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ABSTRACT Asymmetry in packing the peptide amide dipole results in larger positive than negative regions in proteins of all
folding motifs. The average side chain potential in 305 proteins is 109 6 30 mV (2.5 6 0.7 kcal/mol/e). Because the backbone
has zero net charge, the non-zero potential is unexpected. The larger oxygen at the negative and smaller proton at the positive
end of the amide dipole yield positive potentials because: 1) at allowed phi and psi angles residues come off the backbone
into the positive end of their own amide dipole, avoiding the large oxygen; and 2) amide dipoles with their carbonyl oxygen
surface exposed and amine proton buried make the protein interior more positive. Twice as many amides have their oxygens
exposed than their amine protons. The distribution of acidic and basic residues shows the importance of the bias toward
positive backbone potentials. Thirty percent of the Asp, Glu, Lys, and Arg are buried. Sixty percent of buried residues are
acids, only 40% bases. The positive backbone potential stabilizes ionization of 20% of the acids by .3 pH units (24.1
kcal/mol). Only 6.5% of the bases are equivalently stabilized by negative regions. The backbone stabilizes bound anions such
as phosphates and rarely stabilizes bound cations.

INTRODUCTION

The amide group of the protein backbone is the most prev-
alent polar group in any protein, and it plays several well
established roles in determining protein structure and func-
tion. Thus, when a protein folds the backbone NH and
CAO groups in the protein interior find hydrogen bonds to
replace those made to water in the unfolded polypeptide
(Yang and Honig, 1995a, b). The pattern of regular intra-
backbone hydrogen bonds yields the protein secondary
structures that have been the subject of research going back
to the early work of Pauling. Amides in specific motifs have
been shown to be important for the stabilization of buried
charges. Interactions of charges with the backbone have
been identified both by using geometric rules that identify
hydrogen bonds (Baker and Hubbard, 1984; Rashin and
Honig, 1984; Stickle et al., 1992; McDonald and Thorton,
1994; Gandini et al., 1996) and by calculation of the intra-
protein electrostatic potential (Spassov et al., 1997). Inter-
action of charges with thea-helix dipole (Wada, 1976; Hol

et al., 1978; Hol, 1985) have been implicated in increased
protein stability (Nicholson et al., 1988; Sali et al., 1988)
and in pKa shifts of acidic and basic residues (Aqvist et al.,
1991; Sancho et al., 1992; Sitkoff et al., 1994). Amides in
loops also make hydrogen bonds to stabilize charges. The
backbone is important in calcium, (Strydnaka and James,
1989), phosphate, and sulfate (Hol, 1985; Quiocho et al.,
1987; Jacobson and Quiocho, 1988; Luecke and Quiocho,
1990; He and Quiocho, 1993; Yao et al., 1996) binding
sites, and in ion binding in the potassium channel (Doyle et
al., 1998). Amides also play important roles in enzyme
reactions such as in the oxyanion hole of the serine pro-
teases, where they stabilize the negative charge on the
substrate carbonyl in the transition state (James et al., 1980).

Cations are stabilized in regions of negative potential and
anions in positive regions. Because the amide group is a
dipole, if it is properly oriented it can interact favorably with
either charge. However, there is growing evidence that the
backbone stabilizes anions more often than cations. For
example, there are more bound anions such as phosphate
and acidic amino acids at helix N-termini than cations at the
C-termini (Hol et al., 1981; Richardson and Richardson,
1988; Gandini et al., 1996). A large positive potential is
found at the redox center in iron-sulfur proteins (Langen et
al., 1992; Swartz et al., 1996), at the phosphate binding site
in a/b barrel proteins (Raychaudhuri et al., 1997), and at a
cluster of buried acids in the bacterial photosynthetic reac-
tion centers (Beroza et al., 1995; Lancaster et al., 1996).
Calculations show that charges on acidic side chains are
better stabilized than bases by the backbone dipoles in
aspartate transcarbamylase (Oberoi et al., 1996). The back-
bone is found to produce a generally positive potential near
the protein surface (Spassov et al., 1997). However, there
has been no investigation of whether there is a general
principle that the potential from the backbone is, on aver-
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age, positive, or of how the neutral amide dipoles could
produce this result.

While the secondary structure motifs are the most obvi-
ous consequence of proteins having an amide linkage, this
paper will show that the amide group imposes additional,
inescapable consequences for protein structure and func-
tion. Most simply, the shape of the amide is dominated by
the oxygen of the carbonyl (CAO) being substantially
larger than the amine HN hydrogen (Fig. 1). One conse-
quence of this is that to avoid a steric clash the peptide R
group istrans to the CAO, closer to the HN, at favored phi
and psi angles. Moreover, the curvature of a protein’s sur-
face favors placing the larger carbonyl oxygen out toward
the solvent, while the smaller HN is more likely to be
packed in the protein interior. Thus, the asymmetry of the
amide group itself imposes an asymmetric packing of the
amides within proteins. Electrostatic interactions are the
most long-range in proteins. Asymmetry in the orientation
of a collection of dipoles, even those that are involved in
hydrogen bonds, will generate a significant, non-zero elec-
trostatic potential. This can influence the disposition and
energy of the charged groups within proteins.

This paper will describe the analysis of many protein
structures to show that the neutral backbone dipoles make
the electrostatic potential more positive within proteins of
all motifs. It will then be shown how the structure of the
amide dipole itself, negative toward the carbonyl oxygen
and positive toward the amide proton, produces a non-zero
potential in all proteins. Lastly, an analysis of the distribu-
tion of acidic and basic side chains and ionized substrates
and cofactors in many proteins will show a bias toward
burying anions rather than cations, not unexpected if the
backbone dipoles make the protein interior more positive.
Each protein represents a balance of many forces such as the
hydrophobic effect favoring non-polar residues inside a

protein and the solvation energy stabilizing charged resi-
dues on the surface. The basic geometry of the amide dipole
by producing more positive potentials within all proteins
adds another term to the forces that influence each protein’s
folding, structure, and function.

MATERIALS AND METHODS

Protein structures

Proteins were selected from the Brookhaven data bank (Bernstein et al.,
1977) to contain examples of many of folds in theSCOP classification
system (Murzin et al., 1995).SCOPclasses area, all a-helix; b, all b-sheet;
a/b, mainly parallelb-sheets (b-alpha-b units);a 1 b, mainly antiparallel
b-sheets (segregateda andb regions); small, usually dominated by metal
ligand, heme, and/or disulfide bridges; multi, multi-domain (a and b);
membrane, membrane and cell surface proteins and peptides.SCOPclassi-
fies domains independently, so proteins can belong to several motifs. When
domains in one protein are in differentSCOPclasses the protein is desig-
nated mixed-motif, a group that includes allSCOPmulti-domain proteins.

The following 305 proteins were used. The 141 proteins with resolution
of #1.8 Å are underlined. The 30 structures with resolution$2.6 Å are in
italics.

a-helix: 1aep,1ala,1bbh, 1bgc, 1bgd, 1cce,1ccr, 1clm, 1cmb, 1cpc,
1cpt,1csh, 1dcc,1eco, 1fia, 1gmf,1hdd, 1hrs,1huw,1hyp, 1lis,1lmb, 1lpe,
1mba, 1mbc, 1mdy, 1oct,1omd,1par, 1phc, 1r69, 1rhg, 1rib,1rop, 1utg,
256b, 2abk, 2asr,2ccy, 2cep, 2cnd, 2cro, 2cts,2cyp, 2hhb, 2hmq, 2mhr,
2pal, 2wrp, 2ycc,351c, 3c2c, 3gly, 3icb,4bp2, 5cpv, 5cyt.

b-sheet: 1aac, 1acx,1arb, 1avd,1bbp,1bcx, 1bgh, 1cau, 1ctm, 1f3g,
1gcs,1gct, 1gof, 1hbp, 1hcb, 1hlc, 1hmr, 1hne, 1hoe, 1hvj,1icm, 1ifc,
1igm, 1mdc, 1mjc, 1mup,1nsc, 1paz, 1plc, 1pmy, 1png,1ppl, 1pts,1r1a,
1rbp, 1scs, 1sgt, 1shf, 1shg, 1snc, 1stp, 1ten, 1tie, 1tld, 1tnf, 1ton, 1ttb,
1vmo, 2alp, 2apr, 2ayh, 2aza,2ca2, 2cab,2cpl, 2er7, 2fb4, 2ltn, 2mcm,
2mev, 2pab, 2pcy, 2pec,2plv, 2psg, 2rhe, 2rsp, 2sam,2sga, 2sil, 2snv,
2sod, 2stv,3est, 4fgf, 4gcr, 4pep, 4sbv,6nn9.

