Abstract
To better understand the influence of phospholipid acyl-chain composition on the formation of pores by cytotoxic amphipathic helices in biological membranes, the leakage of aqueous contents induced by the synthetic peptide GALA (WEAALAEALAE ALAEHLAEALAEALEALAA) from large unilamellar phospholipid vesicles of various compositions has been studied. Peptide-mediated leakage was examined at pH 5.0 from vesicles made of phosphatidylcholine (PC) and phosphatidylglycerol (PG) with the following acyl-chain compositions: 1-palmitoyl-2-oleoyl (PO), 1,2-dioleoyl (DO), 1, 2-dielaidoyl (DE), and 1,2-dipetroselinoyl (DPe). A mathematical model predicts and simulates the final extents of GALA-mediated leakage of 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and p-xylene-bis-pyridinium bromide (DPX) from 1-palmitoyl-2-oleoyl-phosphatidylcholine/1-palmitoyl-2-oleoyl-phospha tidylglycerol (POPC/POPG) and 1, 2-dielaidoyl-sn-glycero-3-phosphocholine/1, 2-dielaidoyl-phosphatidylglycerol (DEPC/DEPG) liposomes at pH 5.0 as a function of peptide concentration in the bilayer, by considering that GALA pores responsible for this leakage have a minimum size of 10 +/- 2 monomers and are formed by quasiirreversible aggregation of the peptide. With the phospholipid acyl-chain compositions tested, GALA-induced ANTS/DPX leakage follows the rank order POPC/POPG approximately DEPC/DEPG > DPePC/DPePG > DOPC/DOPG. Results from binding experiments reveal that this reduced leakage from DOPC/DOPG vesicles cannot be explained by a reduced binding affinity of the peptide to these membranes. As shown by monitoring the leakage of a fluorescent dextran, an increase in the minimum pore size also does not explain the reduction in ANTS/DPX leakage. The data suggest that surface-associated GALA monomers or aggregates are stabilized in bilayers composed of phospholipids containing a cis unsaturation per acyl chain (DO and DPe), while transbilayer peptide insertion is reduced. GALA-induced ANTS/DPX leakage is also decreased when the vesicles contain phosphatidylethanolamine (PE). This lends further support to the suggestion that factors stabilizing the surface state of the peptide reduce its insertion and subsequent pore formation in the bilayer.
Full Text
The Full Text of this article is available as a PDF (124.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Boman H. G. Antimicrobial peptides. Chairman's opening remarks. Ciba Found Symp. 1994;186:1–4. [PubMed] [Google Scholar]
- Chen H. C., Brown J. H., Morell J. L., Huang C. M. Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett. 1988 Aug 29;236(2):462–466. doi: 10.1016/0014-5793(88)80077-2. [DOI] [PubMed] [Google Scholar]
- Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5072–5076. doi: 10.1073/pnas.85.14.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dasseux J. L., Faucon J. F., Lafleur M., Pezolet M., Dufourcq J. A restatement of melittin-induced effects on the thermotropism of zwitterionic phospholipids. Biochim Biophys Acta. 1984 Aug 8;775(1):37–50. doi: 10.1016/0005-2736(84)90232-3. [DOI] [PubMed] [Google Scholar]
- Duckworth D. H., Bevers E. M., Verkleij A. J., Op den Kamp J. A., van Deenen L. L. Action of phospholipase A2 and phospholipase C on Escherichia coli. Arch Biochem Biophys. 1974 Nov;165(1):379–387. doi: 10.1016/0003-9861(74)90176-3. [DOI] [PubMed] [Google Scholar]
- Dufourc E. J., Dufourcq J., Birkbeck T. H., Freer J. H. Delta-haemolysin from Staphylococcus aureus and model membranes. A solid-state 2H-NMR and 31P-NMR study. Eur J Biochem. 1990 Feb 14;187(3):581–587. doi: 10.1111/j.1432-1033.1990.tb15340.x. [DOI] [PubMed] [Google Scholar]
- Dufourc E. J., Smith I. C., Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry. 1986 Oct 21;25(21):6448–6455. doi: 10.1021/bi00369a016. [DOI] [PubMed] [Google Scholar]
- Dufourcq J., Faucon J. F., Fourche G., Dasseux J. L., Le Maire M., Gulik-Krzywicki T. Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. Biochim Biophys Acta. 1986 Jul 10;859(1):33–48. doi: 10.1016/0005-2736(86)90315-9. [DOI] [PubMed] [Google Scholar]
