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Rigidity of Triskelion Arms and Clathrin Nets
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ABSTRACT Statistical analysis is applied to a set of electron micrographic images (Kocsis, E., B. L. Trus, C. J. Steer, M. E.
Bisher, and A. C. Steven. 1991. J. Struct. Biol. 107:6-14), from which quantitative measures are obtained to support the
notion that the three arms of a triskelion have statistically identical properties and exhibit independent structural fluctuations.
Additionally, a study of local contour fluctuations, which indicates that the elastic properties of a triskelion arm are
approximately constant over the entire arm length, is used along with a small deformation statistical mechanics theory to
derive an effective, average flexural rigidity for the arms. This result is used to estimate the bending energy necessary to
deform a clathrin patch, and comparison is made with the deformation energy of an equivalent area of non-clathrin-coated
membrane. We estimate that the rigidity of the clathrin lattice is at least comparable to that of a typical membrane. Hence,
the natural curvature of a clathrin cage can stabilize, and perhaps propel, the formation of intracellular coated vesicles.

INTRODUCTION

Various proteins are known to be implicated in the budding The primary function of the clathrin coat is yet to be
of vesicles from the membranes of eucaryotic cells (Schmidgefinitively resolved. One hypothesis is that clathrin,
1993, 1997; Parton, 1996; Schekman and Orci, 1996; Rolthrough its interaction with accessory-protein-linked recep-
inson et al., 1996; Anderson, 1998; Dell’Angelica et al.,tors, acts to concentrate cargo in the interior of a budding
1998). The best characterized is clathrin, which appears in gesicle. Another possibility is that coat proteins might de-
cell as a three-armed heteropolymer referred to as a clathristabilize membranes by acting as molecular surfactants to
triskelion. In moderately acidic solutions, triskelions spon- release elastic energy stored in a lipid bilayer (Oster et al.,
taneously assemble to form closed polyhedra (cages) thd©89). Yet another proposal is that the polymerized clathrin
are morphologically similar to the coats of certain vesiclesbasket, through its natural curvature, imparts tension in the
that can be harvested from a variety of tissues and cellplasma membrane and thereby drives the membrane from a
(Woodward and Roth, 1978; Keen et al., 1979; Crowtherstructure of low average curvature to one having the high
and Pearse, 1981; Kirchhausen and Harrison, 1981). Nativeurvature of a small vesicle. However, for a clathrin lattice
clathrin coats and clathrin-coated vesicles have been studigd drive vesiculation, its stiffness must be comparable to, or
most in the context of receptor-mediated endocytosis, whiclarger than, that of the cell membrane. To see whether an
is the process by which many materials are taken up int@ssembled clathrin lattice can, in this way, influence vesicle
cells by binding to specific receptors that lie across theformation, we here shall estimate the rigidity of a clathrin
plasma membrane. These embedded receptors, with thegtch and compare it to that of a typical biological membrane.
bound ligand, associate with “adaptins” (also, variously Direct mechanical measurements provide values for the
known as APs or “assembly proteins”), possibly via acti-rigidities of biological membranes (Evans, 1983; Elson,
vated AP membrane binding sites (Santini et al., 1998). Thd988; Frank, 1990; Zhelev et al., 1994). To estimate the
APs, in turn, bind to clathrin on the cytoplasmic face of therigidity of a clathrin coat, we examine conformation fluc-
membrane (Vigers et al., 1986; Keen, 1990; Robinsontuations of isolated triskelions by using techniques similar
1992). Other proteins, such as the GTPase dynamitP those that have been used to determine the bending
(Sweitzer and Hinshaw, 1998) and the dynamin-associate@ioduli of microtubules and actin filaments (Gittes et al.,
protein amphiphysin (Takei et al., 1999), are involved tran-1993; K& et al., 1996). The latter structures are large
siently in various steps of clathrin-coated vesicle formation€nough to be observed optically, but clathrin triskelions are

but their structural roles in the liberated vesicle are not weltoo small and other techniques must be used. To this end,
established. we have obtained a digitized collection of electron micro-

scope images of isolated triskelions (Kocsis et al., 1991),
from which we infer that a triskelion behaves as a simple
elastic element fluctuating in a viscous medium. Analyses
1999, 'of these images provide -char.acterizations of the average
Address reprint requests to Dr. Ralph J. Nossal, NIH, Bldg. 12A, Rm.(_mean) conformation of triskelion arms and local ﬂ,UCtua_
2041, Bethesda, MD 20892. Tel.: 301-435-9233; Fax: 301-496-21721i0NS about that mean shape. From the mode magnitudes of
E-mail: rin@helix.nih.gov. the fluctuations along the arms we estimate the arm rigidity
© 2000 by the Biophysical Society and use that information to calculate the bending energy of
0006-3495/00/03/1183/12  $2.00 a clathrin network.
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In the following, we briefly describe the procedure used
to derive a set of digitized electron microscopy images of
individual triskelions. We then introduce the notion of a
nanoscopic, multivariate probability density for the coordi-
nates of projected shape descriptors of the arms and presen
inferences based on statistical analyses of triskelion-shape
fluctuations. We follow by introducing a method, based on
concepts of equilibrium statistical mechanics, that allows us
to estimate a value for the planar bending modulus of a
triskelion arm. The stiffness of a clathrin lattice patch then
is inferred and found to be comparable to that of an equiv-
alent area of typical phospholipid membrane. Various de-
tails of analytical methodology are given in appendices.

TRISKELIAL STRUCTURE AND o N

triskelion contains one clathrin heavy chair 190 kDa)
and one tightly, but noncovalently, associated light chain *
(~_2_3_27 kDa) (UngeWICkeII and Branton, 198:_'-; Pastan anq:IGURE 1 Variable shapes of triskeliong.dp) electron micrograph of

Willingham, 1985; Brodsky, 1988). Heavy chains belong totriskelions on mica substrate, obtained by Kocsis and co-workers (1991)
a single class and seem to be well conserved across speciés a glycerol nebulization/rotary shadowing procedure. Horizontal bar

(Kirchhausen et al., 1987)' their carboxyl ends are noncoMeasures 50 nm in lengttBdgtton) selected triskelion images, constructed
aE‘fom corresponding digitized node coordinates supplied by Kocsis et al.

