
which the motor velocity (and hence the current,J) is zero.
Consider a reversible motor with only one force-dependent
step. ThenFstall is the force needed to make the current
through this step zero, which is the same as the force needed
to make the free energy change zero. For cases where the
free energy is linear in force,

DGrxn 5 DV0 1 Fstallx 1 kT ln~pB/pA! 5 0,

which implies

Fstall 5 2
DV0

x
2

kT

x
lnSpB

pA
D (25)

Thus the stalling force depends on both the driving free
energy of the reaction,DV0, and on the concentrations of
reactants and products,pA and pB, as would be expected.
Equation 25 predicts an infinite stalling force whenpB is
zero. This reflects the fact that the chemical free energy,
DGrxn 5 DGrxn

0 1 kT ln (pB/pA), also goes to infinity when
pB is zero. Physically, both the infinite stalling force and the
infinite free energy arise from the fact that the motor cannot
be reversed if the product concentration is zero. If the motor
cannot step backward it will eventually step forward under
the influence of thermal fluctuations, no matter how large
the opposing force. For the same reason, any motor that has
an irreversible step in an unbranched mechanism will have
a formally infinite stalling force (and infinite free energy of
reaction). (See, for example, the plots in Fig. 3,a–c). An
infinite stalling force is clearly artificial: in any real system
the walker will either walk backward by some slow kinetic
path (at sufficiently long times), or the motor itself will
deform (at sufficiently large forces). However, Eq. 25 sug-
gests that the stalling force measured experimentally may
not be easily compared quantitatively to a stalling force
predicted theoretically. It also makes clear that the proper-
ties of a microscopic molecular motor subject to thermal
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fluctuations can be very different from those of a similar
motor with macroscopic dimensions.

EXAMPLE APPLICATIONS OF THE STOCHASTIC-
KINETIC THEORY

The minimum experimental information needed
to build a model

Using the results of the previous section it is possible to
calculate the dynamical behavior of any molecular motor
from knowledge of its potential energy surface. However,
the potential energy surfaces of proteins are generally not
known, and the best information available is usually a
kinetic mechanism (i.e., a network of transitions between
discrete species, as in Fig. 1c) derived from macroscopic

kinetics experiments. For transitions that do not involve net
movement and hence do not depend on external force, the
experimentally measured values of the rate constants can be
used to describe motor dynamics directly; but for mechano-
chemical transitions, it is necessary to calculate how rate
constants depend on force (e.g., using Eqs. 17, 18, and 20),
and one-dimensional potentials along the local reaction
coordinates,s, must be known (or estimated). Thus, the
minimum information necessary to model the properties of
a molecular motor is 1) the kinetic mechanism (with the
corresponding rate constants) as determined by macroscopic
kinetics, and 2) the identity of the mechanochemical steps
together with some estimate of the one-dimensional poten-
tial energy curves for these steps.

Here we explore the general behavior to be expected from
molecular motors. We do this by investigating four simple

FIGURE 3 (a) Calculated force-velocity curves for the simplified mechanochemical binding mechanism at several ATP concentrations:k2 5 100 s21,
d 5 5 nm, andk1 andk21 calculated from the potential in Fig. 2a with DV(0) 5 212.5,DV 5 12.5 kJ/mol,DV0 5 12.5 kJ/mol,DV(L) 5 12.5 kJ/mol,
Dsf 5 2.5 nm,Dsr 5 2.5 nm,, 5 5 nm, L 5 10 nm,g 5 4 3 1028 kg/s, T 5 300 K. TheKD factor for k1 was 1.073 1023 mM21. (b) Calculated
force-velocity curves for the simplified mechanochemical release mechanism withk1 5 1 mM21 s21, k21 5 50 s21, andk2 calculated using the same
potential and parameters as in (b). (c) Calculated force-velocity curves for the simplified mechanochemical trigger mechanism withk1 5 1 mM21 s21,
k21 5 50 s21, k2 5 100 s21, andk3 calculated using the same potential and parameters as in (b).
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yet general models that can be mapped onto a wide class of
molecular motor mechanisms. The focus is on the steady-
state motor velocity,v, as a function of external load force,
F (the “force-velocity” curve), which is perhaps the most
characteristic single-molecule measurement.

