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ABSTRACT Statistical analysis is applied to a set of electron micrographic images (Kocsis, E., B. L. Trus, C. J. Steer, M. E.
Bisher, and A. C. Steven. 1991. J. Struct. Biol. 107:6–14), from which quantitative measures are obtained to support the
notion that the three arms of a triskelion have statistically identical properties and exhibit independent structural fluctuations.
Additionally, a study of local contour fluctuations, which indicates that the elastic properties of a triskelion arm are
approximately constant over the entire arm length, is used along with a small deformation statistical mechanics theory to
derive an effective, average flexural rigidity for the arms. This result is used to estimate the bending energy necessary to
deform a clathrin patch, and comparison is made with the deformation energy of an equivalent area of non-clathrin-coated
membrane. We estimate that the rigidity of the clathrin lattice is at least comparable to that of a typical membrane. Hence,
the natural curvature of a clathrin cage can stabilize, and perhaps propel, the formation of intracellular coated vesicles.

INTRODUCTION

Various proteins are known to be implicated in the budding
of vesicles from the membranes of eucaryotic cells (Schmid,
1993, 1997; Parton, 1996; Schekman and Orci, 1996; Rob-
inson et al., 1996; Anderson, 1998; Dell’Angelica et al.,
1998). The best characterized is clathrin, which appears in a
cell as a three-armed heteropolymer referred to as a clathrin
triskelion. In moderately acidic solutions, triskelions spon-
taneously assemble to form closed polyhedra (cages) that
are morphologically similar to the coats of certain vesicles
that can be harvested from a variety of tissues and cells
(Woodward and Roth, 1978; Keen et al., 1979; Crowther
and Pearse, 1981; Kirchhausen and Harrison, 1981). Native
clathrin coats and clathrin-coated vesicles have been studied
most in the context of receptor-mediated endocytosis, which
is the process by which many materials are taken up into
cells by binding to specific receptors that lie across the
plasma membrane. These embedded receptors, with their
bound ligand, associate with “adaptins” (also, variously
known as APs or “assembly proteins”), possibly via acti-
vated AP membrane binding sites (Santini et al., 1998). The
APs, in turn, bind to clathrin on the cytoplasmic face of the
membrane (Vigers et al., 1986; Keen, 1990; Robinson,
1992). Other proteins, such as the GTPase dynamin
(Sweitzer and Hinshaw, 1998) and the dynamin-associated
protein amphiphysin (Takei et al., 1999), are involved tran-
siently in various steps of clathrin-coated vesicle formation,
but their structural roles in the liberated vesicle are not well
established.

The primary function of the clathrin coat is yet to be
definitively resolved. One hypothesis is that clathrin,
through its interaction with accessory-protein-linked recep-
tors, acts to concentrate cargo in the interior of a budding
vesicle. Another possibility is that coat proteins might de-
stabilize membranes by acting as molecular surfactants to
release elastic energy stored in a lipid bilayer (Oster et al.,
1989). Yet another proposal is that the polymerized clathrin
basket, through its natural curvature, imparts tension in the
plasma membrane and thereby drives the membrane from a
structure of low average curvature to one having the high
curvature of a small vesicle. However, for a clathrin lattice
to drive vesiculation, its stiffness must be comparable to, or
larger than, that of the cell membrane. To see whether an
assembled clathrin lattice can, in this way, influence vesicle
formation, we here shall estimate the rigidity of a clathrin
patch and compare it to that of a typical biological membrane.

Direct mechanical measurements provide values for the
rigidities of biological membranes (Evans, 1983; Elson,
1988; Frank, 1990; Zhelev et al., 1994). To estimate the
rigidity of a clathrin coat, we examine conformation fluc-
tuations of isolated triskelions by using techniques similar
to those that have been used to determine the bending
moduli of microtubules and actin filaments (Gittes et al.,
1993; Käs et al., 1996). The latter structures are large
enough to be observed optically, but clathrin triskelions are
too small and other techniques must be used. To this end,
we have obtained a digitized collection of electron micro-
scope images of isolated triskelions (Kocsis et al., 1991),
from which we infer that a triskelion behaves as a simple
elastic element fluctuating in a viscous medium. Analyses
of these images provide characterizations of the average
(mean) conformation of triskelion arms and local fluctua-
tions about that mean shape. From the mode magnitudes of
the fluctuations along the arms we estimate the arm rigidity
and use that information to calculate the bending energy of
a clathrin network.
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In the following, we briefly describe the procedure used
to derive a set of digitized electron microscopy images of
individual triskelions. We then introduce the notion of a
nanoscopic, multivariate probability density for the coordi-
nates of projected shape descriptors of the arms and present
inferences based on statistical analyses of triskelion-shape
fluctuations. We follow by introducing a method, based on
concepts of equilibrium statistical mechanics, that allows us
to estimate a value for the planar bending modulus of a
triskelion arm. The stiffness of a clathrin lattice patch then
is inferred and found to be comparable to that of an equiv-
alent area of typical phospholipid membrane. Various de-
tails of analytical methodology are given in appendices.

TRISKELIAL STRUCTURE AND
SHAPE DESCRIPTIONS

The standard model for triskelions consists of: 1) a central
hub of radius 40 Å; 2) three arms, each of;520 Å in length
and of ;20 Å radius; and 3) three globular domains of
radius 36 Å that terminate the three arms. This structural
model of triskelions helps explain qualitative geometric and
topological features of the packing of triskelions into coated
pits and vesicles (Pearse and Bretscher, 1981; Kirchhausen
et al., 1987; Pearse and Crowther, 1987; Heuser, 1989; Jin
and Nossal, 1993; Smith et al., 1998). Each arm of a native
triskelion contains one clathrin heavy chain (;190 kDa)
and one tightly, but noncovalently, associated light chain
(;23–27 kDa) (Ungewickell and Branton, 1981; Pastan and
Willingham, 1985; Brodsky, 1988). Heavy chains belong to
a single class and seem to be well conserved across species
(Kirchhausen et al., 1987); their carboxyl ends are nonco-
valently anchored to each other at the central hub. Light
chains exist as two classes containing variable functional
domains, and are much less conserved (Brodsky et al.,
1991). It is believed that heavy chains are primarily respon-
sible for triskelion conformational properties and clathrin
network formation, whereas the light chains may enter into
molecular interactions between clathrin and other macro-
molecules involved in endocytosis, with a specificity deriv-
ing from the variable light chain domains (Kirchhausen et
al., 1987; Brodsky et al., 1991; Lin et al., 1991; Schmid and
Smythe, 1991).