a/b: 1aba, 1aco,1ads, 1alk, 1amp, 1bnh, 1cde,1cus, 1gdh, 1gpb,
1hmy, 1lct,1nar, 1nba,1nip, 1ofv, 1omp, 1rpa,1rve,1s01, 1sto, 1thg, 1tml,
1tpf, 1trk, 1 ulb,1wht, 2ak3, 2dkb,2dri, 2had,2prk, 2rn2, 2trx, 3chy, 3cla,
3dfr, 3eca, 3hsc,4fxn, 5p21, 7aat,8abp.

a 1 b: 1aak, 1ahc,1alc, 1apa,1ast, 1aya,1brn, 1cew, 1ctf, 1dtp,
1fdd, 1fkf, 1frd, 1fus, 1fxd, 1fxi, 1gmp, 1iag,1igd, 1lba, 1mat,1mol, 1npk,
1pkp, 1ppn, 1ris, 1rms,1sha, 1tbp, 1ubq, 1yat, 2acg,2act, 2bop, 2chs, 2ci2,
2dnj, 2fxb, 2hpr,2lzm, 2ms2, 2msb, 2pol,2ssi, 2uce, 3b5c, 3il8, 4tms,7rsa,
9rnt.

small: 1aap, 1cbn, 1fas, 1isu, 1nxb, 1rdg, 2cdv, 2ovo, 2sn3, 4ins, 4pti,
4rxn, 9wga.

multi-motif: 1ezm, 1isb, 1sry,2tmn, 3sdp, 1bia, 1chm,1cse, 1emd,
1gal,1glv, 1lvl, 1pca,1pda, 1phh, 1rbl, 2glt, 2npx, 2reb,2sic, 3cox, 3grs,
4enl, 4gpd, 4mdh, 5rub, 9ldt, 2 cmd, 2pia, 8atc,1dlh, 1tss, 2aai,2mha,
1ddt, 1esl, 1dsb,1glq, 1gne, 1hna,2gst, 2pgd, 4ts1, 1gia,1fc2,1lla, 1prc,
2bpf,3mdd, 1cdg, 1cdo, 1eft, 1hpl, 2aaa, 8adh,1gla,1dlc,1tnr, 2bbk, 2por,
1rpl, 1gma, 1ppt.

Crystallographic waters, SO4, and PO4 with .10% of their surface
exposed to solvent were deleted. The surface exposure was determined
with the programSURFV (Sridharan et al., 1992). Protons were added to the
proteins with a 1.0 Å bond length and standard geometry.

Calculation of the electrostatic free energy terms
for acidic and basic residues

Electrostatic free energy terms were calculated for the ionized form of the
acidic residues Asp and Glu and the bases Arg and Lys. DelPhi calculations
were run for each residue with charges only on the atoms of this one side

FIGURE 1 Space filling representation of an amide group. The amine
HN (r 5 1.0 Å) is substantially smaller than the carbonyl oxygen (r 5 1.6
Å). The first atom of the two side chains (CB) adjacent to the amide are
oriented as they would be in ana-helix.
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chain. All other atoms in the protein had zero charge. Focusing was used
(Gilson et al., 1987) so that the minimum resolution for mapping the atoms
and surface to the grid for the finite difference solution of the Poisson
equation was 0.83 Å/grid. The dielectric constant for the protein (eprot) was
4, while that of the surrounding solvent (esolv) was 80. For each ionized
side chain the same calculation provides the pairwise interactions of the
residue with the backbone and its reaction field energy.

Pairwise interactions between the backbone and ionized
side chains

The potential was determined at all atoms in the backbone in a protein
where a single acidic or basic residue has charge. The free energy of the
pairwise interaction between the backbone and side chain i (DGbkn) is:

DGbkbn
i 5 O

j51

R O
bj51

bn

Cbj
siqbj (1)

whereCbj
si is the potential at atom b in the backbone of thejth residue from

charges on theith side chain. This pairwise interaction was obtained for the
bn atoms of the backbone that bear partial charge (qa) (Table 1). The
interaction was then summed for all R backbone amides in the protein.

Reaction field energy

The reaction field energy (also referred to as the self, solvation, or Born
energy) measures the difference in energy of an ion or dipole when it is
transferred between media with different abilities to reorganize around
charges. Electronic polarization and rearrangement of atomic dipoles both
contribute. Using continuum electrostatic theory, the response of the media
is encapsulated in the dielectric constant. The reaction field energy is
calculated here using an algorithm in DelPhi, which determines the inter-
action energy between the charges on the protein atoms and charges
induced at the protein-water dielectric boundary (Nicholls and Honig,
1991; Sridharan et al., 1992).

The penalty for placing a charge at its location in the protein is the
difference between the reaction field energy of the residue in situ and the
reaction field energy of the same residue isolated from the protein:

DGrxn 5 DGrxn in protein2 DGrxn in soln (2)

DGrxn in proteinandDGrxn in solnare both negative, favorable terms.DGrxn is
always a positive, unfavorable energy term because the absolute value of
DGrxn in proteinis always less thanDGrxn in soln. The reaction field energy for
side chains in solution were obtained for isolated coordinates of each side

chain in the protein data bank file 1PRC (Table 2). There is very little
variation between different conformers of any side chain, so one reference
value is used for each type of residue.

Calculation of interactions between the backbone
and all side chains and bound ligands

Average potential in the protein

The potential was calculated by placing partial charges on all backbone
amides. A DelPhi calculation was carried out with a 1293 grid. This
provides a grid spacing of.1.0 Å/grid for all but 30 proteins. The potential
(Ca

bkbn) from the backbone at each of them non-backbone heavy atoms (a)
was averaged to determineVP. The potential at waters and other non-
protein atoms was not included in the sum.

Vp 5
1

m O
a51

m

Ca
bkbn (3a)

In a group ofN proteins the average ofVP is:

AvVp 5
1

N ON Vp (3b)

The average potential (VS) from the backbone at a residue was obtained
from:

VS 5
1

n O
a51

n

Ca
bkbn (4a)

where there aren non-backbone heavy atoms (a) in the side chain
In a group of R residues the average ofVS is:

AvVS 5
1

R OR VS (4b)

The free energy of interaction of thejth side chain or ligand with the
backbone is:

DGbkbn
j 5 O

a51

n

Caj
bkbn qa (5)

whereqa is the charge on atom a in an appropriate partial charge set. The
free energy of interaction of a side chain or ligand with the backbone
(DGbkbn) can be calculated with either Eq. 1 or 5. For Eq. 1 the side chain
is charged and the potential is collected at all the atoms of the backbone.

TABLE 1 The charges used on the atoms of the backbone
amides

CHARMM EQ Carbonyl Amine

C 0.55 0.55 0.55 —
O 20.55 20.55 20.55 —
HN 0.25 0.35 — 0.25
N 20.35 20.35 — 20.35
CA 0.10 — — 0.10
Proline
C 0.55 0.55 0.55 —
O 20.55 20.55 20.55 —
N 20.20 20.20 — 20.20
CD 0.10 0.20 — 0.10
CA 0.10 0.00 — 0.10

All calculations use CHARMM charges unless otherwise noted.

TABLE 2 Reaction field energy in solution for acidic and
basic side chains

Kcal/mol DpH units Number of residues

Asp 217.66 0.1 212.96 0.0 47
Glu 217.56 0.1 212.86 0.1 51
Arg 216.06 0.1 211.86 0.0 66
Lys 219.36 0.1 214.26 0.1 34

Side chain coordinates from the file 1PRC were isolated from the rest of
the protein. CHARMM charges were placed on the atoms. The net charge is
21 for Asp and Glu and11 for Arg and Lys. The dielectric constants were
«atoms5 4; «solvent 5 80.
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For Eq. 5, the backbone is charged and the potential is collected at the side
chain atoms.

Unless otherwise noted, calculations ofVP, VS, andDGbkn useCHARMM

partial atomic charges for backbone (Table 1) and side chains (Brooks et
al., 1983);eprot is 4 andesolv is 80. The atomic radii were for each atom type
H 1.2 Å, C 1.8 Å, N 1.5 Å, O 1.6 Å, S 1.9 Å, P 1.2 Å.

Interaction between side chains and specific
amide groups

The interaction of each side chain with each amide was calculated in 51
proteins. Each DelPhi calculation had partial charges on only one amide
group. Thus, R calculations were made for a protein with R residues. The
grid resolution was.0.83 Å/grid for each protein. Where necessary the
focusing technique was used centered on the amide that carried the partial
charges (Gilson et al., 1987). The net charge was 0 in each run, resulting
from 6 0.9 charge for a standard amide and6 0.75 for Pro. Equations 3
and 4 were used to calculate the average potential from each amide within
the protein or at specific side chains; Eq. 5 provided the free energy of
interaction between specific side chains and individual amides.