A minimal family of motor models

All kinetic mechanisms that describe a molecular motor,
like all mechanisms that describe any enzyme, must be
cyclic. That is, if the mechanism begins with a step in which
a given state of the motor appears as a reactant, the same
state of the motor must also appear as a product in some
later step, and vice versa. The motor must bind fuel mole-
cules, so its mechanism must contain at least one second-
order step, and it must move and generate force, so at least
one step must depend on external force. Virtually all pro-
posed motor mechanisms also contain steps that are purely
chemical and are not affected by force. To simplify matters,
we consider only mechanisms with one force-dependent
step, one fuel-binding step, and one product release step.
Finally, the simplest kinetic mechanisms are unbranched, so
that each intermediate state of the motor is connected to
exactly two others in a (linear) kinetic mechanism. These
restrictions define a limited class of models, shown sche-
matically below:

Mechanochemical binding model

M1 1 T ^
k21~F!

k1~F!

M2^
k22

k2

M3^
k23

k3

M4 1 D^
k24

k4

M1

Mechanochemical reaction model

M1 1 T^
k21

k1

M2 ^
k22~F!

k2~F!

M3^
k23

k3

M4 1 D^
k24

k4

M1

Mechanochemical release model

M1 1 T^
k21

k1

M2^
k22

k2

M3 ^
k23~F!

k3~F!

M4 1 D^
k24

k4

M1

Mechanochemical trigger model

M1 1 T^
k21

k1

M2^
k22

k2

M3^
k23

k3

M4 1 D ^
k24~F!

k4~F!

M1

whereM is the motor molecule,T is ATP (or another fuel
molecule),D is ADP 1 Pi (or another set of products), and
ki(F) indicates a force-dependent step.

This is the simplest group of motor models capable of
describing a wide range of real motor behavior. Each model
has four states in its mechanochemical cycle and four tran-
sitions between these states. The models differ only in the
step that involves movement, and hence in which rate con-
stants depend on force. In the first three cases movement
(and force generation) coincides with some part of the ATP

hydrolysis cycle (binding, reaction, or release), so move-
ment is directly coupled to the chemical reaction. In the
fourth case, the mechanochemical trigger mechanism, the
hydrolysis cycle is independent of movement: external load
does not affect the kinetic parameters of the catalytic part of
cycle and substrate concentration does not affect the intrin-
sic velocity of the movement part of the cycle. The chemical
energy is “stored” in the form of a strained state of the
protein,M4, and movement is then driven or “triggered” by
release of the strain. The coupling between the mechanical
and chemical events is thus indirect: the chemical and the
mechanical steps of the motor are arranged sequentially in
time, and a new set of catalytic steps cannot start if the
previous cycle has not been completed.

All four mechanisms are tightly coupled in the sense that
a single ATP hydrolysis must lead to a single movement
step, and vice versa. However, any of these models can be
made loosely coupled by adding branches that allow the
movement step to be bypassed between hydrolysis cycles
(many-to-one coupling), or allow the hydrolysis cycle to be
bypassed between movements (one-to-many coupling).