The primary data (Kocsis et al., 1991) used in this study
are 72 digitized images of intact triskelions (examples are
shown in Fig. 1). The clathrin specimens were prepared on
mica substrates by the glycerol nebulization/rotary shadow-
ing procedure (Elliott et al., 1976; Shotten et al., 1979).
From digitized nodal positions (;8–14 nodes along each
arm) we reconstructed, for our analysis, those images of
intact triskelia that display clear clockwise vorticity and
represent the majority of all images [see Trus and Steven
(1981) and Kocsis et al. (1991) for a discussion of initial
image processing].

Shape variations of the triskelions are described via arm
contour lengths and tangential angles, determined from a set
of natural cubic spline functions (see Appendix A). Several
quantities characterize the fluctuations. Among these (see
Fig. 2) are the linear (“straight-line,” scalar) distances be-
tween the hub and centers of the three terminal domains
{ Dhe

(i,j)} (where i 5 1, 2, 3 is the arm index andj 5 1, 2, . . . ,
N identifies a particular triskelion) and the linear distances
between apposing terminal domains {Dee

(i,j)} (i.e., between
armsi9 andi0, i9 Þ i0 Þ i). We thus are able to compute the
frequency distributions of global parameters such as the
apparent arm lengths {L(i)}, the hub angles {f(i)}, the cu-
mulative angles from the hub to terminal domains {ue

(i)},
and the cumulative angles to the midpoints of the arms
{ um

(i)}. In addition, we use statistical methods to investigate
possible correlations between parameters pertaining to the
three individual arms of any given triskelion, e.g., to deter-
mine whether the apparent length of a triskelion arm is

FIGURE 1 Variable shapes of triskelions. (Top) electron micrograph of
triskelions on mica substrate, obtained by Kocsis and co-workers (1991)
via a glycerol nebulization/rotary shadowing procedure. Horizontal bar
measures 50 nm in length. (Bottom) selected triskelion images, constructed
from corresponding digitized node coordinates supplied by Kocsis et al.
(1991), where the size of square grids is 50 nm3 50 nm. In the present
work we analyze a set of 72 such shape profiles.
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correlated with the total bending angle of that arm and/or
with the lengths of other arms located within the same
triskelion. In this way, we infer elements of a structural
probability density specifying the likelihood of a triskelial
shape profile when visualized by electron microscopy on a
nanometer length scale.

ANALYSIS AND RESULTS

We find that the projected (two-dimensional) electron mi-
crographic images of triskelions can be adequately de-
scribed in terms of the following master probability density
function,

3~$a(i)~s!, S(i)~s!%! 5 3hub~f
~1!, f~2!, f~3!!

P
i51,2,3

3Arm~u(i)~s!, S(i)~s!!. (1)

In this expression, the indexi 5 1, 2, 3 pertains to the
individual arms, characterized by the nanoscopic degrees of
freedoma(i)(s) andS(i)(s), where the tangential anglea(i)(s)
and the apparent contour lengthS(i)(s) of the ith arm both
are functions of the distance along the true arm-length
positions (which is linked to the amino acid sequence of the
heavy chain). The principal feature of Eq. 1 is that3hub

(f(1), f(2), f(3)) and the3Arm (u(i)(s), S(i)(s)) specify inde-
pendent behaviors of the hub angles and each of the three
arms. [Here,u(i)(s) [ (a(i)(s) 2 a(i)(0)) measures the net
bending of Arm(i), and the variablef(i) denotes the angle, at
the hub, between the two arms other than Arm(i) (see
Fig. 2).]

The validity of Eq. 1 depends on the following postulates:
1) that the three arms within a triskelion have identical
properties but fluctuate independently of each other; 2) that
the shape fluctuations of the arms are independent of the
relative orientation of the arms about the hub; and 3) that
there are no special global shape constraints, such as pre-
ferred fixed distances between three terminal domains.

Distributions of triskelion global parameters

To establish these properties, we obtained statistical de-
scriptors for the parametersDhe, Dee, L, f, ue, and um

discussed at the end of the previous section (see also Fig. 2).
For each parameterA we constructed the overall frequency
distribution by including data for all 72 intact triskelions
(i.e., 216 arms). With but one exception (the hub angles: see
below), these distributions appear to fit normal distribu-
tions, viz.,

3n~A! ;
1

Î2p s~A!
3 expH 2

1

2FA 2 m~A!

s~A! G2J , (2)

where the average (mean) valuem(A) and the standard
deviation s(A) are defined asm(A) 5 ¥i51

3 ¥j51
N A(i,j)/3N

and s2(A) 5 ¥i51
3 ¥j51

N (A(i,j) 2 m(A))2/(3N 2 1), respec-
tively. To establish whether the individual arms in a triske-
lion behave independently of each other, we determined
values pertaining to the various arm parameters {Asm

(j) },
{ Amd

(j) }, and {Alg
(j)}, where the subscripts “sm,” “md,” and

“lg” denote, respectively, the smallest, the medial, and the
largest value among each triplet of global parameters noted
for any given triskelion image. If Eq. 2 holds and if the arms
fluctuate independently, then the uniquely formed group of
subsets, {Asm}, { Amd}, and {Alg}, will be practically indis-
tinguishable from bell-shaped normal curves having the
following parameter values (see Appendix B)

m~Asm! 5 m~A! 2 0.846z s~A!,

s~Asm! 5 0.748z s~A!;

m~Amd! 5 m~A!,
(3)

s~Amd! 5 0.670z s~A!;

m~Alg! 5 m~A! 1 0.846z s~A!,

s~Alg! 5 0.748z s~A!.