Potential at CB from amide(n) and amide(c) as a
function of the phi and psi angle

All non-terminal amino acids in a protein lie between an amide toward the
N-terminal (amide(n)) and one toward the C-terminal (amide(c)) (Fig. 2).
Two series of 36 Ala tripeptide coordinates were constructed. In one set the
phi angle was changed in increments of 10°, in the other the psi angle was
varied. For the series with different phi angles, all atoms toward the
N-terminal were rotated holding the central CA and CB and all atoms
toward the C-terminal rigid. The series with different psi angles were
constructed holding the N-terminal and the central CA and CB fixed and
rotating atoms toward the C-terminal.

The potential at the central CB was obtained using Coulomb’s law
assuming a uniform dielectric constant of 4. Calculations with the tripep-
tides surrounded by water (eprot 5 4; esolv 5 80) were calculated with
DelPhi. In this case the positions of all atoms in the tripeptide modify the
dielectric boundary, and so effect the results. The variation of phi was
carried out in tripeptides where psi is260°, while the psi rotation was
carried out in peptides where phi is 120°.

Comparing the surface exposure of the carbonyl
O and amine HN for each amide

In the standard protein, the N to HN distance is 1.0 Å and the H radius is
1.2 Å. In contrast the average C to O bond length is 1.23 Å and the O radius
is 1.6 Å. This geometry ensures that the O will have more surface to expose
to solvent than the HN does. Protein coordinates were prepared where the
HN to N distance was 1.23 Å and the HN radius was 1.6 Å. The surface
exposure of the O and the modified HN to a 1.4 Å probe were calculated
with the programSURFV (Sridharan et al., 1992).

The in situ pKa of acidic and basic residues

The pKa of acids or bases in proteins can be different from that found in
solution because interactions in the protein shift the relative energy of
residue or ligand charged and neutral state (Churg and Warshel, 1986;
Bashford and Karplus, 1990; Gunner and Honig, 1991; Yang et al., 1993;
Antosiewicz et al., 1994; Gunner et al., 1997). The complete calculation of
residue ionization states is beyond the scope of this paper. However, other
interactions in the protein will modify the expected effects ofDGrxn and
DGbkn. Thus, if the charge state of all other R residues were fixed, the pKa

of residue i would be shifted from its value in solution (pKsoln,i) in the
following way:

pKprot,i 5 pKsoln,i 1 DGrxn,i
crg 1 DGbkn,i

crg 1 DGother,i
crg 2 DGrxn,i

neu

2 DGbkn,i
neu 2 DGother,i

neu O
j51

R

~DGsdchn~j!, i
crg 2 DGsdchn~j!, i

neu !

(6)

The termsDGbjkn,i
crg andDGrxn,i

crg , the charged residue’s interaction with the
backbone and its reaction field energy, are calculated with Eqs. 1 and 2,
respectively, and will be described in detail here. The interactions of the
neutral forms of a residue (DGbkn,i

neu andDGrxn,i
neu ) are often small. The final

sum represents the difference in the pairwise interactions of thej other
polar and charged side chains with residue i in its charged and neutral form.
This is the most significant omitted term. Other terms can arise from
intra-protein motions that are coupled to the ionization of the residue
(DGother). Within the protein the charge state of all residues are interde-
pendent (see Bashford and Karplus, 1990; Yang et al., 1993; Antosiewicz
et al., 1994; Alexov and Gunner, 1997 for a more complete description).

FIGURE 2 Each non-terminal side chain lies between 2 amides, one
toward the N-terminal and the other toward the C-terminal. (A) The amides
toward the N-terminal (amide(n)) and C-terminal (amide(c)) of the side
chain of residue i. (B) One amide is amide(c) for one side chain (i) and is
amide(n) for the next side chain (i 1 1) in the protein.
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RESULTS

The potential from the backbone within proteins

Backbone potential within four representative proteins

The degree to which the backbone amides make protein
interiors more positive is shown graphically for four pro-
teins with the basic folding motifs:a, b, a/b, anda 1 b.
The potential at a representative slice through each protein
with only backbone dipoles assigned partial charges is vi-
sualized with the programGRASP(Nicholls et al., 1991) (Fig.
3). Although the net charge on each protein is zero, the
interior is predominately positive. At least a quarter of the
total volume of each protein is at a potential above 120 mV,
while ,10% is below2120 mV (Table 3).

Average potential from the amide backbone
inside all proteins

The potential from the backbone (VP) was determined in
305 proteins chosen to include representatives of many
folding motifs (Eq. 3a).VP determines the potential at
non-polar, polar, and ionizable side chains.VP is always

positive, ranging from 57 to 244 mV (1.3–5.6 kcal/mol/e).
The averageVP is 1106 30 mV (2.546 0.70 kcal/mol/e)
(Eq. 3b, Fig. 4).

The average potential from the backbone is positive for
all protein motifs. Helical proteins have on average the
smallest potentials (956 23 mV) and a/b proteins the

FIGURE 3 Electrostatic potential
at a slice through four proteins with
different folds. Potentials calculated
and displayed with the program
GRASP (Nicholls et al., 1991). Blue
regions are at positive and red at neg-
ative potential; CHARMM charges,
eprotein5 4; esolvent5 80. (A) a motif:
Met-hemerythrin from sipunculid
worm (Themiste dyscrita) (2HMQ

chain A) (Holmes and Stenkamp,
1991). A 104 residue iron-binding
protein in a four-helical up-and-down
bundle with a left-handed twist (Mo-
tif descriptions from theSCOP data
base (Murzin et al., 1995)). (B) b
motif: human lipid binding protein
(1HMR) (Zanotti et al., 1992). A 129
residue 10-stranded meanderb-sheet
folded upon itself. (C) a/b motif: tri-
ose phosphate isomerase from
Trypanosoma brucie brucei(1TPF)
(Kishan et al., 1994); a 247 residue
a/b barrel which has 8 alternatinga
andb segments forming an internal,
parallelb-sheet barrel; and (D) a 1
b motif: bovine ribonuclease A
(7RSA) (Wlodawer et al., 1988); A
124 residue protein with a long
curvedb-sheet and 3a-helices.

TABLE 3 Electrostatic potentials within four proteins with
different folds

PDB File

2HMQ 1HMR 1TPF 7RSA
Protein Motif

a b a/b a 1 b

Percent protein at.120 mV 24% 24% 31% 29%
Percent protein at

,2120 mV
6.0% 6.6% 9.7% 8.1%

Total volume (Å3) 15432 18256 32626 15684
VP (mv) 85 85 131 89

The volume of the protein and the volume within an isopotential contour at
6120 mV (62.78 kcal/e) was calculated withGRASP(Nicholls et al., 1991).
VP was calculated with Eq. 3a. The proteins are described in the legend to
Fig. 3.
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largest (1366 36 mV) (Table 4). There are more small or
purea or b proteins among the least positive proteins, and
morea/b or mixed motif proteins among the most positive.
However, all folds are represented in both the most and least
positive proteins studied except for the small proteins.

Importance of specific parameters used in the calculations

The dielectric constants for protein and solvent were varied
to determine whether the bias toward the backbone poten-

tials being positive is due to the specific parameters used
(Table 4). If the calculations use a uniform dielectric con-
stant of 4, rather than having anesolv of 80, the average
potential of the proteins tested is 1376 62 mV. Thus the
result does not depend on the high dielectric constant of the
solvent. Raising the interior dielectric constant diminishes
VP without changing its sign (data not shown). The charge
distribution can also be varied. For example, moving the 0.1
charge placed on CA in theCHARMM charge set to the HN
(EQ charge in Table 1) also yields a positive average
potential (936 34 mV).

It is possible to determine the relative importance of the
atoms that make up the backbone dipoles in determiningVP.
Each amide can be viewed as two smaller dipoles with zero
net charge: a unit made of the carbonyl (C and O) and one
of the amine (HN, N, and CA) (Table 1). For each protein
;77% of the average potential is a result of the COO
dipole while 22% results from the HN-N-CA charges (Fig.
5). The same relative importance can be found in the con-
tribution of each mini-dipole to the dipole moment of the
amide. Thus, an amide withCHARMM charges has a dipole
moment of 4.2 D. The carbonyl mini-dipole moment is 3.2
D, representing 76% of the total, while it is 1.0 D for the
amine.

