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ABSTRACT In a model of a single synapse with a circular contact zone and a single concentric zone containing receptor-
gated channels, we studied the dependence of the synaptic current on the synaptic cleft width and on the relative size of the
receptor zone. During synaptic excitation, the extracellular current entered the cleft and flowed into the postsynaptic cell
through receptor channels distributed homogeneously over the receptor zone. The membrane potential and channel currents
were smaller toward the cleft center if compared to the cleft edges. This radial gradient was due to the voltage drop produced
by the synaptic current on the cleft resistance. The total synaptic current conducted by the same number of open channels
was sensitive to changes in the receptor zone radius and the cleft width. We conclude that synaptic geometry may affect
synaptic currents by defining the volume resistor of the cleft. The in-series connection of the resistances of the intracleft
medium and the receptor channels plays the role of the synaptic voltage divider. This voltage dividing effect should be taken
into account when the conductance of single channels or synaptic contacts is estimated from experimental measurements
of voltage-current relationships.

INTRODUCTION

Synaptic transmission is crucial for communication in the
central nervous system. One of the hallmarks of synaptic
transmission is its modifiability, which changes synaptic
efficacy (Burns and Augustine, 1995). The dynamic orga-
nization of synaptic structure is manifested in modifications
of the size and shape of synaptic elements, particularly the
postsynaptic density (PSD) (Geinisman et al., 1993; Schu-
bert, 1991). The PSD is distinguished from other parts of the
contact zone as the region with the highest concentration of
neurotransmitter receptors and ion channels (Kelly et al.,
1984; Siekevitz, 1985; Kennedy et al., 1990), and therefore
functionally it is often referred to as the receptor zone. Any
biophysical concept of synaptic function operates with syn-
aptic currents through the receptor channels condensed in
the receptor zone. How do the size, the shape, and the
relative location of the receptor zone influence the postsyn-
aptic potentials and currents generated in a single synaptic
contact? So far this important question has no clear answer
because this level of cellular organization is not readily
accessible in experiments. Previous theoretical studies were
mainly focused on the consequences of the structural ar-
rangement of the synaptic contact for diffusion and receptor
binding of neurotransmitters released into the cleft (Kleinle
et al., 1996; Uteshev and Pennefather, 1996; Rusakov and
Kullmann, 1998a). The electric phenomena in the cleft, as
opposed to mass transfer, remained practically beyond the
scope of research (however, see the discussion of synaptic

efficiency in Eccles and Jaeger, 1958). The aim of the
present study was to elucidate the impact of the cleft ge-
ometry on the electric current generated during synaptic
activation. This was considered in a simplified model of a
circular synaptic contact zone containing a single, concen-
tric active receptor zone homogeneously populated by volt-
age-independent receptor channels.

THEORY

Simulated single synaptic contact (including pre- and
postsynaptic membranes separated by the cleft) was repre-
sented by a flat circular cylinder or disk of radiusR (radius
of the contact zone) and thicknessd (the cleft width) (Fig.
1). The postsynaptic base of the disk contained a concentric
receptor zone of radiusr # R. This representation is con-
ventional for models (Kleinle et al., 1996). The specific
resistivity of the conductive medium that fills in the cleft
and the bulk of the extracellular space wasRex. Excitatory
synaptic current (reversal transmembrane potentialES 5 0
mV) entered the cleft from the bulk of the extracellular
space via the side surface of the disk. The radial density of
the current was homogeneous. In the cleft, the radial current
decreased with radiusr and vanished at the center (r 5 0)
because it flowed to the postsynaptic cell throughN iden-
tical channels activated by the neurotransmitter. The chan-
nels were homogeneously distributed over the receptor zone
with the densitys 5 N/pgr2. We considered steady synap-
tic activation, assuming constant values ofN and of the
single channel conductanceg. The thickness of the cleftd
was much smaller than the thicknessdin of the postsynaptic
submembrane layer of cytoplasm. The current flow across
the presynaptic base of the cylinder was neglected. The
intracellular potential was homogeneous (Ein 5 265 mV)
within the contact zone, and the transmembrane voltageE 5
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Ein 2 Eex was clamped at the edge of the cleft toE(R) 5
EC 5 265 mV. With these assumptions, the following
forms of the cable differential equation defined the trans-
membrane voltageE(r, t) within and outside the receptor
zone, respectively:
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whererex 5 Rex/2prd andcm are, respectively, the intracleft
resistance and the subsynaptic membrane capacitance per
unit radial extent of a circular disk of radiusr, andgS 5
gs2pr is the conductance per unit radial extent of a ring of
radiusr in the receptor zone. Thusis(r) 5 gs(E 2 ES) is the
synaptic current through this unitary ring of the receptor
zone, and (21/rex)(dE/dr) 5 iex(r) is the radial current
through the disk ring of unitary length in the cleft. In these
equations, the resistancer in of the submembrane cytoplasm
layer was neglected becauserex .. r in 5 Rin/2prdin, be-
caused ,, din and Rex 5 Rin. The boundary conditions
assumed the voltage clamp at the edge of the cleft,