As an example, the frequency distributions for the arm
contour length,L, are shown in Fig. 3. The overall form of
arm lengths is seen to be symmetric and appears to be close
to a normal distribution. Moreover, the measured contribu-
tions from the medial and smallest values of arm lengths are
in good agreement with the predictions of Eqs. 3. Similar
investigations were made ofDhe, Dee, ue, and um. Each
quantity was found to be nearly normally distributed, and all

FIGURE 2 The notation adopted in this work. The quantitiesS(i)(s) and
a(i)(s) are, respectively, the apparent contour length and tangential angle of
the ith arm at positions (the latter being measured along the amino acid
backbone of the heavy chain),f(i) is the hub angle opposite theith arm,Dhe

(i)

is the linear distance between the hub and the center of the terminal domain
of the ith arm, andDee

(i) is the linear distance between the terminal domains
of the apposing arms (i.e., between armsi9 and i0). The latter notation is
easy to comprehend if one recognizes that “h” stands for “hub,” and “e”
signifies “end” (at the terminal domain).
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indicate the independence and equivalence properties im-
plied by Eqs. 3. The only variables that are not normally and
independently distributed are the hub angles {f(i)}, which is
expected because the projected hub angles must obey the
simple constraint¥i51,2,3f(i) 5 3608. We note that the wide
distribution of {f(i)} (see Fig. 4) signifies considerable
flexibility of the arms near the central hub. In sum, though,
distributions of the type shown in Fig. 3 and the statistical
measures given in Table 1 support the notion that the arms
are equivalent and fluctuate independently.

Correlations in global shape fluctuations

The possible linkage between pairs of arm variables {A(i)}
and {B(i)} (where, e.g.,A(i) 5 L(i), B(i) 5 f(i)) can be
investigated according to conventional correlation coeffi-

cients, {r(A, B)}, whose definition is given by Eq. C1 in
Appendix C. When applied to our data, we obtain the values
{ r(f, A)} shown in Table 2 where, for example,r(f, L)
tests the correlation between the arm lengthL and the
opposite hub anglef. Because we have images of only 216
arms, and thus only 144 independent measures off, all
these values essentially are indistinguishable from zero at a
confidence level of 95% (for 144 samples, the limits are
ur(A, B)u # 0.16, see Appendix C). Moreover, the corre-
sponding scatterplots for all five pairs, (f, L), (f, ue),
(f, um), (f, Dhe), and (f, Dee), do not indicate any recog-
nizable pattern (data not shown). Hence, the hub degrees of
freedom as measured byf seem to be totally independent of
the arm degrees of freedom, {L, ue, um, Dhe, Dee}. This
independence supports the separation of the hub and arm
terms in the master probability density function (see Eq. 1),
and implies that the hubs do not have any significant role in
controlling arm shape change.

Additional support for the independence and equivalence
of arm fluctuations is provided by calculating a novel tri-
correlation coefficientrs, which also is defined in Appendix
C. This coefficient tests correlations among three variables,
A1, A2, andA3, having identical distributions. If the subsets
{ A1}, { A2}, and {A3} are formed from independent sam-
pling, then rs (A) . 0; however, if A1, A2, and A3 are
strictly correlated by the constraintA1 1 A2 1 A3 5 const.,

FIGURE 3 Frequency distribution of the apparent contour length,L, of
the triskelion arm. The bars comprising the histogram are marked with
distinctive patterns denoting contributions from subsets containing, respec-
tively, the smallest (gray shading), the medial (lighter, cross-hatched pat-
tern), and the largest (light, square grid pattern) values of every triplet of
arm lengths for each of the 72 triskelion images. The curve defined by
square symbols is a fit to a normal distribution (see Eq. 2), with measured
values of the average (m) and standard deviation (s) for all arms pooled
together. The diamond-marked curve is a normal distribution fit for the
smallest subset, with theoretical values ofm(Lsm) and s(Lsm) calculated
from Eqs. 3. The curve indicated by a “plus” sign is a fit to the sum of a
pair of expected normal distributions, one being the distribution for the
subset of smallest values and the other the subset of medial values, also
calculated according to Eqs. 3. Our estimated average length,m(L) 5 53.5
nm (see Table), is slightly greater than the value of 51.6 nm inferred by
Kocsis et al. (1991) from a larger data set that included incomplete
triskelia, but is almost identical to their most probable value of 53.3 nm.

FIGURE 4 The frequency distributions (see caption to Fig. 3) of the hub
angles,f. As expected, the subset frequency distributions in this case do
not fit bell-shaped, normal curves (see text).
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thenrs(A) 5 21. Values ofrs for arm descriptors of interest
are given on the second line of Table 2. Because there are
only 72 triskelions, these numbers are considered to be not
statistically different from zero at a 95% confidence limit if
ursu # 0.27 (see Appendix C). Tricorrelation coefficients
pertaining to arm bending, viz.,rs(ue), rs(um), andrs(Dhe),
lie well within this range. Note, however, thatrs(L) and
rs(Dee) have slightly higher values, which may indicate that,
when samples are prepared for electron microscopy, the
hubs of some triskelia sit slightly above the mica surface
due to an intrinsic triskelial pucker (Kirchhausen et al.,
1986).

Taken together, the behaviors of these correlation rela-
tions further support the view that the three arms of triske-
lions fluctuate independently and that they have essentially
identical physical properties. The probability density func-

tion given by Eq. 1 seems to apply in a self-consistent
manner.