Average potential at different types of side chains

The average potential was determined at each side chain
(VS) (Table 5). Only 2.0% of the residues are at potentials
below 260 mV, while 75.6% are more positive than160
mV. The average ofVS is always positive for all types of
residues, ranging from 228 mV for Ala to 32 mV for Arg.
The average side chain potential is most positive for small
groups such as Ala, Cys, and Ser, and decreases as the side
chain becomes larger. This results in the averageVS for all

FIGURE 4 The number of proteins with different values of the average
electrostatic potential at the side chain heavy atoms (VP). VP was calculated
with Eq. 3a for 305 proteins. The patterns for differentSCOPprotein motifs:
a, black; b, horizontal;a 1 b, diagonal;a/b, cross-hatch; others, white.

TABLE 4 The average potential at all non-hydrogen, side
chain atoms from the backbone dipoles inside 305 proteins

Protein Motif
AverageVP

(mV) A* B † C‡ D§ E¶

«protein 5 4, «solvent5 80, andCHARMM charges
a 956 23 12 3 57 34 71
b 996 21 11 1 79 30 52
a/b 1366 36 1 12 43 35 64
a 1 b 1086 28 3 4 50 42 79
Small 1016 28 3 0 13 9 38
Multi-motif 121 6 27 0 10 63 — —
All proteins 1096 30 — — 305 154 327
Proteins with resolution#1.8 Å 1096 29 — — 143 — —
«protein 5 4, «solvent5 80, charge distributions from Table 1
All proteins “carbonyl” charges 976 24
All proteins “amine” charges 136 8
All proteins “EQ” charge 936 34
«protein 5 «solvent5 4 andCHARMM charges
All proteins 1376 62

Av VP is calculated with Eq. 3b.
*A How many of the least positive 30 proteins (VP: 57–74) are in each
class.
†B How many of the most positive 30 proteins (VP: 150–244 mV) are in
each class.
‡C Number of proteins analyzed in each class.
§D Number of folds studied in each class.
¶E Number of folds in each class in theSCOPclassification system (Feb.
1997).

FIGURE 5 Comparison of the average potential at side chain heavy
atoms (VP) for proteins with different charges on the backbone.VP was
calculated with Eq. 3a. Charges from Table 1: (E), amine (HN, N, CA)
charges; (F), carbonyl (C, O) charges. The straight lines are described by:
11.911 0.77x (r2 5 0.96) and211.21 0.22x (r2 5 0.71)
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side chains being more positive than the averageVP for all
proteins. The smaller, more positive side chains contribute as
much as a large side chain to the average ofVS, but notVP.

Potential at small molecules, cofactors, and substrates
bound to proteins

There are many ligands bound to the proteins analyzed here.
The potential from the backbone was investigated at several
types of bound molecules (see Table 6).

The average potential at buried waters is positive, with
twice as many waters at potentials.160 mV than at,260
mV. Thus, these neutral dipoles are likely to be found at
positive potential.

Metals are the only bound cations that are present in any
abundance in proteins. Many of the divalent cations cad-
mium, cobalt, copper, non-heme iron, manganese, magne-
sium, ytterbium, and zinc are at potentials from the back-
bone .300 mV. Only Ca21 and Na1 are ever found at
potentials from the backbone more negative than270 mV.
The importance of specialized backbone motifs for coordi-
nating Ca21 is well established (Strydnaka and James,
1989; McPhalen et al., 1991). Thus, the bias toward the
backbone being positive inside proteins extends even to-
ward the binding sites for positive ions. With the exception

of calcium and sodium, the backbone substantially destabi-
lizes cation binding. These must be bound by protein side
chains or anionic ligands.

The positive potential from the backbone at iron sulfur
clusters has been previously described (Langen et al., 1992;
Swartz et al., 1996). The very positive potential strongly favors
the reduced over the oxidized form of these redox sites.

Many enzyme substrates such as ATP or GTP are nucle-
otides, while many cofactors such as flavins and nicoti-
namides are derived from nucleotides. Each has negatively
charged phosphate groups. The average potential at the
phosphates is 435 mV, which will substantially stabilize
binding. Small anions such as phosphate or sulfate are also
always bound in regions of positive potential from the
backbone.

Structure of the amide group yields the
imbalance between positive and negative regions
generated by the protein backbone

Role of the neighboring amides in generating the bias
toward positive potentials in proteins

The potential from each amide at each side chain was
determined for 51 proteins that sample several folds and

TABLE 5 The distribution of side chains at different potentials from the backbone amide dipoles

kcal/
mole/e

Percentage of the Side Chains within Given Range for VS (mV)

Atoms/
Residue

Average VS

(mV)

AverageDGbkn

Number of
Residues

,2300
2300 to
2180

2180 to
260

260 to
60

60 to
180

180 to
300 .300

,26.8
26.8 to
24.1

24.1 to
21.36

21.36 to
1.36

1.36 to
4.1

4.1 to
6.8 .6.8 (meV) (kcal/mol)

ALA 0.01 0.05 0.29 2.89 32.56 44.94 19.26 1 228 — — 7544
PRO — 0.02 0.31 1.40 31.12 50.52 16.62 225 4145
CYS — — 0.89 9.58 42.13 29.07 18.33 2 203 18 0.41 1462
SER 0.03 0.20 0.91 8.10 47.43 25.79 17.54 2 193 0 20.01 5941
ASP 0.02 0.08 0.44 16.44 48.27 21.14 13.61 4 169 2148 23.40 5188
THR 0.04 0.30 1.04 10.23 54.82 21.56 12.02 3 164 2 0.05 5659
VAL — 0.03 0.60 9.46 53.64 27.07 9.19 3 163 — — 6298
ILE 0.02 0.12 0.75 14.27 55.25 22.91 6.67 4 145 — — 4827
LEU 0.04 0.12 1.30 19.87 54.94 18.55 5.17 4 126 — — 7459
ASN 0.19 0.26 2.16 28.77 43.48 16.68 8.45 4 124 218 20.41 4167
MET — 0.12 2.60 24.59 50.29 16.03 6.37 4 121 1 0.01 1728
GLU — 0.06 0.39 34.28 49.63 10.31 5.34 5 108 268 21.58 5190
PHE — 0.37 1.93 29.57 51.49 13.13 3.52 7 103 — — 3527
TRP — 0.53 3.17 32.28 47.29 13.27 3.47 10 96 212 20.28 1326
TYR 0.03 0.24 1.96 34.49 48.89 10.03 4.36 8 95 26 20.13 3369
HIS 0.05 0.68 4.85 43.07 34.46 9.91 6.99 6 91 47 1.08 1918
GLN — 0.12 2.88 44.60 40.43 8.38 3.59 5 84 214 20.31 3233
LYS 0.27 0.59 3.20 53.39 39.33 2.65 0.57 5 52 215 20.35 5093
ARG 0.97 1.71 8.37 57.06 27.11 3.39 1.40 7 32 229 20.67 3929
All 0.09 0.26 1.66 22.39 45.50 20.93 9.16 140 82003

The rows are placed with descending values of the average of VS.
VS for each side chain is calculated with Eq. 4a.«protein5 4; «solvent5 80; CHARMM charges are used. The potential range with the largest fraction of side
chains is underlined. The residues that are likely to be ionized are in boldface. The Average VS is calculated with Eq. 4b.
The number of atoms/residue counts the heavy atoms in each side chain. TheDGbkn is calculated for each side chain with Eq. 5 using CHARMM charges
on the side chains.
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include the most and least positiveVp values in each struc-
tural class (Table 7). This group of proteins is slightly more
positive than the 305 proteins, yielding the small differences
among Tables 5–7.

Each non-terminal side chain lies between two neighbor-
ing amides, one toward the N-terminal, the other toward the
C-terminal (Fig. 2). All other amides in the protein are distal
to this side chain. Phi and psi angles define the neighboring
amide orientation, secondary and tertiary structures produce
the arrangement of the distal amides. Analysis of the po-
tential from neighboring and distal amides shows: 1) the
potential from the neighboring amides is always positive; 2)
the standard deviation of this potential increases as the
flexibility of the side chain increases; 3) the potential from
the distal amides is very variable, as seen in the large
standard deviation of this value for each type of residue; 4)
on average, the distal amides also raise the potential at all
residues except at the bases Arg and Lys; and 5) the average
potential for Cys from the distal amides is very positive.
This is largely due to the very positive values at the Cys that
are ligands in iron-sulfur clusters (Table 6) which are over-
represented in the group of proteins.

The potential at a side chain (VS) is the sum of the
potential from the neighboring and the distal amides (Fig.
6). The neighboring amides contribute 1226 68 mV to the
average. The relative constancy of this value shows that,
independent of protein motif, the potential from the back-
bone starts with a bias of;110 mV within all proteins.
Proteins with average potentials less than this have contri-

butions from each group’s distal amides that are on average
negative. The average potential from the distal amides in the
different proteins ranges from240 to 120 meV, extending
to higher positive than negative values.