E~R! 5 EC, atr 5 R (2a)

and vanishing of the radial current at the center of the cleft,
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On the borderr 5 r of the receptor zone, the additional
conditions were those of continuity of the voltage,

E~r!ur5r2 5 E~r!ur5r1 5 E~r! (2c)

and of conservation of the current,
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Equation 1a can be rewritten in the conventional form of the
equation

1

rex

2E

r2 1
1

rex

1

r

E

r
2

2gN~t!r

r2 ~E 2 Es! 5 cm

E

t
(2e)

The bell-shaped time course ofN(t) is given by the double-
exponential function

N~t! 5 ~exp~2t/td! 2 exp~2t/tr!!

wheretr is the rise time constant, with an order of magnitude
of ;200 ms (Khanin et al., 1996), andtd is the decay time
constant, with an order of magnitude of;1 ms. Because the
time constantt 5 Cm/gs of Eq. 2e has an order of magnitude
between 70ms atN 5 20 and 7ms atN 5 200, we can use
the steady-state approximation to define the profile ofE into
the synaptic cleft whenN . 20. Thus, introducingl2 5
1/(rexgs) 5 d/gsRex, the last equation in the steady-state
condition can be rewritten in the conventional form of
the modified Bessel equation in dimensionless coordinate
P 5 r/l

2E

P2 1
1

P

E

P
2 ~E 2 Es! 5 0

With the conditions in Eqs. 2b and 2c, this equation has the
following general solution, expressed in modified zero-
order Bessel functionsI0 of the first kind:

E~r! 5 ~E~r! 2 Es!I0~r/l!/I0~L! 1 Es, r . r . 0, (3)

whereL 5 r/l 5 (gNRex/pd)1/2 is the dimensionless size
characteristic of the receptor zone with a fixed number,N,
of open channels. Equation 1b means conservation of the
radial currentiex(r) in the cleft outside the receptor zone:

iex~r! 5 ~22pd/Rex!r~dE/dr! 5 Jex 5 const., R. r . r
(4)

Integration of Eq. 4 gives

EC 2 E~r! 5 2Jex~Rex/2pd!ln~R/r! (5)

from which the constant current can be defined as

Jex 5
2pd

Rex

E~r! 2 Ec

ln~R/r!
(6)

On the other hand, using Eqs. 3 and 2d,Jex can be expressed

FIGURE 1 Schematic representation of simulated synaptic contact in the
section perpendicular to planes of the pre- and postsynaptic membranes
separated by the cleft of widthd. The contact zone was circular, with a
radiusR 5 1 mm. The receptor zone was concentric with the same (r 5 R)
(A) or smaller (r 5 0.2 mm) (B) radius. In both cases, the receptor zone
(thick black line) hadN 5 200 homogeneously distributed open receptor
channels conducting synaptic current (arrows).
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as

Jex 5 2
2pd

Rex

LI1~L!

I0~L!
~E~r! 2 Es! (7)

where I1(L) 5 dI0(L)/dL and I0 are the modified Bessel
functions of the first kind, of the first and the zero order,
respectively. The integral formulas for these functions are

I0~x! 5
1

pE
0

p

ex cosudu

and

I1~x! 5
1

pE
0

p

ex cosu cos~u!du

(see, e.g., Abramowitz and Stegun, 1972, pp. 374–377).
By substituting Eq. 6 into Eq. 7, we obtainE(r):

E~r! 5
Ec 1 EsL ln~R/r!I1~L!/I0~L!

1 1 L ln~R/r!I1~L!/I0~L!
(8)

Substituting Eq. 8 into Eqs. 3 and 5 ultimately gives the
potential within and outside the receptor zone, respectively:

E~r! 5 Es 1
~Ec 2 Es!I0~r/l!/I0~L!