Kinetics and velocity

The steady-state velocity per motor molecule,v, is the
distance traveled in the movement step,d, multiplied by the
net flux through the movement step,Jmove: v 5 dJmove. For
example, in the mechanochemical binding model (case 1
above), for which movement occurs on the first step, the
velocity isv 5 d(k1M1 2 k21M2), whereM1 andM2 are the
steady-state concentrations (or populations) of the corre-
sponding states of the motor. Equivalent expressions apply
for the other three classes. The steady-state concentrations
M1, M2, M3, andM4, are found by solving the appropriate
kinetic equations. For any of the models above these are:

Ṁ1 5 2~k24 1 k1T!M1 1 k21M2 1 k4M4 5 0

Ṁ2 5 k1TM1 2 ~k21 1 k2!M2 1 k22M3 5 0
(26)

Ṁ3 5 k2M2 2 ~k22 1 k3!M3 1 k23DM4 5 0

Ṁ4 5 k24M1 1 k3M3 2 ~k23D 1 k4!M4 5 0

with conservation conditionM1 1 M2 1 M3 1 M4 5 1.
Solving these equations yields

v 5 dS aT2 bD

eT1 fTD 1 gD 1 hD (27)

whered is the step size for the motor,T is ATP concentra-
tion, D is product (ADP and Pi) concentration, and

a 5 k1k2k3k4

b 5 k21k22k23k24
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e5 k1~k3k4 1 k22k4 1 k2k4 1 k2k3! (28)

f 5 k1k23~k22 1 k2!

g 5 k23~k22k24 1 k2k24 1 k21k24 1 k21k22!

h 5 k2k3k4 1 k2k3k24 1 k21k3k4

1 k21k3k24 1 k21k22k4 1 k21k22k24

Equations 27 and 28 hold for all four models. The only
difference is that for the first modelk1 andk21 depend on
force, while for the second modelk2 and k22 depend on
force, etc.

In the limit of small product concentration (D 5 0), step
3 is irreversible, and the velocity follows Michaelis-Menten
kinetics in all cases:

v 5 dSVmax

T/KM

1 1 T/KM
D (29)

with Vmax andKM given by

Vmax 5
a

e
5

k2k3k4

k3k4 1 k22k4 1 k2k4 1 k2k3

(30)

KM 5
h

e
5

k2k3k4 1 k2k3k24 1 k21k3k4

1 k21k3k24 1 k21k22k4 1 k21k22k24

k1~k3k4 1 k22k4 1 k2k4 1 k2k3!

Classes of motor models

Many complex mechanisms can be reduced to one of the
four cases above by combining several steps into a single,
effective step, and redefining the rate constants appropri-
ately. For example, a model in which two steps follow the
hydrolysis cycle,

M1 1 T^
k21

k1

M23
k3

M33
k3

M4 1 D 3
k 94

M53
k 95~F!

M1

is equivalent to the mechanochemical trigger model (case 4
above) with 1/k4 5 1/k94 1 1/k95(F). Similarly, many simpler
models can be generated from one of the four cases by
reducing the number of steps, or by making some steps
irreversible. This amounts to setting the appropriate rate
constants to zero or infinity in the mechanisms and formulas
above (Eqs. 27–30). Thus each mechanism represents a
large class of motor models rather than a single model. We
believe that most real molecular motors fall into one of
these four classes, or into a loosely coupled variant of them.

Calculated models

As examples of the models above, consider three simple
special cases:

Simplified mechanochemical binding model

M 1 T ^
k21~F!

k1~F!

MT3
k3

M 1 D

Simplified mechanochemical release model

M 1 T^
k21

k1

MT3
k2~F!

M 1 D

Simplified mechanochemical trigger model

M 1 T^
k21

k1

MT3
k2

M* 1 D 3
k3~F!

M

The first model is a simplified version of the mechanochem-
ical binding model above. It derives from the mechano-
chemical binding model by settingk4 5 k243 `, andk2 5
k22 3 `. This effectively makes speciesM2 and M3 into
one combined species,MT, and also makesM4 andM1 into
a combined species,M. With these choices Eqs. 30 reduce
to Vmax 5 k3, and KM 5 (k3 1 k23)/k1. Similarly, the
simplified mechanochemical release model and the simpli-
fied mechanochemical trigger model can be derived from
the mechanochemical release model and the mechanochem-
ical trigger model.