Why the potential from the neighboring amides is
always positive

The potential from the neighboring amides at CB in a
medium of uniform dielectric constant is solely determined
by the phi angle (for amide(n)) and the psi angle (amide(c))
(Fig. 2). Under these simplified conditions it becomes clear
why the potential from the neighboring amides at any res-
idue is almost always positive. The impact of the surround-
ing solvent and extended side chains on the potential and
resultingDGbkn will be described below.

The potential is shown visually for an amide group along
with the CBs for which this is amide(n) and amide(c) (Fig.
2 and 7). The polypeptide chains are arranged with phi and
psi angles found ina-helices orb-sheets. In each case the
CBs toward the N- or the C-terminal are in the region of
positive potential from the amide.

The potential was determined as a function of the phi and
psi angles at the middle CB in an Ala-tripeptide (Fig. 8).
The potential from amide(n) is less than zero only for phi
values between 40° and 180°, a region that is unfavorable
for any residue but Gly because of steric hindrance between
CB (of residue i) and the amide(n) (residue i-1) carbonyl
oxygen (Ramachandran et al., 1974). Thus, the side chain is

TABLE 6 The distribution of ligands and cofactors at different potentials from the backbone amide dipoles

kcal/mole/e

Fraction of Ligands within Given Range for VS (mV)

Average VS

(mV) Number

,2300
2300 to
2180

2180 to
260

260 to
60

60 to
180

180 to
300 .300

,26.8
26.8 to
24.1

24.1 to
21.36

21.36 to
1.36

1.36 to
4.1

4.1 to
6.8 .6.8

HOH 3.7 6.0 14.4 30.1 18.8 11.9 15.1 76 7489
Cations

Ca 37.1 4.3 11.4 25.7 14.3 2.9 4.3 2196 70
Na 57.1 — — — — — 42.9 2159 7
Mn — — — 60.0 20.0 20.0 — 98 5
Cu — — 7.7 38.5 30.8 7.7 15.4 133 13
Zn — — — 34.6 15.4 15.4 34.6 278 26
Fe — — — — 62.5 — 37.5 320 8
Mg — — — — 11.1 22.2 66.7 426 9

Anions
Cl — — — 33.3 0.0 66.7 — 168 3
PO4 — — — 22.2 11.1 22.2 44.4 264 9
SO4 — — — 22.2 — 33.3 44.4 282 9
MO4 — — — — — — 100.0 503 2

Cofactors
Heme — — 5.9 61.8 23.5 5.9 2.9 47 34
FeS — — — — — 8.3 91.7 701 12
P* — — — 13.33 7.78 14.4 64.4 435 90

Only waters, PO4, and SO4 buried in the protein with less than 10% of their surface exposed to a 1.4-Å probe were considered.
*Phosphate bound to cofactors and substrates such as nucleotides, nicotinamides, and flavins.
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constrained to come off the backbone into the positive
rather than the negative end of amide(n) because the car-
bonyl oxygen has a van der Waals radius that is much larger
than the HN. The phi angles ina-helices lie close to the
maximum value of the potential, whileb-sheets rotate the
side chain into regions of lower potential from amide(n).

The potential from amide(c) is always positive, in part
because the carbonyl C is always closer than the O to the
CB. The region of maximum potential is at values for psi

that are disallowed. The potential in helical regions is
slightly larger than forb-sheets.

The potential at CB from the neighboring amides is
influenced by the dielectric properties of the surrounding
solvent. Thus, the isopotential contours from an amide
group are smaller when the amide is immersed in solvent
(Fig. 7). However, the pattern of the variation of the poten-
tial with phi and psi is independent of solvent (Fig. 9).

As the side chains become longer the potential from the
neighboring amides decreases (Fig. 8). A decrease in the
positive potential along individual side chains was noted
previously by Spassov (Spassov et al., 1997). In addition,
longer side chains have more allowable rotomers with at-
oms in different positions relative to the amide dipole,
which increases the deviation from the average potential
(Table 7).

The amide orientation relative to the protein surface affects
the intra-protein potential

Modified protein structures were prepared where the HN to
N bond in the amide amine was lengthened to be as long as
the O to C bond in the carbonyl and the HN radius was
increased to the size of the O. The surface accessibility of O
and HN in these modified structures provides a simple,
rough estimate of whether each amide points its carbonyl or
amine out toward the solvent. With few exceptions, if an
amide O is more surface-exposed than its HN, this amide
raises the potential in the protein (top right quadrantof Fig.

TABLE 7 The contribution of the neighboring and distal amides to the potential at different amino acids

Total Distal Neighbor Amide (n) Amide (c)
Number of
Residues

ALA 239 6 144 136 135 2276 67 1246 44 1036 40 1137
PRO 2286 120 286 102 2006 55 776 37 1236 34 588
CYS 2256 198 716 181 1556 61 786 42 766 39 178
SER 2066 178 456 166 1626 55 906 40 716 34 957
ASP 1906 183 896 172 1016 46 526 32 496 29 794
THR 1726 150 356 135 1376 52 756 35 616 35 880
VAL 163 6 102 176 100 1476 42 776 31 696 31 906
ILE 1506 130 276 124 1236 42 626 28 626 28 644
LEU 1306 103 176 104 1136 41 566 27 576 28 1025
ASN 1336 136 396 127 946 47 476 32 476 29 636
MET 1236 124 276 123 966 40 496 29 476 29 254
GLU 123 6 132 396 117 846 37 436 22 416 25 656
PHE 1106 105 376 101 736 36 356 29 386 26 524
TRP 986 95 356 96 626 31 326 24 316 25 177
TYR 1056 114 416 109 646 32 316 25 346 22 469
HIS 1086 164 306 157 786 40 406 28 396 28 277
GLN 906 120 86 113 826 34 416 23 416 22 537
LYS 48 6 66 227 6 66 756 30 396 20 366 19 719
ARG 35 6 112 223 6 108 586 29 306 19 286 20 522
ALL 149 6 145 276 128 1226 68 636 41 606 39 11880

The potential was determined placing partial charges on one amide at a time in 51 proteins. The neighboring amides, amide (n) and amide (c), are defined
in Fig. 2. All other amides are distal to a side chain.

FIGURE 6 Comparison of the contribution of the neighbor and distal
amides to the average potential for 51 proteins. Each residue is charged in
turn in each protein and the potential collected at the two neighboring side
chains and at the distal side chains. Different protein motifs:a, f; b, M;
a 1 b, Œ; a/b, E; others,‚. The straight lines are described by neigh-
boring amides, 86.911 0.18x (r2 5 0.56); and distal amides,286.9 1
0.82x (r2 5 0.96)
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10). If the O is more buried the amide lowers the potential
(bottom left quadrant). The same pattern is found fora-he-
lical, b-sheet, and random coil regions of all protein folds.

The total contribution to the potential from amides with
HN more exposed, O more exposed, or with little difference
between their exposure were compared (Table 8). The res-
idues that have little differential exposure contribute only a
small amount to the average potential within the protein. For
each protein the contribution per amide for those with the O
or the HN more exposed are of similar magnitude, but
opposite sign. However, there are always more amides
where the O surface exposure exceeds that of the HN than
those with the opposite orientation. Overall 386 6% of the
O’s in the 305 proteins studied here have at least 10% of
their surface exposed, while only 176 6% of the HNs are
this exposed. The preponderance of surface-exposed car-
bonyl oxygens is another reason why the interior of all
proteins is at positive potential. This provides a mechanism
for raising the potential at buried ligands that lack the
interactions with neighboring amides that raise the potential
at side chains.