1 1 L ln~R/r!I1~L!/I0~L!
, r . r . 0 (9)
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1 1 L ln~R/r!I1~L!/I0~L!
,

R. r . r

(10)

Given the condition of conservation (Eq. 4), the total syn-
aptic currentJS through the entire receptor zone equalsJex.
Thus it can be defined by integrating the elementary cur-
rentsiex(r)dr overr [ [0, r] or by use of Eqs. 6–8. These
two approaches lead to the same expression:

Js 5 2
2pd

Rex

LI1~L!/I0~L!

1 1 L ln~R/r!I1~L!/I0~L!
~Ec 2 Es! (11)

It is worth noting that, because of the equalityL 5 r/l 5
(gNRex/pd)1/2, the Bessel functionsI0 and I1 in Eq. 11 do
not depend on eitherr or R, andJS depends on the ratioR/r
and on the factor (EC 2 ES). Taking the ratio of the total
currents defined by Eq. 11 forr , R andr 5 R, we obtain
the following characteristic of the synapse independent of
EC andES:

K 5
Js~R/r!

Js~R/R!
5

1

1 1 ln~R/r!LI1~L!/I0~L!
(12)

The ratioK depends on the geometrical parameters of the
contactR, r, andd on the resistivityRex of the extracellular

medium and on the numberN and conductanceg of the
receptor channels.

METHODS

The numerical calculations of Eqs. 8–10 and 12 were per-
formed using IDL (Interactive Data Language, version
5.2.1; Research System).

Rex was changed from 100V cm to 500V cm in five
steps, covering the range of resistivity given in the litera-
ture. The width of the synaptic cleft was changed from 10
nm to 20 nm in two steps. We assumed constant values of
N 5 200 and of the single-channel conductanceg 5 20 pS.

RESULTS AND DISCUSSION

Our theory predicts that one critical parameter that deter-
mines the electrical field gradient in the synaptic cleft due to
extracellular currents is the length constant,l 5 r(dp/
gNRex)

1/2. The length constant depends on the receptor zone
radius r, the synaptic cleft widthd, the number of open
receptor channelsN, the conductivity of a single receptor
channelg, and on the resistivity of the intracleft medium
Rex. In our simulations, we variedRex because of difficulties
in estimating its real value. Even though the specific con-
ductivity of the extracellular medium is known, the effect of
the restricted extracellular space in the cleft must be con-
sidered. The effective conductivity of the intracleft medium
could be decreased in comparison to the conductivity of the
extracellular fluid because of to the presence of numerous
extracellular domains of the membrane macromolecules.
For example, Rusakov and Kullmann (1998b) described a
decreased diffusivity of neurotransmitters outside of the
synaptic cleft due to viscous interaction with the cell walls
containing such macromolecules. Because the values of the
intracleft and extracellular resistivities are not known, we
explored a range ofRex values between 100 and 500V cm,
which correspond to the physiological limits given in the
literature. For example, the extracellular resistivity was
3216 45 V cm (Ranck, 1963) or 5566 45 V cm (Li et al.,
1968) in the gray matter of the cerebral cortex, 5806 53 V
cm in the white matter of the cerebral cortex (Li et al.,
1968), 250V cm (Ranck 1966) in the rat hippocampus in
vivo, and 133V cm (Vigmond et al., 1997) in rat hippocam-
pal slices. In a model of electrical interactions by electrical
fields between neurons (Traub et al., 1985), this parameter
was varied in a range of 25–250Vcm. Thus the range tested
in our studies is consistent with the estimates found in the
literature.