SHAPE DESCRIPTIONS ". | 5 | ‘
S T o
The standard model for triskelions consists of: 1) a central i - $ goa ! "%@ PO
hub of radius 40 A; 2) three arms, each-¢520 A in length S *{tf ! f 3
and of ~20 A radius; and 3) three globular domains of | Wﬁ ! «f.:_j ¢ ! gr Y
radius 36 A that terminate the three arms. This structural | ; '
model of triskelions helps explain qualitative geometricand [~ =~ — ''''''''' == Tt
topological features of the packing of triskelions into coated M | - | 2N
pits and vesicles (Pearse and Bretscher, 1981; Kirchhauser 1 e | s, £ : ;
et al., 1987; Pearse and Crowther, 1987; Heuser, 1989; Jin| “\«”@f‘% | Sess | "y
and Nossal, 1993; Smith et al., 1998). Each arm of a native & ;f $ | o | \b,,,,m‘? %
| |
1 |

Vale:ntly a.nChored to each other a.t j[he celjtral hub. I_'Igh 991), where the size of square grids is 50 An50 nm. In the present
chains exist as two classes containing variable functiona]q we analyze a set of 72 such shape profiles.

domains, and are much less conserved (Brodsky et al.,

1991). It is believed that heavy chains are primarily respon-

sible for triskelion conformational properties and clathrin ~ Shape variations of the triskelions are described via arm
network formation, whereas the light chains may enter intacontour lengths and tangential angles, determined from a set
molecular interactions between clathrin and other macroef natural cubic spline functions (see Appendix A). Several
molecules involved in endocytosis, with a specificity deriv- quantities characterize the fluctuations. Among these (see
ing from the variable light chain domains (Kirchhausen etFig. 2) are the linear (“straight-line,” scalar) distances be-
al., 1987; Brodsky et al., 1991; Lin et al., 1991; Schmid andtween the hub and centers of the three terminal domains
Smythe, 1991). {D{D} (wherei = 1, 2, 3isthe arm index arjo= 1, 2, . . .,

The primary data (Kocsis et al., 1991) used in this studyN identifies a particular triskelion) and the linear distances
are 72 digitized images of intact triskelions (examples arébetween apposing terminal domainB} (i.e., between
shown in Fig. 1). The clathrin specimens were prepared oarmsi’ andi”, i’ # i” # i). We thus are able to compute the
mica substrates by the glycerol nebulization/rotary shadowfrequency distributions of global parameters such as the
ing procedure (Elliott et al., 1976; Shotten et al., 1979).apparent arm lengths{’}, the hub angles ¢}, the cu-
From digitized nodal positions~8—14 nodes along each mulative angles from the hub to terminal domairg},
arm) we reconstructed, for our analysis, those images odnd the cumulative angles to the midpoints of the arms
intact triskelia that display clear clockwise vorticity and {6®}. In addition, we use statistical methods to investigate
represent the majority of all images [see Trus and Stevepossible correlations between parameters pertaining to the
(1981) and Kocsis et al. (1991) for a discussion of initial three individual arms of any given triskelion, e.g., to deter-
image processing]. mine whether the apparent length of a triskelion arm is
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The validity of Eq. 1 depends on the following postulates:
1) that the three arms within a triskelion have identical
properties but fluctuate independently of each other; 2) that

. . , : :
Ny ¥ ,}. . the shape fluctuations of the arms are independent of the
ﬂ&é relative orientation of the arms about the hub; and 3) that
,« there are no special global shape constraints, such as pre-
- ferred fixed distances between three terminal domains.
Arnf ...........

Distributions of triskelion global parameters

To establish these properties, we obtained statistical de-
scriptors for the parameted,,, Des L, ¢, 6. and 6,
discussed at the end of the previous section (see also Fig. 2).
For each parameté we constructed the overall frequency
FIGURE 2 The notation adopted in this work. The quantif®¢s) and  distribution by including data for all 72 intact triskelions
«(s) are, respectively, the apparent contour length and tangential angle dfi.e., 216 arms). With but one exception (the hub angles: see

theith arm at positiors (the Ia_tter being measured along the aminc_> acid below), these distributions appear to fit normal distribu-
backbone of the heavy chaim)® is the hub angle opposite titd arm,D{, tions. viz

is the linear distance between the hub and the center of the terminal domain ’ ”
of theith arm, andD{,is the linear distance between the terminal domains

_ 2
of the apposing arms (i.e., between arthandi”). The latter notation is g)n(A) = 7f1 X exp{ - 1[A M(A)] } , (2)

hb: Triskelion hub

td: Terminal domain

easy to comprehend if one recognizes that “h” stands for “hub,” and “e” 2| oA
signifies “end” (at the terminal domain).
where the average (mean) valygA) and the standard
deviation o(A) are defined agi(A) = 32, I, AW/3N
correlated with the total bending angle of that arm and/o@nd o*(A) = 2; ZL, (A" — u(A)(3N — 1), respec-
with the lengths of other arms located within the samelively. To establish whether the individual arms in a triske-
triskelion. In this way, we infer elements of a structural lilon behave independently of each other, we detsrmlned
probability density specifying the likelihood of a triskelial Values pertaining to the various arm parametef§) ],

shape profile when visualized by electron microscopy on dAad and {A}, where the subscripts “sm,” “md,” and
nanometer length scale. “lg” denote, respectively, the smallest, the medial, and the

largest value among each triplet of global parameters noted

for any given triskelion image. If Eq. 2 holds and if the arms
ANALYSIS AND RESULTS fluctuate independently, then the uniquely formed group of
We find that the projected (two-dimensional) electron mi-SUPSEts, s, { Amdt, and {Ag}, will be practically indis-
crographic images of triskelions can be adequately det_mgw;hable from bell-shaped normal curves having the
scribed in terms of the following master probability density following parameter values (see Appendix B)

function, w(Au) = wlA) — 0.846- o(A),
@({a(i)(s)l Si)(s)}) = 9)hub(qb(l)a (15(2)' ¢(3)) U(Asm) = 0.748 O’(A),
() )
izl;[ZS('-)])Arm(e (S), g (S)) (1) IJ«(Amd) _ ’L(A), (3)
In this expression, the indeix = 1, 2, 3 pertains to the o(Ang) = 0.670- o(A);