Fluctuations about the mean triskelion shape

We also determined the average shape of a triskelion arm
and the fluctuations about the mean contour. Such data are
of central importance to our subsequent analysis of arm
energetics. From the 72 intact triskelions, we examined 216
triskelion arms by considering each to be an equivalent
member of an ensemble and calculated the mean and stan-
dard deviation of the local curvature (i.e., the gradient of the
tangential angle as one moves along a triskelion arm; see
Eq. A4). Results are presented in Fig. 5, where the lower
points (circles) represent the mean value of curvature,C# (s),
as a function of intrinsic position along the triskelion arm,s
(the distance from the hub when scaled to the apparent arm
length). The upper points (triangles) show the correspond-
ing values of the standard deviation in the local curvature,
s(C(s)) (see Appendix A). Two important points should be
noted. First, the arms, on average, are almost continuously
curved, and there are no sharp bends in the structure. Sec-
ond, except for the positions near the hub and terminal
domains, the values ofs(C(s)) vary by ,20%, indicating
that the bending rigidity is approximately constant along the
entire arm. The fact that the standard deviations of the
fluctuations are large signifies that the arm shapes are quite
variable (see Fig. 1).

TABLE 1 Comparisons between measurements and
predictions

Characteristic
Quantities

Average value (m) 6 Standard deviation (s)

Overall
(all data)

Smallest
(or Shortest) Medial

Largest
(or Longest)

L (nm)
measurement 53.66 5.7 49.26 4.9 53.46 4.1 58.06 4.1
theory — 48.76 4.3 53.66 3.8 58.36 5.4

Dhe (nm)
measurement 29.76 7.2 23.76 6.0 29.96 4.3 35.46 5.7
theory — 23.66 5.4 29.76 4.8 35.86 5.4

Dee (nm)
measurement 49.56 11.3 39.86 8.6 51.06 8.2 57.66 8.9
theory — 39.96 8.4 59.56 7.6 59.06 8.4

ue (degree)
measurement 1526 58 1006 50 1586 37 1986 38
theory — 1036 44 1526 40 2016 44

um (degree)
measurement 736 40 386 31 716 26 1096 26
theory — 386 30 736 27 1076 30

f (degree)
measurement 1206 37 826 20 1186 16 1616 21
theory — Non-normal Non-normal Non-normal

Parameters of frequency distributions of global quantities such as the
apparent arm lengthL and total arm bending angleue that characterize the
two-dimensional, nanoscopic shape fluctuations of triskelions (see Fig. 2
and related text). Measured mean values,m(A), and standard deviations,
s(A), for all arms pooled together, and for the smallest, medial, and largest
subsets (see text) are compared with values inferred from Eqs. 3. [For
Gaussian (normal) distributions, the standard errors of the reported mean
values are related to the standard deviations bys/=N21, whereN 5 216
is our sample size.]

TABLE 2 Correlation coefficients, r(f, A) and rs(A), as
computed by Eqs. C1 and C2 for the various
global-shape parameters

A um ue L Dee Dhe f

r(f,A) 20.17 20.10 0.06 0.05 0.15 —
rs(A) 20.18 20.07 0.29 0.17 0.34 21*

FIGURE 5 Mean curvature,C# (s), (circles, bottom curve) and standard
deviation,s(C(s)), (triangles, top curve) along clathrin arms, as a function
of the distance along the molecular backbone,s, from the hub. Note that the
scale on the ordinate is identical for bothC# (s) ands(C).
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Bending rigidity of individual clathrin arms

Quantitative calculations of the bending rigidity of the arms
is simplified by the fact that the arms are approximately
uniformly flexible along their length. The bending energy
per unit length,U/s, associated with the distortion,C(s) 2
C0(s), of a thin wirelike body can be written as (Landau and
Lifshitz, 1959; Gittes et al., 1993)

U

s
5

1

2
EISC~s! 2 C0~s!D2

1 . . . . (4)

Here, C0(s) is the curvature of the arm in the relaxed
conformation (assumed to be equal toC# (s)), and the quan-
tity EI is the average flexural rigidity. Applicability of Eq.
4 requires that the local radius of curvature be much larger
than the thickness of the clathrin arm and that, on a nano-
scopic length scale, its material properties be isotropic; we
also assume that, at least to first-order, length-stretching
and/or compression is independent of arm bending, so the
true position along the arm,s, simply is proportional to its
apparent contour locationS. Thus, the bending energy of an
arm may be written for any particular configuration as

Ubend<
1

2
EI E

0

std

@C~s! 2 C0~s!#
2 ds, (5)

wherestd denotes the position of the terminal domain.
As remarked upon below in the Summary and Discus-

sion, we assume that, to good approximation, triskelion
conformations along the flat mica substrates are not per-
turbed by triskelion–mica interactions. It then follows from
the Boltzmann relation for molecular systems interacting
with a heat bath (Reif, 1965) that the probability density for
arm bending may be expressed, according to Eq. 5, as

3arm , expS2~kBT!21 E
0

std H12 z EI z @C~s! 2 C0~s!#
2J dsD,

(6)

where kB is Boltzmann’s constant andT is the absolute
temperature. When Eq. 6 is used along with a normal mode
decomposition of triskelion shape, variances in mode am-
plitudes {̂ (an 2 an

0)2 &} can be linked to the flexural rigidity
as

^~an 2 an
0!2& <

kBT

EI S L

npD
2

1 SV, (7)

whereL is the intrinsic (average) length of a triskelial arm
andSV is a constant (see Appendix D). In Fig. 6, we show
a two parameter least squares fit of Eq. 7 to computed mode
amplitude fluctuations, from which we obtain the value
EIarm . 35 kBTznm (from the slope) andSV. 1.7 nm (as
the background).

Comparative bending energy

Because portions of four arms overlap when triskelions
assemble into a lattice (Crowther and Pearse, 1981), the
flexural rigidity, EIbond, of a lattice bond (an edge between
two vertices, see Fig. 7) is higher than that of a single arm,
EIarm. For isotropic elastic substances, the flexural rigidity
can be expressed as the product of the Young’s Modulus of
the material,E, and the moment of inertia,I, of the
structure, i.e.,

EI 5 E z I, (8)

FIGURE 6 Estimation ofEI from the variance of the amplitudes^(an 2
an

0)2& of the five leading modes. The fitted curve (Eq. 7) depicts the
expected 1/n2 behavior in the presence of noise due to uncertainty in
resolving the electron microscope images plus uncertainty arising from the
spline fits (dotted line).