Electric potential profile within the cleft

Fig. 2, A and B, exemplifies spatial profiles of the mem-
brane potential generated by a fixed number of channels in
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the synaptic contacts shown in Fig. 1,A andB, respectively,
for five values of Rex. The radiusR 5 1 mm and the
thicknessd 5 20 nm of the cleft were the same, but the radii
of the receptor zone were different,r 5 1 mm (Fig. 1A) and
0.2 mm (Fig. 1 B). In both cases, the computed membrane
potential was spatially inhomogeneous within the contact
zone, despite its being clamped at the cleft edge. Synaptic
depolarization was greatest at the cleft center while decay-
ing monotonically toward the edge. When the receptor zone
radiusr was reduced from 100% to 20% of the contact zone
radiusR (Fig. 1B), the maximum depolarization shift at the
center of the cleft was multiplied by 3.4 for eachRex value
(cf. Fig. 2, A and B). More than 82% of the total voltage
drop occurred outside the edges of the receptor zone (Fig. 2
B, dotted lines). Such an inhomogeneity of the transmem-
brane potentialE(r) 5 Ein 2 Eex(r) was due to the inho-
mogeneity of the extracellular potentialEex(r), inasmuch as
the intracellular potentialEin was homogeneous over the
entire contact. The extracellular potentialEex(r) was radi-
ally inhomogeneous because of the drop produced by the
radial current on the intracleft resistance. An important
consequence of these spatial effects was radial inhomoge-
neity of the synaptic driving potential that is the deviation of
the inhomogeneousE(r) from homogeneousES 5 0 mV.
Single channels located near the center were exposed to
smaller driving potentials and thus conducted smaller cur-
rents as compared to the identical channels on the periphery
of the receptor zone. The number of channels exposed to the
same driving potential (E(r) 2 ES) increased with the
centrifugal distancer: n(r)dr 5 s2pr dr 5 (2N/r2)r dr.
The total synaptic current through allN 5 *0

Rn(r)dr chan-
nels homogeneously distributed over the nonhomoge-
neously depolarized receptor zone decreased with the zonal
radius r. For example, atRex 5 400 V cm, the current
through the small receptor zone in Fig. 1B was 19.5%
smaller (210 pA instead of 251 pA) than the current through

the large receptor zone shown in Fig. 1A. For comparison,
the same population of channels would generate a 260-pA
current if they all were exposed to the same driving poten-
tial of 65 mV (like those at the clamped edge of the contact).
Sodium and potassium components of synaptic currents can
cause significant change in the ion concentrations in the
synaptic cleft. According to calculations by Attwell and Iles
(1979), at the center of an activated area of radius 0.5mm,
potassium concentration increased by 2.1 mM and sodium
concentration decreased by 40 mM from the initial values of
[K1] 5 2.5 mM and [Na1] 5 120 mM, respectively. This
produced a nonuniform distribution of equilibrium poten-
tials for sodium and potassium ions. Therefore, the receptor
channels situated near the cleft center conduct less current
than peripheral ones. Consequently, the current flow
through homogeneously distributed receptor channels is at-
tenuated.

Electric field profile in the cleft:
steady-state approximation

In this study we used the quasi-steady-state approximation
to calculate the electric field profile within the synaptic
cleft. This approximation is valid because during the open-
ing of as few as 10 channels the time constant of the voltage
relaxation within the cleft has an order of magnitude of 0.1
ms, which is smaller than the rising time constant of the
synaptic current. For example, in the rat hippocampus the
excitatory postsynaptic currents of the mossy fiber synapses
on CA3 pyramidal cells had a mean rise time of 0.66 0.1
ms (Jonas et al., 1993). When the number of open channels
is small (e.g., in the beginning of the rising phase and in the
end of the falling phase of the postsynaptic potential), the
nonstationary equation should be used for calculation of the
voltage profiles in the cleft. However, with a small number

FIGURE 2 Transmembrane potentialE (ordinate, mV) in the synaptic cleft as a function of radiusr of the contact zone (abscissa, mm) for five (100–500
V cm) values of extracellular resistanceRex. The profiles inA (as defined by Eq. 8) andB (as defined by Eqs. 9 and 10) correspond to synaptic contacts
A and B, as shown in Fig. 1. Dashed lines inB indicate the border of the receptor zone corresponding to Fig. 1B.
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of open channels the radial voltage gradient in the cleft is
small (less than 1 mV/mm) and has little influence on the
synaptic current. For that reason, the quasi-steady-state ap-
proximation is appropriate for calculation of the voltage
profile in the cleft and of the synaptic current.

Total synaptic current and cleft geometry

Fig. 3 shows relative changes in the total synaptic current as
a function of the receptor zone radius and the extracellular
resistivity for two values of the cleft widthd, 10 nm (Fig. 3
A) and 20 nm (Fig. 3B), as defined by Eq. 12. In the
conditions of voltage clamp at the cleft edge, the total
synaptic current was highest when the receptor zone repre-
sented the entire synaptic contact zone (r 5 R). Relative to
this maximum value, the current decreased with smaller
radii of the receptor zone at a rate that depends on the
extracellular resistivity and the cleft width (compare Fig. 3,
A and B). The smaller the resistivity and the thicker the
cleft, the smaller were the rates and, thus, the range of the
relative change in the total current for the same change in
the receptor zone.