individual arms, characterized by the nanoscopic degrees of
freedoma®(s) andSV(s), where the tangential angie”(s) H(Ag) = u(A) + 0.846 (A,

and the apparent contour leng#¥(s) of the ith arm both o(A.) = 0.748 o(A)

are functions of the distance along the true arm-length ¢ ' '

positions (which is linked to the amino acid sequence of theAs an example, the frequency distributions for the arm
heavy chain). The principal feature of Eq. 1 is tl&t,,  contour lengthL, are shown in Fig. 3. The overall form of
(&P, @, ) and theP ,,.,, (0(5), S()) specify inde-  arm lengths is seen to be symmetric and appears to be close
pendent behaviors of the hub angles and each of the thrée a normal distribution. Moreover, the measured contribu-
arms. [Here,09(s) = («(s) — «(0)) measures the net tions from the medial and smallest values of arm lengths are
bending of Arm{’, and the variable)’ denotes the angle, at in good agreement with the predictions of Egs. 3. Similar
the hub, between the two arms other than Mrrfsee investigations were made ddy, Do 0. and 6, Each

Fig. 2).] quantity was found to be nearly normally distributed, and all
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FIGURE 3 Frequency distribution of the apparent contour lengtiof Hub Angle’ (b (degree)

the triskelion arm. The bars comprising the histogram are marked with

distinctive patterns denoting contributions from subsets containing, resped=IGURE 4 The frequency distributions (see caption to Fig. 3) of the hub
tively, the smallest (gray shading), the medial (lighter, cross-hatched patangles,¢. As expected, the subset frequency distributions in this case do
tern), and the largest (light, square grid pattern) values of every triplet ohot fit bell-shaped, normal curves (see text).

arm lengths for each of the 72 triskelion images. The curve defined by

square symbols is a fit to a normal distribution (see Eq. 2), with measured

values of the average.] and standard deviatiors) for all arms pooled cients, {p(/-\, B)}, whose definition is given by Eq. C1 in

together. The diamond-marked curve is a normal distribution fit for the . . .
smallest subset, with theoretical valuesdL,,) and o(L,,) calculated Appendix C. When applied to our data, we obtain the values

from Egs. 3. The curve indicated by a “plus” sign is a fit to the sum of a{p(¢, A)} shown in Table 2 where, for example(e, L)
pair of expected normal distributions, one being the distribution for thetests the correlation between the arm lengthand the
subset of smallest values and the other the subset of medial values, a'mposite hub anglé.. Because we have images of only 216
calculated according to Egs. 3. Our estimated average lepdth,= 53.5 arms, and thus only 144 independent measures,adll

nm (see Table), is slightly greater than the value of 51.6 nm inferred bythese values essentially are indistinguishable from zero at a

Kocsis et al. (1991) from a larger data set that included incomplete ) e
triskelia, but is almost identical to their most probable value of 53.3 nm. confidence level of 95% (for 144 samples, the limits are
|o(A, B)| = 0.16, see Appendix C). Moreover, the corre-
sponding scatterplots for all five pairsg,(L), (b, 0o,
indicate the independence and equivalence properties infe, 6,,), (¢, Do), and @, D), do not indicate any recog-
plied by Egs. 3. The only variables that are not normally anchizable pattern (data not shown). Hence, the hub degrees of
independently distributed are the hub anglé®], whichis  freedom as measured gyseem to be totally independent of
expected because the projected hub angles must obey ttite arm degrees of freedoml {6, 60, Dpe Ded- This
simple constrainEi‘:lvzve,(b(') = 360. We note that the wide independence supports the separation of the hub and arm
distribution of {¢"} (see Fig. 4) signifies considerable terms in the master probability density function (see Eq. 1),
flexibility of the arms near the central hub. In sum, though,and implies that the hubs do not have any significant role in
distributions of the type shown in Fig. 3 and the statisticalcontrolling arm shape change.
measures given in Table 1 support the notion that the arms Additional support for the independence and equivalence
are equivalent and fluctuate independently. of arm fluctuations is provided by calculating a novel tri-
correlation coefficienp,, which also is defined in Appendix
C. This coefficient tests correlations among three variables,
Al, A2, andA3, having identical distributions. If the subsets
The possible linkage between pairs of arm variable®¥  {Al}, { A2}, and {A3} are formed from independent sam-
and {B"} (where, e.g.,AD = LO B = ¢V) can be pling, thenps (A) = 0; however, ifAl, A2, andA3 are
investigated according to conventional correlation coeffi-strictly correlated by the constraiAll + A2 + A3 = const.,

Correlations in global shape fluctuations
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TABLE 1 Comparisons between measurements and tion given by Eq. 1 seems to apply in a self-consistent
predictions manner.

Average value ) * Standard deviationof)

Characteristic ~ Overall Smallest Largest
Quantities (all data) (or Shortest) Medial  (or Longest) Fluctuations about the mean triskelion shape
L (nm) . : .
measurement 53657  49.2+4.9 534=41 580+ 4.1 We also determined the average shape of a triskelion arm
theory — 48.7+4.3 53.6£38 583+54 and the fluctuations about the mean contour. Such data are
Dhe (nm) ¢ 20772 937460 29.0:43 354557 of central importance to our subsequent analysis of arm
measuremen . . (* 0. 9* 4, 4% 0. . . . . .
theory ~ 236-54 297+48 358+54  CNErgetics. From the 72 intact triskelions, we examm_ed 216
Do (NM) triskelion arms by considering each to be an equivalent
measurement 495 11.3 39.8+8.6 51.0-82 57.6+8.9 member of an ensemble and calculated the mean and stan-
theory — 39.9-84 59576 59.0+84 dard deviation of the local curvature (i.e., the gradient of the
Ger(::gsrsgmem 15958 100%50  158+37  198- 38 tangential angle as one moves along a triskelion arm; see
theory _ 103+ 44 152+ 40 201+ 44 Eq. A4)._ Results are presented in Fig. 5, where the lower
0, (degree) points €ircles) represent the mean value of curvatuees),
measurement 73 40 38= 31 71+26 109+ 26 as a function of intrinsic position along the triskelion asn,
. EZeory ) - 38=30  73x27  107=30 (the distance from the hub when scaled to the apparent arm
egree .
measurement 126 37 82420 118+ 16 161+ 21 !ength). The upper pomtstr(angllesl shpw the correspond-
theory _ Non-normal Non-normal Non-normal INg values of the standard deviation in the local curvature,