FIGURE 7 (A) Idealized, flat hexagonal clathrin lattice overlaying a
hypothetical membrane. Bending is assumed to occur about the axis
defined by the dashed line. The bending energy of the elemental membrane
area (designated by the shaded region) is to be compared with the energy
needed to bend a “bond” between two vertices (e.g., the edge markedl in
the figure). (B) Possible cross-sections of the bonds (composed of four
triskelial arms) and their correspondingg values (see Eq. 9), for bending in
the direction indicated by the curved arrow.
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whereI 5 **cross sectiony
2 dA (e.g.,I 5 pr4/4 for a circular

rod). Suppose we adopt the current structural model of
clathrin cages (Ybe et al., 1999) and presume that the axes
of the individual overlapping arms (all having the same
cross sections) are equidistant from the center of mass of the
composite structure. By assuming that the mass of the
composite is uniformly distributed within a cross sectional
area whose radius is twice that of an individual arm, we
infer the result

EIbond5 gEIarm, (9)

where g 5 16. If, however, the arms are asymmetrically
arranged, theng will differ from this value and depend on
the plane of bending. In Fig. 7, we show some examples,
calculated according to the integral appearing after Eq. 8.
For reasonable geometric cross sections, we find values of
g lying between 12 and 26. Because the arms are likely to
be twisted about each other (Ybe et al., 1999), a weighted
average of these values might be appropriate so the value
EIbond . 16EIarm probably is a good choice (see also Sum-
mary and Discussion below).

Consider that the clathrin triskelions assemble to form the
regular planar structure shown in Fig. 7. Let us now com-
pare the energy necessary to bend a patch of membrane (the
shaded area in Fig. 7) with the energy needed to bend an
equivalent clathrin net. Bending is assumed to occur about
the axis defined by the dotted line. Upon referring to Eq. 5,
we see that the energy associated with the distortion of a
lattice bond is

Ubond5
1

2
EIbondE

0

, S 1

R1
D2

dx, (10)

whereR1 [ 1/C1 is the radius of curvature, assumed to be
constant over the entire length of the bond. Similarly, the
energy required to bend the elemental equivalent membrane
patch can be estimated by

Umb 5
1

2
kmbE

area

S 1

R1
D2

dA

5
1

2
kmb z dE

0

, S 1

R1
D2

dx (11)

;
1

2
EImembE

0

l S 1

R1
D2

dx,

where we have assumed the usual expression for bending
energy per unit area for a cylindrical membrane (Helfrich,
1973), viz.,u ' 1⁄2 kmb (1/R1)

2. Here, the equivalent bend-
ing rigidity of the membrane is defined, in terms of bending
moduluskmb and lateral distanced, asEImemb 5 kmb z d.

From Fig. 7, the distanced is seen to bed 5 =3l, yielding,
for a clathrin lattice, the valued . 32 nm (Vigers et al.,
1986). Thus, using a typical value ofkmb ' 10–30kBT for
phospholipid bilayers (see Zhelev et al., 1994; Seifert and
Lipowsky, 1995), we findEImemb' 320–960kBTznm. This
number is to be compared withEIbond which, when using
our previously derived estimate (EIarm . 35 kBTznm), is
EIbond . 16 z EIarm . 560 kBTznm.

SUMMARY AND DISCUSSION

A central focus of this work has been to examine whether
clathrin plays a significant mechanical role in endocytic
vesicle formation. We analyzed shape fluctuations in elec-
tron microscope images of individual triskelions and used
expressions based on equilibrium statistical physics to esti-
mate the mean bending rigidity of a clathrin arm of a typical
triskelion. We then compared the energy needed to bend a
region of clathrin lattice with that necessary to bend an
equivalent membrane patch, and inferred that the energies
are comparable. Although the preparation of the electron
micrographs may introduce structural features into the
triskelial images that are not found in a simple, equilibrium
aqueous environment, we believe that our investigation
provides a valid order-of-magnitude estimate of the me-
chanical role of the protein coats in clathrin-coated vesicles.

This study has several consequences. First, the statistical
analysis in this paper provides significant information con-
cerning the global structural properties of triskelions—viz.,
the independence, equivalence, and uniformity of flexibility
of the arms. One implication is that the large and uniform
flexibility of the arms allows for assembly of baskets and
nets of widely different structure. Also, although the light
clathrin chains that are bound to the triskelion arms are
known to comprise at least two classes, the arm equivalence
noted in our fluctuation analyses supports the thesis that
light chains, at most, play only a small intratriskelion struc-
tural role. Moreover, the lack of any evidence that informa-
tion about arm extensions are transmitted across the hub
region suggests that mechanical models of clathrin basket
formation probably can be posited without concern for hub
distortions. Finally—of greatest significance—it appears
that the energy needed to bend a clathrin net is of the same
order of magnitude as the energy expended to bend an
equivalent membrane patch. This result strongly suggests
that a major role for clathrin is to assist in the formation of
endocytic and intracellular vesicles by changing the me-
chanical properties of the composite membrane. It now is
clear that, due to its intrinsic curvature and relatively high
rigidity, the basket-like clathrin coat can stabilize vesicles of
;1000-Å radius and thereby play a significant energetic
role during coated vesicle formation.