- Ellens H., Bentz J., Szoka F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984 Mar 27;23(7):1532–1538. doi: 10.1021/bi00302a029. [DOI] [PubMed] [Google Scholar]
- Fattal E., Nir S., Parente R. A., Szoka F. C., Jr Pore-forming peptides induce rapid phospholipid flip-flop in membranes. Biochemistry. 1994 May 31;33(21):6721–6731. doi: 10.1021/bi00187a044. [DOI] [PubMed] [Google Scholar]
- Faucon J. F., Bonmatin J. M., Dufourcq J., Dufourc E. J. Acyl chain length dependence in the stability of melittin-phosphatidylcholine complexes. A light scattering and 31P-NMR study. Biochim Biophys Acta. 1995 Mar 22;1234(2):235–243. doi: 10.1016/0005-2736(94)00298-4. [DOI] [PubMed] [Google Scholar]
- Frey S., Tamm L. K. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. Biochem J. 1990 Dec 15;272(3):713–719. doi: 10.1042/bj2720713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazit E., Boman A., Boman H. G., Shai Y. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995 Sep 12;34(36):11479–11488. doi: 10.1021/bi00036a021. [DOI] [PubMed] [Google Scholar]
- Gazit E., Lee W. J., Brey P. T., Shai Y. Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry. 1994 Sep 6;33(35):10681–10692. doi: 10.1021/bi00201a016. [DOI] [PubMed] [Google Scholar]
- He K., Ludtke S. J., Heller W. T., Huang H. W. Mechanism of alamethicin insertion into lipid bilayers. Biophys J. 1996 Nov;71(5):2669–2679. doi: 10.1016/S0006-3495(96)79458-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He K., Ludtke S. J., Huang H. W., Worcester D. L. Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry. 1995 Dec 5;34(48):15614–15618. doi: 10.1021/bi00048a002. [DOI] [PubMed] [Google Scholar]
- He K., Ludtke S. J., Worcester D. L., Huang H. W. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996 Jun;70(6):2659–2666. doi: 10.1016/S0006-3495(96)79835-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heller W. T., He K., Ludtke S. J., Harroun T. A., Huang H. W. Effect of changing the size of lipid headgroup on peptide insertion into membranes. Biophys J. 1997 Jul;73(1):239–244. doi: 10.1016/S0006-3495(97)78064-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holte L. L., Peter S. A., Sinnwell T. M., Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J. 1995 Jun;68(6):2396–2403. doi: 10.1016/S0006-3495(95)80422-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holte L. L., Separovic F., Gawrisch K. Nuclear magnetic resonance investigation of hydrocarbon chain packing in bilayers of polyunsaturated phospholipids. Lipids. 1996 Mar;31 (Suppl):S199–S203. doi: 10.1007/BF02637076. [DOI] [PubMed] [Google Scholar]
- Huang H. W., Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophys J. 1991 Nov;60(5):1079–1087. doi: 10.1016/S0006-3495(91)82144-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katsu T., Kuroko M., Morikawa T., Sanchika K., Fujita Y., Yamamura H., Uda M. Mechanism of membrane damage induced by the amphipathic peptides gramicidin S and melittin. Biochim Biophys Acta. 1989 Aug 7;983(2):135–141. doi: 10.1016/0005-2736(89)90226-5. [DOI] [PubMed] [Google Scholar]
- Katsu T., Kuroko M., Morikawa T., Sanchika K., Yamanaka H., Shinoda S., Fujita Y. Interaction of wasp venom mastoparan with biomembranes. Biochim Biophys Acta. 1990 Aug 24;1027(2):185–190. doi: 10.1016/0005-2736(90)90083-z. [DOI] [PubMed] [Google Scholar]
- Korstanje L. J., van Faassen E. E., Levine Y. K. Reorientational dynamics in lipid vesicles and liposomes studied with ESR: effects of hydration, curvature and unsaturation. Biochim Biophys Acta. 1989 Jul 10;982(2):196–204. doi: 10.1016/0005-2736(89)90055-2. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Selsted M. E., White S. H. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys J. 1997 Apr;72(4):1762–1766. doi: 10.1016/S0006-3495(97)78822-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Y. C., Taraschi T. F., Janes N. Support for the shape concept of lipid structure based on a headgroup volume approach. Biophys J. 1993 Oct;65(4):1429–1432. doi: 10.1016/S0006-3495(93)81206-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