Parameters of frequency distributions of global quantities such as thg(C(S)) (‘_Q’ee Appendlx A)' Two important points ShO_UId be
apparent arm length and total arm bending angk that characterize the ~noted. First, the arms, on average, are almost continuously
two-dimensional, nanoscopic shape fluctuations of triskelions (see Fig. zurved, and there are no sharp bends in the structure. Sec-
and related text). Measured mean value), and standard deviations, ond, except for the positions near the hub and terminal

a(A), for all arms pooled together, and for the smallest, medial, and Iarges&orm:i_inS the values Qf‘(C(S)) vary by <20% indicating
subsets (see text) are compared with values inferred from Egs. 3. [For ' !

Gaussian (normal) distributions, the standard errors of the reported meawaf[ the bending rigidity is approximately Cons_tar_‘t along the
values are related to the standard deviationsbyN—1, whereN = 216 ~ entire arm. The fact that the standard deviations of the

is our sample size.] fluctuations are large signifies that the arm shapes are quite
variable (see Fig. 1).

thenpy(A) = —1. Values ofp, for arm descriptors of interest
are given on the second line of Table 2. Because there are

only 72 triskelions, these numbers are considered to be not ~ ~ T T
statistically different from zero at a 95% confidence limit if g 020F ]
lod = 0.27 (see Appendix C). Tricorrelation coefficients E’ - .
pertaining to arm bending, vizpg(0,), p«6,n), andpD;.0), % 016 - h
lie well within this range. Note, however, that(L) and R
p<(Deo have slightly higher values, which may indicate that, % " i
when samples are prepared for electron microscopy, the _c;\s 0.12 - s
hubs of some triskelia sit slightly above the mica surface S | i
due to an intrinsic triskelial pucker (Kirchhausen et al., Z
1986). 2 008 ]
Taken together, the behaviors of these correlation rela- c - 1
tions further support the view that the three arms of triske- 2 0.04 | |
lions fluctuate independently and that they have essentially g '
identical physical properties. The probability density func- *g‘ i )
8 OOO I | | { i y 1 ]
TABLE 2 Correlation coefficients, p(¢, A) and p,(A), as 0 10 20 30 40 50 60
computed by Egs. C1 and C2 for the various Hub Position Along Arm (1m) End
global-shape parameters
A O Oe L Dee Dhe b FIGURE 5 Mean curvatureC(s), (circles, bottom curjeand standard
deviation,a(C(9)), (triangles, top curvialong clathrin arms, as a function
AeR o1 010 008 008 0I5 e dong e mlecuar backoaréo he ub. Not ht e

scale on the ordinate is identical for bafifs) and o(C).

Biophysical Journal 78(3) 1183-1194
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Bending rigidity of individual clathrin arms ' ; ' ' - '
10 - 1

m)

Quantitative calculations of the bending rigidity of the arms £
is simplified by the fact that the arms are approximately.g .

uniformly flexible along their length. The bending energy 2 87 )
per unit lengthpU/ds, associated with the distortio@(s) — g'
Co(9), of a thin wirelike body can be written as (Landau and § 6 1
Lifshitz, 1959; Gittes et al., 1993) g .
= _
w1 El{C C 2 4 ol
= _ — i}
i 2:5 =
Here, Cy(s) is the curvature of the arm in the relaxed g I
conformation (assumed to be equalG¢s)), and the quan- 0! 1 2 ; 3 "1 : 5

tity El is the average flexural rigidity. Applicability of Eq.

4 requires that the local radius of curvature be much large.
than ,the thickness Of the Clathrm arm a_nd that,’ on a,n?‘noﬁlGURE 6 Estimation oEl from the variance of the amplitudé&,, —
scopic length scale, its material properties be isotropic; W&0)?) of the five leading modes. The fitted curve (Eq. 7) depicts the
also assume that, at least to first-order, length-stretchingxpected 12 behavior in the presence of noise due to uncertainty in
and/or compression is independent of arm bending, so thesolving the electron microscope images plus uncertainty arising from the
true position along the arns, simply is proportional to its ~ SPline fits @otted ling.

apparent contour locatidd Thus, the bending energy of an

arm may be written for any particular configuration as

Mode Number, n

Comparative bending energy

1 Sd
Ubena= 5 El f [C(9) — Co(9)) ds, (5)  Because portions of four arms overlap when triskelions
0 assemble into a lattice (Crowther and Pearse, 1981), the
flexural rigidity, El,,.4 Of @ lattice bond (an edge between
wheresy denotes the position of the terminal domain. o vertices, see Fig. 7) is higher than that of a single arm,
As remarked upon below in the Summary and Discusg|_  For isotropic elastic substances, the flexural rigidity

sion, we assume that, to good approximation, triskeliontan e expressed as the product of the Young's Modulus of
conformations along the flat mica substrates are not pefihe material,E, and the moment of inertial, of the

turbed by triskelion—mica interactions. It then follows from gtrycture, i.e.,

the Boltzmann relation for molecular systems interacting

with a heat bath (Reif, 1965) that the probability density for EI=E-I, (8)
arm bending may be expressed, according to Eq. 5, as

Sd
Parm~ €xp —(kgT)™* f %-EI-[C(S) — Cy(9)F} ds|, P
0 &0 =26
(6) ‘

Vi * g=12
where kg is Boltzmann’'s constant andl is the absolute :
temperature. When Eq. 6 is used along with a normal mode “‘ g=20
decomposition of triskelion shape, variances in mode am- d . ‘
plitudes { (a, — a2)?)} can be linked to the flexural rigidity ;

I
as _w g=16
02, — kBT( L ) A ®)
(@—a?)="5l-) + s\ @ @

FIGURE 7 @) ldealized, flat hexagonal clathrin lattice overlaying a
wherelL is the intrinsic (average) length of a triskelial arm hypothetical membrane. Bending is assumed to occur about the axis

andSVis a constant (see Appendix D). In Fig. 6, we showdefined by the dashed line. The bending energy of the elemental membrane
a two parameter least squares fit of Eq. 7 to computed moddea (designated by the shaded region) is to be compared with the energy

litude fluctuati f hich btain th | needed to bend a “bond” between two vertices (e.g., the edge mhiked
ampliiude Tuctuanons, irom which we obiain the va uethe figure). B) Possible cross-sections of the bonds (composed of four

Elam = 35 kgT-nm (from the slope) an@V = 1.7 nm (as triskelial arms) and their correspondiggalues (see Eq. 9), for bending in
the background). the direction indicated by the curved arrow.