Because the release step is irreversible in all three mod-
els, all three obey Michaelis-Menten kinetics. However, for
the simplified mechanochemical trigger mechanism it is
possible to define a velocity for the catalytic part of the
mechanism (i.e., the first two steps) alone:

vcat 5 dSVmax
cat

T/KM
cat

1 1 T/KM
catD (31)

with Vmax
cat 5 k3 and KM

cat 5 (k21 1 k3)/k1. These “purely
catalytic” Michaelis-Menten parameters are independent of
force, consistent with the separation of chemistry and me-
chanics in the mechanochemical trigger model. In terms of
vcat, the velocity of the simplified mechanochemical trigger
model is given by

1

v 5
1

vcat
1

1

vmov
(32)

wherevmov 5 k4d. Equation 32 is just a statement that for
the simplified mechanochemical trigger model, with its
independent catalytic and movement processes, the total
time required to complete a cycle,d/v, is the sum of the
times for catalysis,d/vcat, and for movement,d/vmov.

Calculations

To calculate the force-dependent rate constants in the three
models above, a piecewise-linear, two-wells-with-barrier
potential was used (Fig. 2a: barrier heightDV 5 12.5
kJ/mol (;5 kT at 300 K), reaction free energyDV0 5 12.5
kJ/mol, and well separation,d 5 5 nm). For the simplified
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mechanochemical binding mechanism, the value ofKD in
the second-order rate constant,k1 5 KDk91, was chosen so
thatk1 5 1 mM21 s21 at zero force (Ma and Taylor, 1997).
Equations 20 were then used to calculate the force-depen-
dent rate constants, and Eqs. 29 and 30 were used to
calculate the velocity. The results for all three models are
shown in Fig. 3,a–c, for several ATP concentrations.
Several features are noteworthy:

1. In all cases the velocity decreases monotonically with
increasing load, but in many of the curves the velocity is
almost independent of load force over a wide range. This
is also a common feature in experimentally measured
force-velocity curves (Wang et al., 1998b; Coppin et al.,
1997), and results whenever the rate-limiting step for the
motor is not force-dependent. The forward rate constant
for any force-dependent step always decreases with in-
creasing load, but this has no effect on the velocity
unless the rate constant is similar to or smaller than the
rate constant of the slowest force-independent step. In
the examples shown, the velocity begins to drop at
negative load for some curves, but it is possible (by
lowering the potential barrier,DV, or increasing the
driving free energy,DV0) to make the constant region
extend to positive forces, nearly up to the apparent
stalling force.

2. In Fig. 3, a and c, the velocity is roughly linear at
intermediate loads (e.g., 3–4 pN for the 1000mM curve
of Fig. 3 a) and then decays exponentially at very high
loads (near apparent stall). This asymptotic drop to zero
is a consequence of the irreversible second step in the
simplified mechanisms, which does not allow the motor
to be pushed backward (and hence does not allow neg-
ative velocity), even under infinite load. As mentioned
above, any irreversible motor has a formally infinite
stalling force. All real motors must be reversible (at least
slowly), and the stalling force must therefore be finite,
but the true stalling force may be difficult to measure
experimentally. For example, the apparent stalling force
(where the velocity becomes “very small”) of the mech-
anochemical binding motor in Fig. 3a seems to be finite
and to depend on ATP concentration, but the theoretical
stalling force is infinite, independent of concentration.

3. An example of a (weakly) reversible motor is shown in
Fig. 3b, the simplified mechanochemical release model.
As written above, the mechanochemical release model is
not reversible because it has no back-reaction at step 2;
that is, the reverse rate constant,k22, is zero. However,
k22 is a force-dependent rate constant in this model, and
in the actual calculations it becomes significant at high
load, resulting in small negative velocities. For revers-
ible models the crossover from positive to negative ve-
locity unambiguously defines the stalling force. By ad-
justing the values of the rate constants or the parameters
of the potential energy function, it is possible to make
models that are easily and fully reversible.