Potential errors in the analysis most likely are linked to
intrinsic artifacts arising during preparation of specimens
for electron microscopy. But, as explained in this and the
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following two paragraphs, these undoubtedly would lead to
an underestimation of the mechanical rigidity of the lattice,
so our basic findings are unaffected. We worry most that
extraneous bends in the triskelial arms can be introduced
during placement of the triskelia onto the microscope grid.
For example, the arms of a triskelion might interact with the
substrate before the hub region attaches, causing them to
buckle as the triskelion settles onto the mica surface; also,
imperfections in the mica surfaces, or peculiarities of the
interactions of the surfaces with the triskelia, might induce
spurious bends. However, were these to happen, the triske-
lions would appear to be more flexible (i.e., less rigid) than
they really are. The incumbent shape changes would add to
the intrinsic, thermally induced fluctuations, leading to an
underestimation of the arm rigidity. It is hard to envision
how sample preparation could have an opposite effect, i.e.,
the straightening of arms and resultant overestimate of
triskelial rigidity. We also note that, although heavy-metal
shadowing of the triskelia tends to obscure fine details, our
analysis is based on low-order modes (see Fig. 6), which are
relatively unaffected.

Comparison of the persistence length measured from
negative stained carbon-film electron micrographs of actin
filaments with that determined by light microscopy indi-
cated that negative-stained electron microscopy indeed pro-
vides a good estimate of the flexibility of the filaments
(Orlova and Egelman, 1993). Similar inferences have been
drawn regarding the fidelity of rotary shadowed DNA ab-
sorbed to carbon films (Griffith et al., 1986), although later
studies of the absorption of DNA molecules onto mica
surfaces suggest that the resulting images depend on sample
deposition conditions (Rivetti, et al., 1996). However, in the
latter investigation, DNA samples were prepared by drying
simple aqueous solutions, whereas the triskelion samples
examined in this study were deposited to the mica surfaces
by glycerol nebulization. The viscosity of the glycerol/water
mixture used in the nebulization process increases very
sharply as a specimen is dried, and the resultant glassy
solidification of the sample probably tends to preserve the
natural distribution of triskelion shape conformations.

Additional evidence that the flexibility of clathrin noted
in these micrographs is an intrinsic property of the triskel-
ions is inferred from the fact that, when prepared in a similar
way, samples of thin elongated molecules such as the fila-
mentous hemagglutinin ofBordetella pertussisappear
straight and rigid (Kocsis et al., 1991). Moreover, our in-
vestigations mainly concern fluctuations within the surface
plane of the mica, which is very smooth and should provide
little in-plane force modulation on a nanometer length scale.
Indication that the sample preparation is relatively benign
follows from studies of possible correlations between de-
scriptors for the three arms of the same triskelions: because
the shapes of the arms within individual triskelions appear
to be independent, one can rule out the possibility that the
observed fluctuations are significantly affected by localized

features of the mica surfaces or such factors as solvent flows
during sample deposition. For these reasons we believe that,
at least to a first approximation, complications due to inter-
actions between triskelions and the mica surfaces can be
ignored in our analysis.

Another uncertainty in our analysis is the estimate of the
flexural rigidity for a link in the clathrin lattice,EIbond,
which may be greater than the value 16EIarm obtained by
assuming that the four overlapping arms lie symmetrically
about each other. If the arms were to lie adjacent to each
other in a plane, and if the bending were to occur in that
plane, the effective flexural rigidity could be considerably
higher. However, there is no evidence that such an asym-
metric structure exists; to the contrary, recent high-resolu-
tion electron microscopy studies indicate that the arms form
a twisted bundle of essentially symmetric cross-section
when incorporated into clathrin cages (Smith et al., 1998;
Ybe et al., 1999). Again, though, even if we have underes-
timatedEIarm, our qualitative conclusion about the relative
importance of the clathrin lattice is unaffected.

In vivo conditions may be yet more favorable to the
mechanical role played by the clathrin relative to that of the
underlying membrane. Thermodynamic analysis (Nossal,
1998) of the sizes of clathrin baskets assembled in the
presence of “assembly polypeptides” (Zaremba and Keen,
1983) indicates that certain accessory coat proteins, which
are present on the surfaces of endocytic vesicles, increase
the rigidity of the clathrin lattice. Also, our estimate of the
membrane flexural rigidity,EImemb, may be somewhat high,
due to the fact that the underlying membrane parameterkmb,
is somewhat uncertain. Although the values of overall mem-
brane rigidity used in our analysis probably are of the
correct order of magnitude, it is likely that membrane re-
gions that bud off to form vesicles have properties that
differ from the average; e.g., biochemical reactions might
have the effect of loweringkmb by changing the local lipid
composition or properties of the submembraneous cytoskel-
eton. Modification of the relative rigidities of plasma mem-
brane and clathrin lattice could be a regulatory mechanism
for vesicle budding at a cell surface. The dependence of the
g factor on triskelion arm packing geometry (see Eq. 9 and
Fig. 7), with its incumbent effect onEIbond, also implies
possibilities for intracellular control of clathrin vesicle
formation.

APPENDIX A

CHARACTERIZATION OF ARM SHAPES

From the digitized shape data provided for each triskelion (see Fig. 1), we
generated a set of smooth natural cubic spline functions by fitting each
contiguous, overlapping group of four nodes by a cubic equation (Press, et
al., 1988). From these, we obtained the coordinate sets {X(i,j)(t) Y(i,j)(t)},
wheret 5 [0, 1, . . . ,ttd 5 100] is an index that increases sequentially from
0 at the triskelion hub tottd at the center of the terminal domain, and (i, j)
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indicates theith arm of the jth triskelion. As illustrated in Fig. 1, the
spacing between the nodal points of the primary data sets is not uniform,
but tends to accentuate regions of high curvature: fewer nodal points were
used to describe those portions of a triskelion that appeared to be straight
(Kocsis et al., 1991). To preserve the weight given to regions of high
curvature, the newly generated intermediate points {t} were taken in
identical numbers between each neighboring pair of original digitized
nodal points. The value ofttd 5 100 provides meaningful numerical
accuracy. Because possible error in the coordinates of the original nodes is
of the order of one-fifth the spacing between nearest nodes (Kocsis et al.,
1991), a finer mesh size (i.e., greater number of {t}) did not seem to be
warranted.