Biophysical Journal 78(3) 1183-1194
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wherel = [[oss sectioy” JA (€.9.,1 = @r¥/4 for a circular ~ From Fig. 7, the distancgtis seen to bel = V3, yielding,
rod). Suppose we adopt the current structural model ofor a clathrin lattice, the valud = 32 nm (Vigers et al.,
clathrin cages (Ybe et al., 1999) and presume that the axeld86). Thus, using a typical value &f,, ~ 10-3KgT for

of the individual overlapping arms (all having the samephospholipid bilayers (see Zhelev et al., 1994; Seifert and
cross sections) are equidistant from the center of mass of tHapowsky, 1995), we fincEl,,emp~ 320-960kgT-nm. This
composite structure. By assuming that the mass of th@umber is to be compared withl, 4 which, when using
composite is uniformly distributed within a cross sectionalour previously derived estimat€El,,,, = 35 kgT-nm), is
area whose radius is twice that of an individual arm, weEl,,,q = 16 - El,, = 560 kgT-nm.

infer the result

Eloong = GElum (99 SUMMARY AND DISCUSSION

arranged, theiy will differ from this value and depend on clathrin plays a significant mechanical role in endocytic
the plane of bending. In Fig. 7, we show some examplesvesicle formation. We analyzed shape fluctuations in elec-
calculated according to the integral appearing after Eq. 8lron microscope images of individual triskelions and used
For reasonable geometric cross sections, we find values &¥Pressions based on equilibrium statistical physics to esti-
g lying between 12 and 26. Because the arms are likely ténate t_he mean bending rigidity of a clathrin arm of a typical
be twisted about each other (Ybe et al., 1999), a weightedfiSkelion. We then compared the energy needed to bend a
average of these values might be appropriate so the valuy&gion of clathrin lattice with that necessary to bend an
Elyong = 16El,, probably is a good choice (see also sum-€quivalent membrane patch, and inferred that the energies
mary and Discussion below). are comparable. Although the preparation of the electron
Consider that the clathrin triskelions assemble to form thdnicrographs may introduce structural features into the
regular planar structure shown in Fig. 7. Let us now com-riskelial images that are not found in a simple, equilibrium
pare the energy necessary to bend a patch of membrane (tR§U€0US environment, we believe that our investigation
shaded area in Fig. 7) with the energy needed to bend apfovides a valid order-of-magnitude estimate of the me-
equivalent clathrin net. Bending is assumed to occur abouthanical role of the protein coats in clathrin-coated vesicles.
the axis defined by the dotted line. Upon referring to Eq. 5, This study has several consequences. First, the statistical

we see that the energy associated with the distortion of gnalysis in this paper provides significant information con-
lattice bond is cerning the global structural properties of triskelions—viz.,

the independence, equivalence, and uniformity of flexibility

1 €/1)\2 of the arms. One implication is that the large and uniform

Upona = > ElbondJ (R) dx, (10)  flexibility of the arms allows for assembly of baskets and

! nets of widely different structure. Also, although the light

. ) clathrin chains that are bound to the triskelion arms are
whereR, = 1/C, is the radius of curvature, assumed to beynown to comprise at least two classes, the arm equivalence
constant over the entire length of the bond. Similarly, thenoted in our fluctuation analyses supports the thesis that

energy required to bend the elemental equivalent membrangynt chains, at most, play only a small intratriskelion struc-

patch can be estimated by tural role. Moreover, the lack of any evidence that informa-
) tion about arm extensions are transmitted across the hub
U, = } « (1) dA region suggests that mechanical models of clathrin basket
mb -2 nmb R, formation probably can be posited without concern for hub
area