For instance, in the synapse with ad 5 20-nm-wide cleft
tested with five values ofRex from 500 to 100V cm (100V
cm step), the decrease in radius of the receptor zone from
r 5 1 mm to r 5 0.2 mm reduced the total synaptic current
to 200, 210, 221, 232, and 244 pA, respectively. These
reductions were 24.5%, 19.5%, 14.5%, 10%, and 5.3% of
the maximum values (249, 251, 253, 255, and 257 pA). In
the synapse withd 5 10 nm tested with the same values of
Rex the current was reduced by 48%, 39%, 29%, 20%, and
10%, respectively. It is noteworthy in the latter case that the
maximum total currents corresponding to the same five
values ofRex were relatively close to each other: 249, 251,
253, 255, and 257 pA (100%, 100.8%, 101.6%, 102.4%,
103.2%), respectively.

For the different testedRex, the total currents through the
receptor zone of radiusr 5 0.2mm differed from each other
less remarkably in the synapse with a wider cleft (d 5 20
nm) than in that with a narrower cleft (d 5 10 nm). In the
first case, these currents were, respectively, 200, 210, 221,
232, and 244 pA (i.e., 100%, 105%, 110.5%, 116%, and
121%), and in the second case they were, respectively, 169,
176, 192, 209, and 231 pA (i.e., 100%, 104.1%, 113.6%,
123.6%, and 136.7%).

Plausibility of the model

The main conclusion of our study is the occurrence of a
significant voltage drop produced by the synaptic current in
the intracleft resistance. This also implies a significant in-
homogeneity of the intracleft voltage profile. The plausibil-
ity of this phenomenon depends 1) on the relationship
between the cleft width and contact zone size and 2) on the
receptor channel distribution within the cleft. The cylindri-
cal shape of the model facilitates mathematical treatment
but is not critical for the phenomena in question. The cleft
widths in the range of 10–20 nm used in our model were
often reported for the central excitatory synapses (Peters et
al., 1991; Lisman and Harris, 1993). Widening of the clefts
up to 40–140 nm accompanied chromatolitic changes in the
spinal motoneurons (Chen, 1978), and complete synaptic
uncoupling was thought to be due to proteolitic modifica-
tions of the neuronal cell adhesion molecules by calpain
present near the contact (Sheppard et al., 1991). The diam-
eter on the order of 1mm used for the contact zone corre-
sponds to the values 0.69–1.47mm derived from typical
mean areas of 1.5–1.9mm2 of appositions (see Clements et
al., 1992; Kleinle et al., 1996; and references therein). Areas
of the PSDs in the range 0.02–0.26mm2 were described by
Sorra and Harris (1993), corresponding to radii of 0.08–
0.29mm with receptor aggregates surrounded by a receptor-

FIGURE 3 Relative change in the total synaptic current with the change in the radiusr of the receptor zone (abscissa, mm) in the synapse with the contact
zone of a fixed radiusR 5 1 mm for five (100–500V cm) values of extracellular resistivity as defined by Eq. 12. Plots inA andB correspond to the width
of the cleftd 5 10 nm andd 5 20 nm, respectively. Ordinates inA andB: the ratio of the total synaptic current through the receptor zone of radiusr to
the current through the receptor zone of radiusR 5 1 mm.
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free zone (Faber et al., 1992, and references therein). A
single-channel conductance of 20 pS corresponds to the
range reported fora-amino-3-hydroxy-5-methyl-4-isox-
azolepropionic acid (AMPA)-type glutamatergic receptor
channels (Hille, 1992; Traynelis et al., 1993). The number
of open channels (N 5 200) during steady synaptic activa-
tion in our model is close to the upper limit of the range
10–250 given for the channels opened by single quanta of
the neurotransmitter in the central synapses (Korn and
Faber, 1991, and references therein). It is also consistent
with the estimates obtained in freeze-fracture studies of
;2800 particles/mm2, of which some are likely to be glu-
tamate-gated channels (Harris and Landis, 1986; Lisman
and Harris, 1993). Therefore, our model keeps essential
structural features of central synapses with geometrical and
biophysical parameters within biologically reasonable
ranges.