How the positive potential from the backbone
contributes to the free energy of ionized side
chains in proteins

The free energy of interaction between side chains
and the backbone

The potential is positive at the non-polar residues such as
Val (averageVS is 163 mV), Ile (145 mV), and Leu (126
mV) (Table 5). Moving from a potential of 0 into a potential
of 163 mV would stabilize a negative charge by23.75
kcal/mol or destabilize a positive one by an equivalent
amount. However, despite the significant potential (CI)
these neutral, non-polar residues contribute little to the free
energy of side chain interaction with the backbone (DGbkn),
because the net atomic partial charge (qI) is near zero (Eq.
5). The large positive potential at non-polar residues sup-
ports the picture that forces other than favorable electro-
static interactions between side chain and amide dipoles are
responsible for the predominately positive protein interior.
However, the average ofVS at the acidic residues Asp and
Glu is 45 and 24 mV, respectively, more positive than at

FIGURE 7 Each amide forms the
junction between two residues (Fig. 2
B). One amide is amide(c) for residue
(i), with an orientation between side
chain and amide determined by the
psi angle. The same amide is
amide(n) for the next side chain (i1
1) and their orientation is described
by the phi angle.GRASP (Nicholls et
al., 1991) pictures showing the two
CBs (green) neighboring one amide
in (A) a-helix (f 5 252, c 5 253);
(B) b-strand (f 5 2123, c 5 143).
The five atoms assigned charge are
labeled, colored red (negative) or
blue (positive), and given a radius
that is proportional to the partial
charge. The isopotential contours at
10.85 kcal/e (blue) and20.85 kcal/e
(red) calculated with (C, D) epeptide5
esolv 5 4; and (E, F) epeptide 5 4,
esolv 5 80.
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their polar analogs Asn and Gln. The bases Arg and Lys do
have the least positive averageVS. Thus, electrostatic inter-
actions between backbone and side chains do contribute
somewhat to the amide orientation that determines the
potential.

VS considers all side chain heavy atoms equally (Eq. 4a).
In contrast,DGbkn considers the partial charge on each atom
and the potential (Eq. 5).DGbkn is favorable at the basic
residues despite the average side chain potential being pos-
itive. Thus, the atoms with positive charge must be in
regions that are more negative than the average for the
residue as a whole. In contrast, the average GluVS is 108
mV while the averageDGbkn is only 268 meV (21.6
kcal/mol). Thus, the potential must be more positive at

atoms that cannot add to the favorableDGbkn because they
have little charge.

Loss of reaction field energy of ionized
amino acids in proteins

The loss of reaction field energy (DGrxn) (Eq. 2) provides a
quantitative measure of the distribution of buried charges in
proteins. The interactions with the potential created by the
backbone will be most important for buried, charged resi-
dues.DGrxn was calculated for the acids Asp and Glu, and
bases Lys and Arg (Figs. 11 and 12; Table 9). Seventy
percent have lost,4.1 kcal/mol of the reaction field energy
they would have if free in water, shifting the residue pKa by
,3 pH units (Eq. 6). Thus, as expected, most of these
ionizable residues are near the surface. However, 30%
(5501) haveDGrxn .4.1 kcal/mol. Half of these have lost
sufficient reaction field energy to shift their pKa values by
5 pH units (6.8 kcal/mol). A 5 pH unit shift destabilizes an
ionized Asp, moving its pKa from 4 to 9. The sameDGxn

shifts the pKa of an Arg from 12.5 to 7.5. Burial in the
protein can also be assessed by the exposure of the side
chain to the surface. The fraction of residues that have lost
.6.8 kcal/molDGrxn is comparable to the fraction of resi-
dues that have,10% of the side chain atoms with signifi-
cant charge exposed to the solvent (Table 9).

Different propensities are found for burying each type of
side chain. There are more buried Asp, similar numbers of
buried Arg and Glu, and fewer buried Lys. Overall there are
more buried acids than bases (Fig. 11, Table 9). This dis-
parity becomes more significant asDGrxn increases. For

FIGURE 8 The potential at the middle CB in an Ala
tripeptide from (A) amide(n) as a function of the phi
angle and (B) amide(c) as a function of the psi angle
(see Fig. 7A). The potential was calculated with (bold
line) epeptide5 esolv 5 4; (flatter, light line) epeptide5
4, esolv 5 80. The relative occurrence of residues with
different phi (C) and psi (D) angles in the 305 proteins
considered in this study were determined with the pro-
gramDSSP(Kabsch and Sander, 1983): Solid line,a-he-
lix; heavy dotted line,b-sheet; light line, other.

FIGURE 9 The dependence of the average potential at the side chain
(VS) on the length of the side chain. The average potential (VS), F; the
contribution from the neighboring amides,‚; the contribution of the distal
amides,f. Data from Table 8.
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residues whereDGrxn is 4.1–6.8 kcal/mol, 56% are acids.
Of the residues whereDGrxn is .6.8 kcal/mol 62% are
acids, representing 17% of the acids and 12% of the bases.

Interaction of ionized residues with the backbone

A buried acid or base with a largeDGrxn will be neutral at
physiological pH unless specific elements of the protein
stabilize the charge (Eq. 6). Nearby charges or appropriately
oriented dipoles can compensate for the loss of reaction
field energy. The free energy of stabilization of each acidic
and basic residue due to the electrostatic potential from the
protein amide dipoles (DGbkn) was calculated with Eq. 1
using CHARMM charges for the backbone (Table 1). Fig. 12
comparesDGrxn andDGbkn for individual amino acids. No
surface-exposed residue (DGrxn ; 0) has a largeDGbkn.
However, buried groups have a wide range of interactions
with the backbone. The straight line of slope 1 in Fig. 12
shows where2DGbkn 5 DGrxn. If there were no other
interactions (e.g., with the other protein side chains) the pKa

of groups along this line would be identical to that found in
solution. There are a small number of residues where sta-

bilization by the potential from the backbone dipoles is
larger than the destabilization due to removal from the water
dipoles (Fig. 12 and Table 10). In the absence of other
interactions the protein would shift the pKa of acids to lower
and bases to higher pH values. Prior calculations have
shown that hyper-stabilized residues can be functionally
important. For example, in the photosynthetic reaction cen-
ter a cluster of buried acids remain significantly ionized
because they exist in a region where2DGbkn . DGrxn

(Lancaster et al., 1996).
There are fewer residues with largeDGbkn than large

DGrxn (Tables 9 and 10). Only 14% of the acidic or basic
residues haveDGbkn larger than64.1 kcal/mol. The differ-
ent types of side chains have the same order of propensities
for large values ofDGbkn as forDGrxn (Asp. Glu $ Arg .
Lys). However, the difference between acids and bases is
far more striking. For example,DGbkn is 24.1 kcal/mol for
20% of the acids, while only 6.5% of the bases have
interactions above this threshold. For most residuesDGbkn

is favorable. However, 80% of the strong, favorable inter-
actions with the backbone are to acids, only 20% to bases.
Of the small number of residues with unfavorableDGbkn,

FIGURE 10 The difference in the exposure of the
HN and O vs. the contribution of that amide to the
average potential within the four-helix bundle 2HMQ,
theb-barrel 1HMR, thea/b barrel 1TPF, and thea 1 b
protein 7RSA. Residues ina-helices (f), in b-sheets
(Œ), and in loops (E). The structures were modified as
described in the Methods section to equalize the
length and size of the HN-N and C-O dipoles. The
potential was calculated witheprotein 5 4, esolv 5 80.
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93% are bases (Figs. 11, 12). Thus, acids are more likely to
be buried than bases and they are much more likely to be
stabilized inside the protein by the potential from the amide

dipoles. These distinctions are as expected if the potential
from the protein backbone creates a bias to favor buried
acids and raise the energy of buried bases.

FIGURE 11 The distribution of acidic and basic side
chains with different values ofDGrxn andDGbkn in 305
proteins with different motifs.CHARMM charges were
used for side chains and amides. The net charges in
each run were11 on the bases or21 on the acids.
eprotein 5 4, esolv 5 80. Acids:F, Asp;E, Glu. Bases:
f, Arg; M, Lys.

TABLE 8 The contribution of amides to the potential in the protein depends on the amide orientation relative to the
protein surface

Protein Motif

PDB file

2HMQ 1HMR 1TPF 7RSA
a b a/b a 1 b

Sum of the potential (mV) from all residues with given amide orientation SH . SO* 159 150 162 157
SH 5 SO 222 21 16 212
SH , SO 246 283 251 256

Number of residues with given amide orientation SH . SO 61 55 97 59
SH 5 SO 27 42 117 34
SH , SO 24 32 33 30

Average potential (mV) from amides with given orientation SH . SO 3.1 2.7 1.7 2.7
SH 5 SO 20.5 0.5 0.1 20.3
SH , SO 23.1 22.6 21.5 21.9

*SH . SO, the HN has at least 1 Å more surface area exposed than the O for this amide; SH 5 SO, the HN and O surface exposure differ by less than 1
Å; SH , SO, the O has at least 1 Å more surface area exposed than the NH.
The protein coordinate files were modified for the analysis of amide exposure. The amine HNON bond was lengthened to 1.23 Å, equivalent to the COO
bond. The radius of both HN and O were taken as 1.6 Å. The potential was calculated in a standard, unmodified structure.
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The role of hydrogen bonds in creating favorable
interactions between backbone and side chain

A hydrogen bond between the terminus of an acidic side
chain and the amide HN or a basic side chain and the amide
O generally indicates that the backbone will stabilize the
charged residue. The necessity of hydrogen bonds for gen-
erating large values ofDGbkn was investigated (Table 11).
Of the 1942 acids stabilized by.4.1 kcal/mol, 710 make no
hydrogen bonds to the backbone. In contrast, of the 526
bases only 70 make no hydrogen bonds. This result high-
lights the bias toward the protein being positive inside.
Thus, negative regions are almost always formed with local,
hydrogen bonds while positive regions can be generated by
longer-range interactions.