To describe the shapes of the arms, we computed the arm contour
lengthsS(i,j)(t) and arm tangential anglesa(i,j)(t) according to the following
relations:

S~t! 5 O
t951

t ÎSdY~t9!

dt9 D2

1 SdX~t9!

dt9 D2

(A1)

(with S(0) 5 0.0 Å) and

a~t! 5 tan21SdY~t!/dt

dX~t!/dtD . (A2)

These functions were evaluated, for each triskelion arm, at all extrapolated
nodal points {t 5 0, 1, 2, . . . ,ttd} pertaining to that arm. We alloweda(t)
to range from 0° to 360°, and were careful to properly invert the tan-
functions. The values of {S(i,j)(t), a(i,j)(t)} provide a description of the
contour of a given triskelion arm that is equivalent to the points {X(i,j)(t),
Y(i,j)(t)}.

All global shape quantities were calculated from these equivalent data
sets. For example, the apparent length of each arm was obtained asL 5
S(t 5 ttd) 1 Rtd, whereRtd 5 36 Å is the average radius of the triskelion
terminal domains (measured by Kocsis et al., 1991). The hub angles,f(i,j)

(see Fig. 2), were determined from the difference in the initial directions of
the two other arms, the latter beinga(i9,j)(0) and a(i0,j) (0). The total
cumulative hub-to-terminal angle was computed asue 5 a(ttd) 2 a(0). We
also calculated the cumulative angle to a point midway along the arm
according toum 5 linterp (a(t)uS(t) 5 L/2) 2 a(0), where linterp(a)
denotes a simple linear interpolation between values ofa at those nodal
points lying to both sides of the midpointS5 L/2 when the apparent length
of the arm isL. The hub-to-terminal distancesDhe and terminal domain–
terminal domain distanceDee were calculated according to

Dhe
(i,j) 5 Î~Xhb

(j) 2 Xtd
(i,j)!2 1 ~Yhb

(j) 2 Ytd
(i,j)!2;

i 5 1, 2, 3; j 5 1, 2, . . . , 72

and

Dee
(i,j) 5 Î~Xtd

(i9,j) 2 Xtd
(i0,j)!2 1 ~Ytd

(i9,j) 2 Ytd
(i0,j)!2 ,

where i 5 1, 2, 3 and i9 Þ i0 Þ i.

To examine the bending profiles and rigidity of triskelion arms, we
computed the true position,s, along the arms by scaling the observed arm
length of each triskelion according to the linear relationship

s(i,j)~t! 5 S(i,j)~t!Fm~L! 2 Rtd

S(i,j)~ttd!
G, t 5 0, . . . ,ttd 5 100.

(A3)

To determine the correspondinga(i,j), we then inverted Eq. A3 to identify
the interpolated valuet(i,j) (not necessarily an integer) corresponding to a
given values. Associated with these {t(i,j)} are the derived values {a(i,j)(s)},

calculated from Eq. A2 by using the spline functions {X(i,j)(t), Y(i,j)(t)}. The
curvatures {C(i,j)} then were calculated via

C(i,j)~s! 5
Da(i,j)~t(i,j)~s!!

Ds
, (A4)

s5 0,
m~L!

100
,
2m~L!

100
, . . . ,m~L!,

whereDa/Ds represents a finite difference. For each triskelion, we sepa-
rately calculatedC(i,j)(s) (i 5 1, 2, 3; j 5 1, 2, . . . , 72) ateach of the
expanded internodal coordinate points. We also calculated the mean value
of the curvature,C# (s) [ ¥i,j C(i,j)(s)/216, and the standard deviation,

s~C~s!! ; FOi,j ~C(i,j)~s! 2 C# ~s!!2

215 G1/2

.

The spline fits and several other data-reduction steps were carried out on a
desktop personal computer, primarily using the MATHCAD software
package (MathSoft, Cambridge, MA). The codes developed during this
work are available upon request from Dr. A. J. Jin.

APPENDIX B

RELATIONSHIPS BETWEEN SUBSET
DISTRIBUTIONS

As already mentioned, we measured various global parameters {A(i,j)},
where A(z) represents a quantity such as arm lengthL(z), the index
i(5 1, 2, 3) pertains to a particular arm within a given triskelion, and
j(5 1, . . . ,N) denotes different triskelions. Thesej triplet values allowed
us to examine, in addition to the overall distribution of the complete set
{ A(i,j)}, the three subset distributions {Asm

(j) }, { Amd
(j) }, and {Alg

(j)}, which are
uniquely defined and consist, respectively, of the smallest, the medial, and
the largest value within each triplet. We now provide a proof of Eqs. 3,
which have been used to infer the independence of arm fluctuations within
individual triskelions.

Suppose, for any set ofN triskelion images, we arbitrarily form the
subsets {A(1,j)}, { A(2,j)}, and {A(3,j)}, where each subset contains the value
of A for one, and only one, arm of each triskelion. If the arms of particular
triskelions fluctuate independently and equivalently, then the distributions
of the subsets will be identical to that of the entire collection of {A} values
3(A), and 3(A(1), 3A(2), 3A(3)) 5 3(A(1)) z 3(A(2)) z 3(A(3)). It thus
follows that

3sm~A! } 33~A! z FE
A

`

3~A9! dA9G2

, (B1)

because, by specifying that the smallest valueA(i) is equal toA, one
indicates that the values pertaining to the other arms are greater thanA. The
factor 3 arises because each of the three subsets contributes in the same
way to the defined group containing the smallest values. Similarly, one
finds

3md~A! } 63~A! z FE
2`

A

3~A9! dA9 z E
A

`

3~A9! dA9G
(B2)
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(in this case, there being six ways to sample the ensemble), and

3lg~A! } 33~A! z FE
2`

A

3~A9! dA9G2

. (B3)