Mechanism of geometry-induced modulation of
synaptic current

The present study highlights the causal relationship between
the fine geometry of the synapse and parameters of the
synaptic current. We demonstrated that the transmembrane
voltage and the current through identical channels are likely
to decrease toward the synaptic cleft center because of the
voltage drop within the cleft. The noticeable inhomogeneity
of the potentials indicates that the cleft resistance is an
important determinant of the current through spatially dis-
tributed channels. The total synaptic current conducted by
the same number of open channels appears to be sensitive to
changes in the receptor zone radius and the cleft width. The
resistive medium in the cleft plays the role of an “access”
resistance for the current influx from the cleft edge toward
the channels distributed in the receptor zone. This synaptic
access resistance is a significant part of the effective intrin-
sic resistance of the synaptic current generator, electrically
loaded by the extrasynaptic membrane. As follows from our
derivations, the total conductancegN of open channels in
the receptor zone does not give this effective resistance by
simply taking the inverse value ofgN.

Biological implementations

Voltage partition between the channels and the intracleft
conductive medium is important for the analysis of current-
voltage relations in single-synapse experiments, and char-
acterization of the single channels is often based on such
measurements (e.g., Traynelis et al., 1993). Depending on
the dimensions of the contact and receptor zones and on the
channel distribution, the transmembrane voltage sensed by
the channels can represent only a small proportion of the
total voltage drop at a synapse. This phenomenon is also
important for the analysis of electric currents between syn-
aptic and extrasynaptic parts of the membrane. Another

important implementation follows from the inhomogeneity
of the intracleft voltage, indicating a significant voltage
gradient between inner parts and the edge of the synaptic
contact. The gradients estimated from the contact dimen-
sions and the voltages in our model (;104 V/m) are suffi-
ciently high to cause an electrophoretic drift of charged
molecules within the cleft (Savtchenko et al., 1999). In the
excitatory synaptic contacts, like those considered in this
study, negatively charged molecules should be electro-
phoretically pushed out of the cleft and positively charged
ones should be drawn into the cleft. These implementations
are subject to our further, more detailed studies.
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The study was supported by the CNRS International Program for Scientific
Cooperation (PICS 822).

REFERENCES

Abramowitz, M., and I. A. Stegun. 1972. Handbook of Mathematical
Function, with Formulas, Graphs and Mathematical Tables, 9th printing.
Dover Publications, New York.

Attwell, D., and J. F. Iles. 1979. Synaptic transmission: ion concentration
changes in the synaptic cleft.Proc. R. Soc. Lond. B.206:115–131.

Burns, M. E., and G. J. Augustine. 1995. Synaptic structure and function:
dynamic organization yields architectural precision.Cell. 83:187–194.

Chen, D. H. 1978. Qualitative and quantitative study of synaptic displace-
ment in chromatolytic spinal motoneurons of the cat.J. Comp. Neurol.
177:635–664.

Clements, J. D., R. A. J. Lester, G. Tong, C. E. Jahr, and G. L. Westbrook.
1992. The time course of glutamate in the synaptic cleft.Science.
258:1498–1501.

Eccles, J. C., and J. C. Jaeger. 1958. The relationship between the model
of operation and the dimensions of the junctional regions at synapses and
motor end-organs.Proc. R. Soc. Lond. B.148:38–56.

Faber, D. S., W. S. Young, P. Legendre, and H. Korn. 1992. Intrinsic
quantal variability due to stochastic properties of receptor-transmitter
interactions.Science.258:1494–1498.

Geinisman, Yu., L. de Toledo-Morrell, F. Morrell, R. E. Heller, M. Rossi,
and R. F. Parshall. 1993. Structural synaptic correlate of long-term
potentiation: formation of axospinous synapses with multiple, com-
pletely partitioned receptor zone.Hippocampus.3:435–446.

Harris, R. M., and D. M. Landis. 1986. Membrane structure at junctions in
area CA1 at the rat hippocampus.Neuroscience.19:857–872

Hille, B. 1992. Ionic Channels of Excitable Membranes, 2nd Ed. Sinauer
Associates, Sunderland, MA.

Jonas, P., G. Magor, and B. Sakmann. 1993. Quantal components of
unitary EPSPs at the mossy fibre synapse on CA3 pyramidal cells of rat
hippocampus.J. Physiol. (Lond.).472:615–663.

Kelly, P. T., T. L. McGuiness, and P. Greengard. 1984. Evidence that the
major PSD protein is a component of a calcium/calmodulin dependent
protein kinase.Proc. Natl. Acad. Sci. USA.81:945–949.