DISCUSSION

The average potential from the neutral amide dipoles (VP) is
found to be positive in every protein (Table 4, Fig. 4).
Larger regions of each protein are at positive rather than
negative potential (Fig. 3) and this potential is often large
(Tables 5 and 6). The numerical value of the potential

depends on the charge distribution used for the amide and
the dielectric constant for the protein. However, the average
remains positive even when these parameters are varied
(Table 4). The potential from the backbone is positive
within all proteins for two reasons. First, the side chains of
all residues come off the backbone into the positive end of
both their neighboring amides (Fig. 2A). The regions of
phi/psi space where side chains are close to the carbonyl
oxygen are disallowed because of van der Waals overlap
(Ramachandran and Sasisekharan, 1968). The HN proton is
much smaller, so the side chain can come closer. In addi-
tion, the orientation of the amide at the protein surface
influences the interior potential. The larger, more highly
charged carbonyl O is more than twice as likely to be
oriented into the solvent then the amine HN. The amides,
with their O’s more surface-exposed, raise the interior potential
(Fig. 10). The restrictions in phi/psi space influence the inter-
actions between amides and their neighboring side chains.
The distribution of amide orientation at the protein surface
raises the potential at distal side chains and bound ligands.

It is remarkable, given the complexity and uniqueness of
individual proteins, that the neutral backbone yields a po-

FIGURE 12 The relationship betweenDGbkn andDGrxn for the acidic and basic amino acids in 305 proteins. The bold line is for2DGbkn 5 DGrxn. The
dashed line shows the maximum value forDGxn, whenGrxn 5 0 andDGrxn 5 2Grxn in soln (Table 2). The61.5 kcal/mol has been removed.
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tential that is, on average, significantly positive in every
protein. The question is how this bias affects protein struc-
ture and function. Empirical rules determined from the
distribution of residues in protein structures have estab-
lished the importance of other forces in proteins. Thus, the
hydrophobic effect is recognized by many, though not all,
non-polar residues being buried. Again, the solvation of
charged residues stabilizes them on the surface where the
majority are found (Table 9).

The analysis of the distribution of acidic and basic side
chains reveals that despite the energetic penalty for remov-
ing charges from water, many are buried. However, there
are significantly more buried acids than bases. This is as
expected if the positive potential from the amides affects
side chain location. There are 1.7 times as many acids that
have lost 6.8 kcal/mol (5DpH unit) reaction field energy in
the proteins studied here (Table 9, Fig. 11). In addition, the
proteins have more bound anions (phosphates, sulfates,
heme propionic acids, etc) than cations (calcium, copper,
zinc, etc.) (Table 6). The numerical value of the loss in
reaction field energy is dependent on the parameters used
for the protein dielectric constant and, to a lesser extent, the
charge distribution on the side chains. However, similar
results are found in studies that assess the surface exposure
of side chains geometrically (Table 9). Prior surveys of
residue surface accessibility in smaller numbers of proteins
found three (Rashin and Honig, 1984) to almost nine (Mc-
Donald and Thorton, 1994) times as many buried acids as
bases. The more modest imbalance of buried anions and
cations reported here is probably more realistic. Although
the positive potential from the backbone favors burial of
anions, these will then repel each other. In addition, the
buried anions will lower the electrostatic potential, as re-
quired to stabilize buried bases.

One challenge is to determine how the bias toward the
backbone stabilizing anions is expressed within specific

proteins. For example, the average potential from the back-
bone at a Val would stabilize an anion or destabilize a cation
by 3.7 kcal/mol (160 meV) (Table 5). However, comparing
the effects of mutating an arbitrary Val to an acidic or basic
residue would not provide a simple test of this value. First
and most important, the backbone is only one contributor to
the electrostatic potential within a protein. Charged and
polar side chains affect the energy of charges in the protein
(Eq. 6) (Bashford and Karplus, 1990; Yang et al., 1993;
Antosiewicz et al., 1996; Alexov and Gunner, 1997), but the
analysis of the intra-side chain interactions is beyond the
scope of this paper. In addition, the naturally occurring
acids and bases have different structures, so they occupy
different positions relative to the backbone. The neighbor-
ing dipoles (Fig. 2) affect Asp or Glu much more than the
longer Arg or Lys (Table 7, Fig. 9) (Spassov et al., 1997).
Also, the range of potentials from the distal amides is
significant, so each position for mutation must be evaluated
independently (Table 7). Lastly, while the amide dipoles are
expected to have a favorable interaction with an acid, this is
only rarely sufficient to be as large as the destabilization of
the charge due to the loss of reaction field energy (Fig. 12).
Therefore, without interactions with other side chains or
ligands, buried acids would often be neutral. Thus, as found
experimentally, random mutations that bury charges can
destabilize a protein (Dao-pin et al., 1991) or yield neutral
side chains (Stites et al., 1991). However, sometimes the
residue will remain charged (Varadarajan et al., 1989; Pe-
rona et al., 1993). The results presented here suggest that in
a protein with few other buried charges, acids will be less
destabilizing and more likely to remain ionized than bases.

Thus, despite the penalty for moving charges into pro-
teins, a significant number of acidic and basic side chains
are buried (Table 9). As has been suggested previously,
many of these buried residues have their charged state
stabilized by the electrostatic potential from the amide back-

TABLE 9 Loss of reaction field energy (DGrxn) for ionized acids and bases within proteins

Number of Residues within Given Range
of DGrxn

Percentage of Residues within Given
Range ofDGrxn

Average
(meV)

Buried
(%)

Number of
Residues

DpH
meV

.5 3 to 5 0 to 3 .5 3 to 5 0 to 3
.300 180 to 300 0 to 180 .300 180 to 300 0 to 180

Kcal/Mole .6.8 4.1 to 6.8 0 to 4.1 .6.8 4.1 to 6.8 0 to 4.1

(%) (%) (%)
Asp 986 976 2975 — 20.0 19.8 60.3 — 194 18 4937
Glu 670 622 3541 — 13.9 12.9 73.3 — 152 12 4833
Lys 389 556 3766 — 8.3 11.8 79.9 — 120 9 4711
Arg 600 702 2427 — 16.1 18.8 65.1 — 167 19 3729

Acids 1656 1598 6516 — 16.9 16.3 66.8 — 173 15 9770
Bases 989 1258 6193 — 12.2 15.3 72.5 — 141 13 8440

All 2645 2856 12709 — 14.5 15.8 69.6 — 158 18210

DGrxn calculated with Eq. 2. The positiveDpH units implies that the neutral form of the side chain will be stabilized, shifting the pKa of acids to higher
and bases to lower pH. Residues were considered buried if the terminal oxygens in Asp and Glu, or terminal nitrogens in Arg and Lys had less than 10%
of their surface exposed to a solvent with a radius of 1.4 Å as determined by the program SURFV (Sridharan et al., 1992).
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bone (e.g., Hol et al., 1981; Gandini et al., 1996; Lancaster
et al., 1996; Oberoi et al., 1996; Raychaudhuri et al., 1997;
Spassov et al., 1997)). However, while the backbone desta-
bilizes the ionization of few acids and bases in native
proteins, it stabilizes many more acids than bases (Table 10,
Fig. 12).

Studies in model systems

The positive potential from the backbones is not a result of
proteins folding around buried anions. Because of the re-
strictions on angles at which side chains come off the
backbone, the potential from the neighboring amides will
tend to be positive in polypeptides as well as in proteins,
although it will be diminished when the system is more
solvent-exposed (Figs. 7 and 8).