- Ludtke S. J., He K., Wu Y., Huang H. W. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta. 1994 Feb 23;1190(1):181–184. doi: 10.1016/0005-2736(94)90050-7. [DOI] [PubMed] [Google Scholar]
- Ludtke S., He K., Huang H. Membrane thinning caused by magainin 2. Biochemistry. 1995 Dec 26;34(51):16764–16769. doi: 10.1021/bi00051a026. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Harada M., Funakoshi S., Fujii N., Miyajima K. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta. 1991 Mar 18;1063(1):162–170. doi: 10.1016/0005-2736(91)90366-g. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Murase O., Miyajima K. Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry. 1995 Oct 3;34(39):12553–12559. doi: 10.1021/bi00039a009. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Nakamura A., Murase O., Sugishita K., Fujii N., Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 1997 Feb 25;36(8):2104–2111. doi: 10.1021/bi961870p. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Sugishita K., Fujii N., Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995 Mar 14;34(10):3423–3429. doi: 10.1021/bi00010a034. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Sugishita K., Harada M., Fujii N., Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta. 1997 Jul 5;1327(1):119–130. doi: 10.1016/s0005-2736(97)00051-5. [DOI] [PubMed] [Google Scholar]
- Matsuzaki K., Yoneyama S., Miyajima K. Pore formation and translocation of melittin. Biophys J. 1997 Aug;73(2):831–838. doi: 10.1016/S0006-3495(97)78115-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuzaki K., Yoneyama S., Murase O., Miyajima K. Transbilayer transport of ions and lipids coupled with mastoparan X translocation. Biochemistry. 1996 Jun 25;35(25):8450–8456. doi: 10.1021/bi960342a. [DOI] [PubMed] [Google Scholar]
- Mchaourab H. S., Hyde J. S., Feix J. B. Binding and state of aggregation of spin-labeled cecropin AD in phospholipid bilayers: effects of surface charge and fatty acyl chain length. Biochemistry. 1994 May 31;33(21):6691–6699. doi: 10.1021/bi00187a040. [DOI] [PubMed] [Google Scholar]
- Monette M., Lafleur M. Influence of lipid chain unsaturation on melittin-induced micellization. Biophys J. 1996 May;70(5):2195–2202. doi: 10.1016/S0006-3495(96)79785-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monette M., Lafleur M. Modulation of melittin-induced lysis by surface charge density of membranes. Biophys J. 1995 Jan;68(1):187–195. doi: 10.1016/S0006-3495(95)80174-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monette M., Van Calsteren M. R., Lafleur M. Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study. Biochim Biophys Acta. 1993 Jul 4;1149(2):319–328. doi: 10.1016/0005-2736(93)90217-n. [DOI] [PubMed] [Google Scholar]
- Nicol F., Nir S., Szoka F. C., Jr Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. Biophys J. 1996 Dec;71(6):3288–3301. doi: 10.1016/S0006-3495(96)79521-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicol F., Nir S., Szoka F. C., Jr Orientation of the pore-forming peptide GALA in POPC vesicles determined by a BODIPY-avidin/biotin binding assay. Biophys J. 1999 Apr;76(4):2121–2141. doi: 10.1016/S0006-3495(99)77368-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parente R. A., Nadasdi L., Subbarao N. K., Szoka F. C., Jr Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence. Biochemistry. 1990 Sep 18;29(37):8713–8719. doi: 10.1021/bi00489a030. [DOI] [PubMed] [Google Scholar]
- Parente R. A., Nir S., Szoka F. C., Jr Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry. 1990 Sep 18;29(37):8720–8728. doi: 10.1021/bi00489a031. [DOI] [PubMed] [Google Scholar]
- Polozov I. V., Polozova A. I., Molotkovsky J. G., Epand R. M. Amphipathic peptide affects the lateral domain organization of lipid bilayers. Biochim Biophys Acta. 1997 Sep 4;1328(2):125–139. doi: 10.1016/s0005-2736(97)00080-1. [DOI] [PubMed] [Google Scholar]