Khanin, R., L. Segel, H. Parnas, and E. Ratner. 1996. Neurotransmitter
discharge and postsynaptic rise times.Biophys. J.70:2030–2032.

Kennedy, M. B., M. K. Bennett, R. F. Bulleit, N. E. Erondu, V. R.
Jennings, S. G. Miller, S. S. Moloy, B. L. Patton, and L. J. Schenker.
1990. Structure and regulation of type II calcium/calmodulin-dependent
protein kinase in central nervous system neurons.Cold Spring Harb.
Symp. Quant. Biol.55:101–110.

Kleinle, J., K. Vogt, H. R. Luscher, L. Muller, W. Senn, K. Wyler, and J.
Streit. 1996. Transmitter concentration profiles in the synaptic cleft: an
analytical model of release and diffusion.Biophys. J.71:2413–2426.

1124 Savtchenko et al.

Biophysical Journal 78(3) 1119–1125



Korn, H., and D. S. Faber. 1991. Quantal analysis and synaptic efficacy in
the CNS.Trends Neurosci.14:439–445.

Li, C., A. F. Back, and L. Parker. 1968. Specific resistivity of cerebral
cortex and white matter.Exp. Neurol.20:544–557.

Lisman, J. E., and K. M. Harris. 1993. Quantal analysis and synaptic
anatomy—integrating two views of hippocampal plasticity.Trends Neu-
rosci. 16:141–147.

Peters, A., S. L. Palay, and H. F. Webster. 1991. The Fine Structure of the
Nervous System. Neurons and Their Supporting Cells, 3rd Ed. Oxford
University Press, New York and Oxford.

Ranck, J. B., Jr. 1963. Specific impedance of rabbit cerebral cortex.Exp.
Neurol.7:144–152.

Ranck, J. B., Jr. 1966. Electrical impedance in the subicular area of rats
during paradoxial sleep.Exp. Neurol.16:416–437.

Rusakov, D. A., and D. M. Kullmann. 1998a. Extrasynaptic glutamate
diffusion in the hippocampus: ultrastructural constrains, uptake, and
receptor activation.J. Neurosci.18:3158–3170.

Rusakov, D. A., and D. M. Kullmann. 1998b. Geometric and viscous
components of the tortuosity of the extracellular space in the brain.Proc.
Natl. Acad. Sci. USA.95:8975–8980.

Savtchenko, L. P., S. M. Korogod, and D. A. Rusakov. 1999. Electrodif-
fusion of synaptic receptors: a mechanism to modify synaptic efficacy
63. Synapse.35:1–13.

Schubert, D. 1991. The possible role of adhesion in synaptic modification.
Trends Neurosci.14:127–130.

Sheppard, A., J. Wu, U. Rutishauser, and G. Lynch. 1991. Proteolytic
modification of neural cell adhesion molecule (NCAM) by the intracel-
lular proteinase calpain.Biochim. Biophys. Acta.1076:156–180.

Siekevitz, P. 1985. The postsynaptic density: a possible role in long-lasting
effects in the central nervous system.Proc. Natl. Acad. Sci. USA.
82:3494–3498.

Sorra, K. E., and K. M. Harris. 1993. Occurrence and three-dimensional
structure of multiple synapses between individual radiatum axons and
their target pyramidal cells in hippocampal area CA1.J. Neurosci.
13:3736–3748.

Traub, R. D., F. E. Dudek, C. P. Taylor, and W. D. Knowles. 1985.
Simulation of hippocampal afterdischarges synchronized by electrical
interactions.Neuroscience.14:1033–1038.

Traynelis, S. F., R. A. Silver, and S. G. Cull-Candy. 1993. Estimated
conductance of glutamate receptor channels activated during EPSCs at
the cerebellar mossy fiber-granule cell synapse.Neuron.11:279–289.

Uteshev, V. V., and P. S. Pennefather. 1996. A mathematical description of
mPSC generation at CNS synapses.Biophys. J.71:1256–1266.

Vigmond, E. J., J. L. Perez Velazquez, T. A. Valiante, B. L. Bardakjian,
and P. L. Carlen. 1997. Mechanisms of electrical coupling between
pyramidal cells.J. Neurophysiol.78:3107–3116.

Voltage Drops within the Synaptic Cleft 1125

Biophysical Journal 78(3) 1119–1125