The neighboring amides and shifts of amino acid pKa

values in peptides

The neighboring amides are predicted to stabilize the charge
on the short Asp2 and Glu2. The pKa values of carboxylic

acids are near 4.8, a value which is essentially independent
of the length of the acid alkyl chain. In a tetrapeptide in
solution Asp has a pKa of 3.9, demonstrating the peptide
backbone stabilizes the charge by 0.9 pH units (1.2 kcal/
mol) (Richarz and Wu¨thrich, 1975). In the same study the
pKa of Glu is shifted by a smaller amount to 4.2. A survey
of the measured pKa values provided average values of
2.7 6 0.9 and 4.06 0.9 for Asp and Glu, respectively
(Antosiewicz et al., 1996). This represents a22.9 and21.0
kcal/mol stabilization of Asp2 and Glu2 relative to a car-
boxylic acid in water. While the pKa values of residues in
proteins depend on a number of factors (Bashford and
Karplus, 1991; Yang et al., 1993; Antosiewicz et al., 1994;
Alexov and Gunner, 1997), the average backbone interac-
tion with Asp2 and Glu2 of 23.4 and21.6 kcal/mol are
comparable to these shifts. The average interaction of His
with the backbone would be expected to raise its pKa by 0.6
pH units (Table 5). This is within experimental error of the
finding that the average pKa of His (6.9 6 1.1) (An-
tosiewicz et al., 1996) is the same as that of imidazole.

The contribution of the neighboring amides to the helix
propensity of the ionizable amino acids

The different helix propensities of amino acids have been
recognized to result from a number of factors, including the
loss of entropy and the burial of side chains when a helix is
formed (Creamer and Rose, 1994; Pace and Scholtz, 1998).
In addition, ionized residues interact with the charge of the
helix macro-dipole in proteins and polypeptides (Hol, 1985;
Shoemaker et al., 1987; Aqvist et al., 1991; Sitkoff et al.,
1994; Nicholson et al., 1988; Sali et al., 1988). An anion is
stabilized near the helix N-terminal and induces helix fray-
ing near the C-terminal. A cation has the opposite effect.

TABLE 10 The interaction of ionized acidic and basic side chains with the backbone (DGbkn)

Number of Residues Falling in
Range of Interaction Energies

Percentage of Residues Falling in
Range of Interaction Energies

Average
(meV) *

DpH ,25 25 to 23 23 to 0 0 to 3 ,25 25 to 23 23 to 0 0 to 3
meV ,2300 2300 to2180 2180 to 0 0 to 180 ,2300 2300 to2180 2180 to 0 0 to 180

Kcal/Mole ,26.8 26.8 to24.1 24.1 to 0 0 to 4.1 ,26.8 26.8 to24.1 24.1 to 0 0 to 4.1

(%) (%) (%) (%)
Asp 617 800 3513 7 12.5 16.2 71.2 0.1 2145 12.2
Glu 247 278 4304 4 5.1 5.8 89.1 0.1 268 3.1
Lys 74 122 4463 52 1.6 2.6 94.7 1.1 215 1.0
Arg 134 198 3304 93 3.6 5.3 88.6 2.5 227 2.1

Acids 864 1078 7817 11 8.8 11.0 80.0 0.1 2107
Bases 208 320 7767 145 2.6 3.9 91.7 1.8 220

All 1072 1398 15584 156 5.7 7.5 85.9 1.0 267

DGbkn calculated with equation 1.
*The percentage of residues where the backbone stabilizes the ionized side chain by 1 pH unit more than the loss of reaction field energy destablizes
ionization.

TABLE 11 Acids or bases that are stabilized by the
backbone by more than 4.1 kcal/mole (3 DpH unit) without
making hydrogen bonds to the backbone

* † %

Asp 1417 530 37
Glu 525 180 34
Arg 332 31 9
Lys 196 39 20

*Number of residues withDGbkn ,24.1 kcal/mol.
†Number of residues withDGbkn ,24.1 kcal/mol that make no hydrogen
bonds with the backbone amides.
Two groups were defined as making a hydrogen bond if the H to O distance
is 3 Å or less. No angular cutoffs were used.
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However, the local interaction between the side chain and
neighboring amides also depends on the phi and psi angles
(Figs. 7 and 8). The interaction, especially with amide(n), is
strongest when a residue is in ana-helix (Fig. 8). Thus, the
neighboring amide interactions should modify helix propen-
sity even at the helix midpoint, where the macro-dipole
influence is negligible.

Baldwin and colleagues have compared the helix propen-
sities of side chains incorporated at different positions along
the helix to correct for the influence of the helix macro-
dipole (Chakrabartty et al., 1994). Asp2 and Asp0 have
similar helix propensities (Huyghues-Despointes et al.,
1993) and Glu2 is somewhat helix-destabilizing relative to
Glu0 (Scholtz et al., 1993), while His1 is very helix desta-
bilizing relative to His0 (Armstrong and Baldwin, 1993). A
series of amino acid analogs provides more evidence that a
positive charge near the amide destabilizes a helix. In par-
ticular, the short side chain (CH2NH3

1) is much more
helix-destabilizing than the analog with one more carbon
(Padmanabhan et al., 1996). Surveys of the frequency of
side chain positions do show that bases are prevalent at the
middle of helices (Richardson and Richardson, 1988; Gan-
dini et al., 1996). However, long tails of Arg and Lys
distance their charge from their neighboring amides.

How the positive backbone potential can influence protein
folding and stability

Protein stability is sensitive to pH and salt concentration.
Thus, electrostatic forces influence the equilibrium between
folded and unfolded states (Stigter et al., 1991). The con-
straints that lead to positive potential from the backbone
may also be found in compact, non-native structures often
found on folding pathways (Fink, 1995). The average po-
tential from the backbone within a group of incorrectly
folded proteins (Novotny et al., 1984) is similar to the
average of the ensemble of proteins studied here (data not
shown). Low-pKa acids have been predicted in non-native,
compact states of apomyoglobin (Yang and Honig, 1994).
Measured carboxylate pKa values in compact, unfolded
proteins are on average 0.3 to 0.4 pH units lower than found
in isolated residues (Oliveberg et al., 1995; Tan et al., 1995).

The addition of salts can also change the relative stability
of the native and other states of proteins. Ion occupancy of
specific cation or anion binding sites do stabilize native
conformations (Pace and Grimsley, 1988). However, salts
can also lead to protein unfolding. The compact, unfolded
states appear to be stabilized by anion binding (Goto et al.,
1990; Uversky et al., 1998). The preferential interaction
of backbone dipoles with anions may provide one mech-
anism for the observed anion dependence of salt-induced
denaturation.

Could the positive bias of the amide backbone
have influenced the chemical nature of
substrates or selection of amino acids
found in proteins?

The acidic and basic amino acids in modern proteins have
significantly different structures. The bases Lys and Arg are
very long, so they have little interaction with their neigh-
boring dipoles, and His has a pKa near physiological pH, so
it can be neutral without destabilizing the protein. In con-
trast, Asp and Glu are short, so their charge can be stabilized
by their neighboring dipoles. It is tempting to speculate that
the positive potential from the backbone amides may have
had an impact on the selection of amino acids that are
incorporated in proteins, as has been considered previously
by Spassov (Spassov et al., 1997). Shorter analogs of Lys
such as ornithine, diaminopropionic acid, and diammi-
nobutryic acids are present in mixtures that may represent
pre-biotic (bio)chemistry (Rohlfing and Saunders, 1978)
and are also found in modern metabolism, but are not
incorporated into proteins. Longer-chain acidic amino acids
such asa-amino adipic acid are intermediates in metabolic
pathways, but are not found in proteins.

Metals are the most common cations associated with
proteins. Metal binding sites are generally at positive po-
tential from the backbone, with amino acids such as Cys and
His playing essential roles in binding. There are several
important exceptions to this rule. Calcium is often bound by
backbone carbonyls and is therefore at very negative poten-
tial from the backbone. Sodium is also found at negative
potentials (Table 6). The potassium channel protein uses a
ring of carbonyls pointing into the channel to bind the
correct cation (Doyle et al., 1998). This motif actually uses
the propensity of carbonyls to point out toward the protein
surface to form the cation binding site.

While the backbone often destabilizes cation binding, it
contributes significantly to the binding of many anionic
substrates and cofactors (Table 6) (Quiocho et al., 1987;
Jacobson and Quiocho, 1988; Luecke and Quiocho, 1990;
Wilson et al., 1992; He and Quiocho, 1993; Yao et al.,
1996). Anions such as carboxylic acids and phosphates play
crucial roles in cellular metabolism. Phosphorylated sub-
strates are used in polymerization of proteins, nucleic acids,
and polysaccharides. Proteins interact with DNA or RNA in
all stages of nucleic acid replication, transcription, and
translation. Enzymes are phosphorylated to control their
activity. Many cofactors have phosphates in their structure,
which are not needed for catalysis, but are still removed
from water and bound in the protein. The energy of inter-
action of the backbone with these phosphates can be suffi-
cient to bind the ligand with little help from amino acid side
chains (Yao et al., 1996). Thus, the amide group is found to
be specifically well designed to bind the phosphate contain-
ing molecules that are the frequent partners of proteins in
much of biochemistry.
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