- Portlock S. H., Clague M. J., Cherry R. J. Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparative study. Biochim Biophys Acta. 1990 Nov 30;1030(1):1–10. doi: 10.1016/0005-2736(90)90231-c. [DOI] [PubMed] [Google Scholar]
- Pott T., Dufourc E. J. Action of melittin on the DPPC-cholesterol liquid-ordered phase: a solid state 2H-and 31P-NMR study. Biophys J. 1995 Mar;68(3):965–977. doi: 10.1016/S0006-3495(95)80272-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapaport D., Peled R., Nir S., Shai Y. Reversible surface aggregation in pore formation by pardaxin. Biophys J. 1996 Jun;70(6):2502–2512. doi: 10.1016/S0006-3495(96)79822-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ren J., Lew S., Wang Z., London E. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry. 1997 Aug 19;36(33):10213–10220. doi: 10.1021/bi9709295. [DOI] [PubMed] [Google Scholar]
- Rex S. Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys Chem. 1996 Jan 16;58(1-2):75–85. doi: 10.1016/0301-4622(95)00087-9. [DOI] [PubMed] [Google Scholar]
- Rex S., Schwarz G. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. Biochemistry. 1998 Feb 24;37(8):2336–2345. doi: 10.1021/bi971009p. [DOI] [PubMed] [Google Scholar]
- Rothman J. E., Kennedy E. P. Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium. J Mol Biol. 1977 Mar 5;110(3):603–618. doi: 10.1016/s0022-2836(77)80114-9. [DOI] [PubMed] [Google Scholar]
- Schwarz G., Arbuzova A. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye. Biochim Biophys Acta. 1995 Oct 4;1239(1):51–57. doi: 10.1016/0005-2736(95)00134-o. [DOI] [PubMed] [Google Scholar]
- Silvestro L., Gupta K., Weiser J. N., Axelsen P. H. The concentration-dependent membrane activity of cecropin A. Biochemistry. 1997 Sep 23;36(38):11452–11460. doi: 10.1021/bi9630826. [DOI] [PubMed] [Google Scholar]
- Stankowski S., Schwarz G. Lipid dependence of peptide-membrane interactions. Bilayer affinity and aggregation of the peptide alamethicin. FEBS Lett. 1989 Jul 3;250(2):556–560. doi: 10.1016/0014-5793(89)80795-1. [DOI] [PubMed] [Google Scholar]
- Stankowski S., Schwarz U. D., Schwarz G. Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: salt and cholesterol effects. Biochim Biophys Acta. 1988 Jun 7;941(1):11–18. doi: 10.1016/0005-2736(88)90208-8. [DOI] [PubMed] [Google Scholar]
- Steiner H., Hultmark D., Engström A., Bennich H., Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981 Jul 16;292(5820):246–248. doi: 10.1038/292246a0. [DOI] [PubMed] [Google Scholar]
- Subbarao N. K., Fielding C. J., Hamilton R. L., Szoka F. C., Jr Lecithin:cholesterol acyltransferase activation by synthetic amphipathic peptides. Proteins. 1988;3(3):187–198. doi: 10.1002/prot.340030307. [DOI] [PubMed] [Google Scholar]
- Subbarao N. K., Parente R. A., Szoka F. C., Jr, Nadasdi L., Pongracz K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry. 1987 Jun 2;26(11):2964–2972. doi: 10.1021/bi00385a002. [DOI] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner J. D., Rouser G. Precise quantitative determination of human blood lipids by thin-layer and triethylaminoethylcellulose column chromatography. I. Erythrocyte lipids. Anal Biochem. 1970 Dec;38(2):423–436. doi: 10.1016/0003-2697(70)90467-7. [DOI] [PubMed] [Google Scholar]
- Tytler E. M., Anantharamaiah G. M., Walker D. E., Mishra V. K., Palgunachari M. N., Segrest J. P. Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry. 1995 Apr 4;34(13):4393–4401. doi: 10.1021/bi00013a031. [DOI] [PubMed] [Google Scholar]
- Verkleij A. J., Zwaal R. F., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L. L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta. 1973 Oct 11;323(2):178–193. doi: 10.1016/0005-2736(73)90143-0. [DOI] [PubMed] [Google Scholar]
- Wu Y., He K., Ludtke S. J., Huang H. W. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J. 1995 Jun;68(6):2361–2369. doi: 10.1016/S0006-3495(95)80418-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