distortions. Finally—of greatest significance—it appears
that the energy needed to bend a clathrin net is of the same
1 € 1 2 .
= kood () dx (11) order of magnitude as the energy expended to bend an
2 mb R . .
1 equivalent membrane patch. This result strongly suggests
that a major role for clathrin is to assist in the formation of
1 | /1\2 endocytic and intracellular vesicles by changing the me-
=_ Elmembf () dx, chanical properties of the composite membrane. It now is
2 o Ry clear that, due to its intrinsic curvature and relatively high
rigidity, the basket-like clathrin coat can stabilize vesicles of
where we have assumed the usual expression for bending1000-A radius and thereby play a significant energetic
energy per unit area for a cylindrical membrane (Helfrich,role during coated vesicle formation.
1973), viz.,u = ¥z k., (1/R,)?. Here, the equivalent bend-  Potential errors in the analysis most likely are linked to
ing rigidity of the membrane is defined, in terms of bendingintrinsic artifacts arising during preparation of specimens
modulusk,,, and lateral distancd, asEl ,cp = kmp © d.  for electron microscopy. But, as explained in this and the
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following two paragraphs, these undoubtedly would lead tdeatures of the mica surfaces or such factors as solvent flows
an underestimation of the mechanical rigidity of the lattice,during sample deposition. For these reasons we believe that,
so our basic findings are unaffected. We worry most thatt least to a first approximation, complications due to inter-
extraneous bends in the triskelial arms can be introducedctions between triskelions and the mica surfaces can be
during placement of the triskelia onto the microscope gridignored in our analysis.
For example, the arms of a triskelion might interact with the  Another uncertainty in our analysis is the estimate of the
substrate before the hub region attaches, causing them flexural rigidity for a link in the clathrin lattice El,qng
buckle as the triskelion settles onto the mica surface; alsoxyhich may be greater than the valueEl§,, obtained by
imperfections in the mica surfaces, or peculiarities of theassuming that the four overlapping arms lie symmetrically
interactions of the surfaces with the triskelia, might induceabout each other. If the arms were to lie adjacent to each
spurious bends. However, were these to happen, the triskether in a plane, and if the bending were to occur in that
lions would appear to be more flexible (i.e., less rigid) thanplane, the effective flexural rigidity could be considerably
they really are. The incumbent shape changes would add toigher. However, there is no evidence that such an asym-
the intrinsic, thermally induced fluctuations, leading to anmetric structure exists; to the contrary, recent high-resolu-
underestimation of the arm rigidity. It is hard to envision tion electron microscopy studies indicate that the arms form
how sample preparation could have an opposite effect, i.eq twisted bundle of essentially symmetric cross-section
the straightening of arms and resultant overestimate ofvhen incorporated into clathrin cages (Smith et al., 1998;
triskelial rigidity. We also note that, although heavy-metal Ybe et al., 1999). Again, though, even if we have underes-
shadowing of the triskelia tends to obscure fine details, outimatedEl,,,, our qualitative conclusion about the relative
analysis is based on low-order modes (see Fig. 6), which arenportance of the clathrin lattice is unaffected.
relatively unaffected. In vivo conditions may be yet more favorable to the
Comparison of the persistence length measured fronmechanical role played by the clathrin relative to that of the
negative stained carbon-film electron micrographs of actirunderlying membrane. Thermodynamic analysis (Nossal,
filaments with that determined by light microscopy indi- 1998) of the sizes of clathrin baskets assembled in the
cated that negative-stained electron microscopy indeed prgresence of “assembly polypeptides” (Zaremba and Keen,
vides a good estimate of the flexibility of the filaments 1983) indicates that certain accessory coat proteins, which
(Orlova and Egelman, 1993). Similar inferences have beeare present on the surfaces of endocytic vesicles, increase
drawn regarding the fidelity of rotary shadowed DNA ab- the rigidity of the clathrin lattice. Also, our estimate of the
sorbed to carbon films (Griffith et al., 1986), although later membrane flexural rigidity&:l .o, May be somewhat high,
studies of the absorption of DNA molecules onto micadue to the fact that the underlying membrane parametgr
surfaces suggest that the resulting images depend on samjigesomewhat uncertain. Although the values of overall mem-
deposition conditions (Rivetti, et al., 1996). However, in thebrane rigidity used in our analysis probably are of the
latter investigation, DNA samples were prepared by dryingcorrect order of magnitude, it is likely that membrane re-
simple agueous solutions, whereas the triskelion samplegions that bud off to form vesicles have properties that
examined in this study were deposited to the mica surfacediffer from the average; e.g., biochemical reactions might
by glycerol nebulization. The viscosity of the glycerol/water have the effect of lowering,,, by changing the local lipid
mixture used in the nebulization process increases vergomposition or properties of the submembraneous cytoskel-
sharply as a specimen is dried, and the resultant glassston. Modification of the relative rigidities of plasma mem-
solidification of the sample probably tends to preserve thédrane and clathrin lattice could be a regulatory mechanism
natural distribution of triskelion shape conformations. for vesicle budding at a cell surface. The dependence of the
Additional evidence that the flexibility of clathrin noted g factor on triskelion arm packing geometry (see Eq. 9 and
in these micrographs is an intrinsic property of the triskel-Fig. 7), with its incumbent effect okl also implies
ions is inferred from the fact that, when prepared in a similapossibilities for intracellular control of clathrin vesicle
way, samples of thin elongated molecules such as the filaformation.
mentous hemagglutinin oBordetella pertussisappear
straight and rigid (Kocsis et al., 1991). Moreover, our in-
vestigations mainly concern fluctuations within the surfaceAPPENDIX A
plane of the mica, which is very smooth and should provide
I|tt|(_e m—_plane force modulation on a r?anqmeter !ength SCaIeCHARACTERIZATION OF ARM SHAPES
Indication that the sample preparation is relatively benign
follows from studies of possible correlations between defrom the digitized shape data provided for each triskelion (see Fig. 1), we
scriptors for the three arms of the same triskelions: becaygenerated a set of smooth natural cubic spline functions by fitting each

e . . contiguous, overlapping group of four nodes by a cubic equation (Press, et
the sh_apes of the arms within individual t”Ske_|'9_nS appeaglq 1988). From these, we obtained the coordinate S&t8) Y& (1)},
to be independent, one can rule out the possibility that thgneret = [0, 1, . . ., t,y = 100] is an index that increases sequentially from

observed fluctuations are significantly affected by localizedo at the triskelion hub ta at the center of the terminal domain, angX

Biophysical Journal 78(3) 1183-1194



Clathrin Triskelions and Networks 1191

indicates theith arm of thejth triskelion. As illustrated in Fig. 1, the calculated from Eq. A2 by using the spline function€{ (), Y& (t)}. The
spacing between the nodal points of the primary data sets is not uniforngurvatures €} then were calculated via
but tends to accentuate regions of high curvature: fewer nodal points were
used to describe those portions of a triskelion that appeared to be straight y Aa®™(t0)(s))
(Kocsis et al., 1991). To preserve the weight given to regions of high Cli(g) = T As (A4)
curvature, the newly generated intermediate poirtlswere taken in S
identical numbers between each neighboring pair of original digitized
nodal points. The value ofy = 100 provides meaningful numerical (L) 2u(L)
accuracy. Because possible error in the coordinates of the original nodes is s=0, 100’ 100 ' - (L),
of the order of one-fifth the spacing between nearest nodes (Kocsis et al.,
1991), a finer mesh size (i.e., greater number ¥ ¢flid not seem to be
warranted.