4. As the ATP concentration decreases, the velocity de-
creases at all forces. For the mechanochemical binding
model the force dependent rate constant,k1, is second-
order, so at high positive load, where the curves closely
follow k1T, the concentration essentially multiplies the
curve without changing the maximum velocity that is
achieved at large negative load. For the mechanochem-
ical release model the (second-order) binding step be-
comes rate-limiting at large negative force, where the
(force-dependent) release step is large. Thus, the maxi-
mum velocity is roughly proportional toT, and achieves
very large values at high ATP concentration. The mech-
anochemical trigger model depends on concentration
only through the catalytic velocity,vcat. At large negative
load, where the mechanical velocity,vmov 5 k4d, is
large, the time required for the movement step is negli-
gible, and the observed velocity becomes identical to the
catalytic velocity,v 5 vcatd. The limiting velocity at
large negative load therefore varies with concentration
according to Michaelis-Menten kinetics withKM and
Vmax from the catalytic part.

Classifying motors from experimental data

The general expressions above are quite complex, but some
aspects of their behavior can be understood qualitatively in
a simple way. This understanding can, in turn, be used to
help determine which (if any) of the models above are
consistent with experimental force-velocity data for partic-
ular motors. First, according to the results above, all four
models obey Michaelis-Menten kinetics when the product
concentration,D, is zero. For a Michaelis-Menten motor, a
plot of inverse velocity versus inverse ATP concentration is
a straight line:

1

v 5
1

dS 1

Vmax
1

KM

Vmax

1

TD (33)

The slope of the line isKM/(dVmax) and the intercept is
1/(dVmax). Because the rate constants depend on force, the
values ofVmax andKM also depend on force in general, and
hence so do the slope and intercept. In special cases, how-

TABLE 1 Behavior of inverse plots for

M1 1 T^
21

1
M23

2
M33

3
M4 1 D3

4
M1

Movement Step
Intercept
1/(dVmax) SlopeKM/(dVmax) KM

Step 1 (binding) Force-Independent Force-Dependent Force-Dependent
Step 2 Force-Dependent Force-Dependent Force-Dependent
Step 3 (release) Force-Dependent Force-Independent Force-Dependent
Step 4 Force-Dependent Force-Independent Force-Dependent
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ever, either slope or intercept may be independent of force.
For example, suppose that solution kinetic measurements
for a particular motor are consistent with a mechanism with
a reversible binding step and three irreversible steps:

M1 1 T^
k21

k1

M23
k2

M33
k3

M4 1 D3
k4

M1

Because this mechanism is based on solution kinetics, the
step where movement takes place is not known. Because
steps 2–4 are irreversible,k22 5 k23 5 k24 5 0, andVmax,

KM, andKM/Vmax reduce to

Vmax 5
a

e
5

k2k3k4

k3k4 1 k2k4 1 k2k3

KM 5
h

e
5

k2k3k4 1 k21k3k4

k1~k3k4 1 k2k4 1 k2k3!
(34)

KM

Vmax
5

h

a
5

k2 1 k21

k1k2

Thus Vmax is independent ofk1 and k21, and KM/Vmax is
independent ofk3, k23, k4, andk24. Therefore, if step 1 (the

FIGURE 4 (a) Calculated inverse velocity versus inverse ATP concentration at several forces, for the case where the ATP binding step depends on
external force. The force-dependent rate constantsk1 andk21 were calculated from the potential in Fig. 2a, with the same parameters as for the calculations
in Fig. 3a, andKD 5 1.0 mM21. The rate constants for the force-independent steps werek2 5 k3 5 k4 5 1.0 s21. (b) Inverse velocity versus inverse ATP
concentration for the case where step 2 depends on force. The force-dependent rate constantsk2 andk22 were calculated as in (a). For this potential the
reverse rate constant,k22, is small at these load forces. The rate constants for the force-independent steps werek1 5 0.2 mM21 s21, k21 5 k3 5 k4 5 1.0
s21. (c) Inverse velocity versus inverse ATP concentration for the case where step 3 or 4 depends on force. The force-dependent rate constantsk3 andk23

(or k4 andk24) were calculated as in (a). The rate constants for the force-independent steps werek1 5 0.2 mM21 s21, k21 5 k2 5 k3 or 4 5 1.0 s21.