To describe the shapes of the arms, we computed the arm conto
lengthsS(t) and arm tangential angled™ (t) according to the following

whereAa/As represents a finite difference. For each triskelion, we sepa-
rately calculatedC™(s) (i = 1, 2, 3;j = 1, 2,..., 72) ateach of the
L@rxpamded internodal coordinate points. We also calculated the mean value
of the curvatureC(s) = X;; Ct)(s)/216, and the standard deviation,

relations:
.. C(I'J) S) — (_:S 2712
t dY(t/) 2 dx(t/) 2 U(C(s)) _ EI,J ( ( ) ( )) .
SH=2 —) 5 (A1) 215
SVt dt
) The spline fits and several other data-reduction steps were carried out on a
(with 0) = 0.0 A) and desktop personal computer, primarily using the MATHCAD software
dY(t)/dt package (MathSoft, Cambridge, MA). The codes developed during this
a(t) = tan? ( ) (A2) work are available upon request from Dr. A. J. Jin.
dX(t)/dt)

These functions were evaluated, for each triskelion arm, at all extrapolated

nodal points { = 0, 1, 2, . .. t} pertaining to that arm. We allowedl(t) APPENDIX B
to range from 0° to 360°, and were careful to properly invert the tan-

functions. The values of §(t), a0 (t)} provide a description of the

contour of a given triskelion arm that is equivalent to the poin¢&’(t), RELATIONSHIPS BETWEEN SUBSET
)
Y. DISTRIBUTIONS

All global shape quantities were calculated from these equivalent dat

sets. For example, the apparent length of each arm was obtairled=as pg already mentioned, we measured various global paramegérd}{

St = t) + Ra WhereR, = 36 A is the average radius of the triskelion \yhere A represents a quantity such as arm lengff, the index
terminal domains (measured by Kocsis et al., 1991). The hub gr@l§s, i(= 1,2,3) pertains to a particular arm within a given triskelion, and
(see Fig. 2), were determined from t.he_q!ﬁerence m_she initial directions ofj(: 1,...,N) denotes different triskelions. Theptriplet values allowed

the two other arms, the latter being”(0) and o“? (0). The total s to examine, in addition to the overall distribution of the complete set
cumulative hub-to-terminal angle was computedas «(t,y) — «(0). We {AGD}, the three subset distributionsA®}, { A%}, and {A2}, which are

also calculated the cumulative angle to a point midway along the armniquely defined and consist, respectively, of the smallest, the medial, and
according t06,, = linterp («(t)|S(t) = L/2) — «(0), where linterp¢)  the Jargest value within each triplet. We now provide a proof of Egs. 3,

denotes a simple linear interpolation between values af those nodal  \yhich have been used to infer the independence of arm fluctuations within
points lying to both sides of the midpoiBt= L/2 when the apparentlength  iyqividual triskelions.

of the arm isL. The hub-to-terminal distancds; . and terminal domain— Suppose, for any set ¥ triskelion images, we arbitrarily form the
terminal domain distancB,. were calculated according to subsets A®D}, { A@D}, and {A@P}, where each subset contains the value
. - — - — of Afor one, and only one, arm of each triskelion. If the arms of particular
(i) — ) — ()2 ) \ii))2.
Dhe - \e/(xhb d ) + (Y(Jhb Y%d ) ) triskelions fluctuate independently and equivalently, then the distributions
. o of the subsets will be identical to that of the entire collectionAjf yalues
i=1,2,3; ] = 1,2,...,72 P(A), and P(AD, PA®, PAG) = PAD) . PAD®) - P(A®). It thus
follows that
and
D) = “/(x(l B — X ,1))2 + (Y(' BERV/( ,1))2' *
oo o PanlA) 2 3P(A)-| | PAYAN|, (BD)
where i=1,2,3 and i’ #i" #1. A

To examine the bending profiles and rigidity of triskelion arms, we
computed the true positios, along the arms by scaling the observed arm
length of each triskelion according to the linear relationship

because, by specifying that the smallest vahfe is equal toA, one
indicates that the values pertaining to the other arms are greatektfiae

factor 3 arises because each of the three subsets contributes in the same
way to the defined group containing the smallest values. Similarly, one

W) (1) = g -~ = = — finds
s(t) =9 (t)[ Sty | t=0,...,ty=100.
(A3) A .
To determine the corresponding™, we then inverted Eq. A3 to identify PndA) = 6P(A) - PA) dA’ - P(A) dA’
the interpolated valué™? (not necessarily an integer) corresponding to a —o A
given values. Associated with these{?} are the derived valueso{(s)}, (B2)
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(in this case, there being six ways to sample the ensemble), and
A 2
Pig(A) o« 3P(A) - J PA) dA (B3)

If (A) approximates the normal distribution given in Eq. 2, Vi2(A;
w(A), o(A), then P (A), P 4(A), and P4(A) are themselves approxi-

mately bell-shaped. To demonstrate this, we first perform a set of variable

transformations in Eqgs. B1-B3. These yield the relationship&(1JA =
wA) = X+ o(A) = Pg(A" = w(A) + X+ o(A) = f, (x) and (2)Po(A =
w(A) + X+ o(A) = fx(X), where

2

3 X
fl(x) = (ZT)WZ e—x2/2 f e—t2/2 dt (B4)

and

3 X
B0 = 5 €7 2 f e dt

g " — 22

Numerical fitting by MATHCAD (MathSoft) indicates thdf(x) andf,(x)
are virtually indistinguishable from the normal density functibii$™(x) =
(AN 2may) exp[—(x — py)%/203] and £3°™x) = (1/\V/2m0,) exp[—(x —
w,)?203] when w,, o4, W, 0, have the values

= f xf,(X) dx = 0.846, (B6a)
Oo 1/2
o= f x*f(x) dx| = 0.748, (B6b)
My = f xf(x) dx = 0.0, (B6cC)
and
o 1/2
o, = f x*f,(x) dx| = 0.670. (B6d)

Jin and Nossal

butionsP(A), P «(A), andP4(A) also are indistinguishable from their
respective normal distributions, with mean values and standard deviations
given by

wAsm) = w(A) = py - o(A),
o(As) = a1 o(A);
w(And = w(A) + po- o(A),
o(And = 02° o(A);
(A = w(A) + py - oA,
o(Ay) = 01 a(A).

By inserting the values fo,, u,, o,, and o, given in Egs. B6, one
immediately obtains the relationships given in Egs. 3 of the text.

(B7)

APPENDIX C

STATISTICAL LIMITS OF CORRELATION
COEFFICIENTS

The correlation coefficienp(A, B) is defined as

r(A = n(A]B — w®B)])
o(A)a(B) '

p(A, B) = (C1)

whereA, B are any pair of random variables and the functipf$ ando(+)
are as defined previously, following Eq. 2. Correspondingly, we define a
tricorrelation coefficient as

11 (A0 + A20 + A30 — 3p(A)*
1 (AY — p(A))?