554 Keller and Bustamante

Biophysical Journal 78(2) 541–556



binding step) involves movement, and if the mechanism
deduced from solution kinetics is correct, it will be found
that the motor obeys Michaelis-Menten kinetics, and that in
plots of 1/v vs. 1/T the intercept is independent of force, but
the slope varies. However, if movement occurs on steps 3 or
4 the slope will be independent of force, but the intercept
will vary. Finally, if the movement occurs on step 2, both
slope and intercept will vary with force. Thus three of the
four possible positions for the movement step can be dis-
tinguished from the qualitative behavior of the inverse plots
alone. Table 1 summarizes these results, and Fig. 4 shows
an example of 1/v vs. 1/T plots for the three distinguishable
cases. A similar analysis can be carried out with any model
that belongs to one of the four classes above. Once the
movement step has been determined, a well-founded model
for how the corresponding rate constants depend on force
can be constructed using the theory in the first section.
Force-velocity curves may then be calculated from Eqs. 27–30
and directly compared to experimental force-velocity curves.

SUMMARY AND CONCLUSIONS

The theory described above embodies the basic physics of
mechanochemistry. The theory is simple enough to be ap-
plied to large, complex systems where structural informa-
tion is limited, yet general enough to apply to any motor.
The main approximations of the theory—that the system
behaves classically, that the time scale of the experiments is
long compared to the microscopic fluctuations, and that
individual steps can be described by one-dimensional reac-
tion coordinates—are likely to be very good for most mo-
lecular motors. It is therefore possible to go from the de-
tailed, microscopic picture to the coarser, macroscopic,
kinetic picture in a consistent way. Most of the difficulties
and details in dealing with a protein are hidden in the
phenomenological rate constants, and most of these are
taken from experiment. Only the relatively few steps that
depend on force need be treated theoretically.

The minimum information required to make a complete
model is 1) the values of the kinetic rate constants for
nonmechanical processes, and 2) estimates of the shape of
the one-dimensional potential energy function,V(s), for
mechanical steps. In calculations we find that the rate con-
stants are mainly sensitive to a few properties of the poten-
tial: the energy differences from potential well bottoms to
the barrier top and the distances from the well bottoms to
the position of the barrier maximum. Thus, a complete
theory for a molecular motor depends on a relatively small
number of phenomenological parameters. Many of the
structural and mechanistic assumptions used in models that
have appeared in the literature for particular molecular
motors are essentially methods for estimating rate constants
and the shapes of potential energy functions (Peskin and
Oster, 1995; Wang et al., 1998a).

Designed motors?

From the theory above it is clear that any enzyme for which
catalysis involves a (large) conformational change can act
as a motor. Whenever movement accompanies a chemical
step, the protein is inherently mechanochemical. For exam-
ple, hexokinase is a soluble enzyme from the glycolysis
pathway that ordinarily has no mechanical function. But
when it binds glucose and ATP, a large cleft closes and two
domains move relative to each other by up to 8 Å (Voet and
Voet, 1995). Because of this large movement, hexokinase
couples chemical energy to forces and motion. Therefore, if
a hexokinase molecule (or perhaps a long chain of mole-
cules) were linked between two points, it would generate
tension and net contraction during its catalytic cycle. In such
an experiment the kinetic and thermodynamic properties of
hexokinase would be affected by an external load in the
same way as a true molecular motor. Mechanochemical
theory and single-molecule mechanical measurements can
therefore be used to understand the function and mecha-
nisms of a wide variety of enzymes.
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