Here,N again is the number of triskelion arms in the data set, the quantities
Al, A2, andA3 denote shape parameters for different arms of the same
triskelion, andu(A) is the mean value of the shape parameter for the entire
data set.p(A) is invariant under exchange of the elements within the
triplets {Al1, A2, A3}. The values ofp (A) can be used to determine
relationships betweeAl, A2, andA3.

Because the numbers of samples that we have been able to analyze are
rather small (216 triskelial arms; 144 independent angles where the arms
join the hub; etc.), correlation coefficients obtained according to Egs. C1
and C2 must be subjected to statistical analyses to assess their significance.
We found, for example, that the conventional correlation coefficient
p(d, L) given by Eq. 4 has a value 0.06. With what probability is this value
not notably different from zero, a value that signifies tllatand L are
independent?

If |p(A, B)| lies within values appropriate to a statistical confidence level

oA = 1. (C2)

Several statistical tests can be used to verify the concordance of théhormally taken to be 95%), the variations oA{and {B} probably are
distributions given by Egs. B4—B6 with their respective normal distribu- independent; ifp(A, B)| lies outside this range, the variables probably are
tions. We here adopted the approach of Kolmogorov—Smirnov (Sachs;orrelated (Sachs, 1978). The confidence levels of inferred values of
1978). This test depends on the “statistic D,” which compares the maxip(A, B), whereA and B are independent random variables both sampled
mum absolute difference between two cumulative distributions and is usetfom normal distributions, were determined by calculating the probability
to estimate the minimum sample number that is required to distinguistdistribution thatp(A, B) is a given nonzero value. For a given sample size

between distributions at a given confidence lexelt is a straightforward
task to show that the maximum absolute cumulative differehégg) —

(e.g.,N = 200), MATHCAD was used to calculate the correlation coeffi-
cient for randomly drawn values @& andB (yielding, e.g.,p,odA, B) =

f1o"™(x) | and| f(X) — £5°"™(x) | are approximately 0.015 and 0.001. Taking 0.074). The calculation was repeated for 5000 trials, generating a sequence
a = 0.05, the Kolmogorov—Smirnov test suggests that at least 800(e.g., 0.074, 0.053, 0.088. .) representing the various realized values of

triskelion images would be required to distinguish betwégr) and

p2odA, B). These results then were sorted to provide a histogram of the

f1°"™(x), whereas over 1.5 million samples would be necessary to distinnumber of times that a given value is found in the sequence, yielding a
guish betweeri,(x) andf5°"™(x). Consequently, the original subset distri- frequency curve that essentially is monotonically decreasing with increas-
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ing values 0fp,q,, The bounding values,q,andps;qo between which 95%  whereL is the intrinsic length of an arm. Then, from Eq. 6, the variance in

of the realized outcomes of the calculation lie, then were noted. the amplitude of each mod&a,, — a%?), is related to the flexural rigidity
This simulation was repeated for other valuesNpfand the smooth  according to

curve shown in Fig. 8 was generated. The abscissa represents the sample )

size (e.g., 216). The ordinate indicates the valugs, by} for which, if 02\ kB L

pn < pn < pr, ONe can say that the realized value is indistinguishable from (B —a)) = El\nm/ (D2)

zero (the idealized value for independent random variables) “with a con-

fidence level of 0.95.” For a sample size Wf= 216 (i.e., the number of  sg that, in principle, an analysis of the individual modes can give indepen-

triskelion arms), thesgy, py values are~+0.13, whereas iN = 144 (for  dent measures dfl. Equation D2 reflects the notion of equipartition of

tests involving the hub angles), the numbers a®16. energy (Reif, 1965), which signifies that the energy associated with each
A plot (also shown in Fig. 8) was obtained similarly for the tricorrela- mode excited by the thermal bath is equalv/téT.

tion coefficients given by Eq. C2. In this case, one finds that the 95% level  To first order, the mode amplitudes and variances can be calculated

of significance for a sample size of 72 triskelior’$ € 216 arms) lies  from the triskelion images according to Eqs. A2-A4 as

between—0.27 and 0.26; that is, ifps, ,4A) |= 0.27, then the calculated

tricorrelation coefficient is not significantly different from the value zero (L) (2 (L))l/z nms
that would be obtained by sampling independently fluctuating randomag,j) — 2 L a(i’j)(S) . COSi n=1.2
variables. 0 rL) ]’ U
(D3)
APPENDIX D and
N (q@) — (1) })2
RIGIDITY ANALYSIS ((a, — )y = = @~ p@’) (D4)

N—1 ’
C(s) is related to a local shape functiof(s), according taC(s) = 96(s)/ds.
Let us now suppose that the shape function of an individual arm can ba&hereN = 216 is the total number of triskelion arms in our data set. In fact,

decomposed into a series of normal modes (Gittes et al., 1993eKal., though, our numerical data reduction is complicated by two factors: (1) an
1996) uncertainty in determining the node coordinates from the original electron

micrographs (Kocsis et al., 1991) and (2) our spline-based fitting procedure
o (see Appendix A). The first progressively increases the amplitude variance
E Gn(s) for higher modes (Gittes, et al., 1993;Ket al., 1996), whereas the second
suppresses the absolute amplitude at higher mode numbers (especially
those forn = ¥2n,,, wheren,, is the total number of spline nodes used to
- describe arm shape). Because our data analysis for arm shapes generally
e nms yields n,, values of 9= 1, these effects limit the useful normal modes to
(2 2 a,co T (DY) approximately the first 5. For the leading modes (i.e., smglhumerical
n=0 modeling (data not shown) suggests that the combined effect of these two
factors is to add an approximately constant background term to tife 1/
behavior of Eq. D2, so we obtain the expression given in Eq. 7.

0(s)

n=0

T T T T T T 17171
T |\\1|Hw
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,0+ \E\\ + of triskelions in electron micrographs and for explaining the procedures of

02 >~ F image acquisition and digitization. We also thank Drs. J. Keen, K. Prasad,
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