If 3(A) approximates the normal distribution given in Eq. 2, viz.,3n(A;
m(A), s(A)), then 3sm(A), 3md(A), and 3lg(A) are themselves approxi-
mately bell-shaped. To demonstrate this, we first perform a set of variable
transformations in Eqs. B1–B3. These yield the relationships (1)3sm(A [
m(A) 2 x z s(A)) 5 3lg(A9 [ m(A) 1 x z s(A)) 5 f1 (x) and (2)3md(A [
m(A) 1 x z s(A)) 5 f2(x), where

f1~x! ;
3

~2p!3/2 e2x2/2FE
2`

x

e2t2/2 dtG2

(B4)

and

f2~x! ;
3

~2p!
e2x2/2F2E

2`

x

e2t2/2 dt

z S1 2
1

~2p!1/2E
2`

x

e2t2/2 dtDG . (B5)

Numerical fitting by MATHCAD (MathSoft) indicates thatf1(x) and f2(x)
are virtually indistinguishable from the normal density functionsf 1

norm(x) 5
(1/=2ps1) exp[2(x 2 m1)

2/2s1
2] and f 2

norm(x) 5 (1/=2ps2) exp[2(x 2
m2)

2/2s2
2] when m1, s1, m2, s2 have the values

m1 ; E
2`

`

xf1~x! dx . 0.846, (B6a)

s1 ; FE
2`

`

x2f1~x! dxG1/2

. 0.748, (B6b)

m2 ; E
2`

`

xf2~x! dx 5 0.0, (B6c)

and

s2 ; FE
2`

`

x2f2~x! dxG1/2

. 0.670. (B6d)

Several statistical tests can be used to verify the concordance of the
distributions given by Eqs. B4–B6 with their respective normal distribu-
tions. We here adopted the approach of Kolmogorov–Smirnov (Sachs,
1978). This test depends on the “statistic D,” which compares the maxi-
mum absolute difference between two cumulative distributions and is used
to estimate the minimum sample number that is required to distinguish
between distributions at a given confidence levela. It is a straightforward
task to show that the maximum absolute cumulative differencesu f1(x) 2
f 1

norm(x) u andu f2(x) 2 f 2
norm(x) u are approximately 0.015 and 0.001. Taking

a 5 0.05, the Kolmogorov–Smirnov test suggests that at least 8000
triskelion images would be required to distinguish betweenf1(x) and
f 1

norm(x), whereas over 1.5 million samples would be necessary to distin-
guish betweenf2(x) and f 2

norm(x). Consequently, the original subset distri-

butions3sm(A), 3md(A), and3lg(A) also are indistinguishable from their
respective normal distributions, with mean values and standard deviations
given by

m~Asm! 5 m~A! 2 m1 z s~A!,

s~Asm! 5 s1 z s~A!;

m~Amd! 5 m~A! 1 m2 z s~A!, (B7)

s~Amd! 5 s2 z s~A!;

m~Alg! 5 m~A! 1 m1 z s~A!,

s~Alg! 5 s1 z s~A!.

By inserting the values form1, m2, s1, and s2 given in Eqs. B6, one
immediately obtains the relationships given in Eqs. 3 of the text.

APPENDIX C

STATISTICAL LIMITS OF CORRELATION
COEFFICIENTS

The correlation coefficientr(A, B) is defined as

r~A, B! ;
m~@A 2 m~A!#@B 2 m~B!#!

s~A!s~B!
, (C1)

whereA, B are any pair of random variables and the functionsm(z) ands(z)
are as defined previously, following Eq. 2. Correspondingly, we define a
tricorrelation coefficient as

rs~A! 5
Oi51

N (A1(i) 1 A2(i) 1 A3(i) 2 3m~A!)2

Oi51
3N ~A(i) 2 m~A!!2 2 1. (C2)

Here,N again is the number of triskelion arms in the data set, the quantities
A1, A2, andA3 denote shape parameters for different arms of the same
triskelion, andm(A) is the mean value of the shape parameter for the entire
data set.rs(A) is invariant under exchange of the elements within the
triplets {A1, A2, A3}. The values ofrs(A) can be used to determine
relationships betweenA1, A2, andA3.

Because the numbers of samples that we have been able to analyze are
rather small (216 triskelial arms; 144 independent angles where the arms
join the hub; etc.), correlation coefficients obtained according to Eqs. C1
and C2 must be subjected to statistical analyses to assess their significance.
We found, for example, that the conventional correlation coefficient
r(f, L) given by Eq. 4 has a value 0.06. With what probability is this value
not notably different from zero, a value that signifies thatf and L are
independent?

If ur(A, B)u lies within values appropriate to a statistical confidence level
(normally taken to be 95%), the variations of {A} and {B} probably are
independent; ifur(A, B)u lies outside this range, the variables probably are
correlated (Sachs, 1978). The confidence levels of inferred values of
r(A, B), whereA and B are independent random variables both sampled
from normal distributions, were determined by calculating the probability
distribution thatr(A, B) is a given nonzero value. For a given sample size
(e.g.,N 5 200), MATHCAD was used to calculate the correlation coeffi-
cient for randomly drawn values ofA andB (yielding, e.g.,r200(A, B) 5
0.074). The calculation was repeated for 5000 trials, generating a sequence
(e.g., 0.074, 0.053, 0.088, . . .) representing the various realized values of
r200(A, B). These results then were sorted to provide a histogram of the
number of times that a given value is found in the sequence, yielding a
frequency curve that essentially is monotonically decreasing with increas-
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ing values ofr200. The bounding valuesr200
2 andr200

1 , between which 95%
of the realized outcomes of the calculation lie, then were noted.

This simulation was repeated for other values ofN, and the smooth
curve shown in Fig. 8 was generated. The abscissa represents the sample
size (e.g., 216). The ordinate indicates the values {rN

2, rN
1} for which, if

rN
2 , rN , rN

1, one can say that the realized value is indistinguishable from
zero (the idealized value for independent random variables) “with a con-
fidence level of 0.95.” For a sample size ofN 5 216 (i.e., the number of
triskelion arms), theserN

2, rN
1 values are;60.13, whereas ifN 5 144 (for

tests involving the hub angles), the numbers are60.16.
A plot (also shown in Fig. 8) was obtained similarly for the tricorrela-

tion coefficients given by Eq. C2. In this case, one finds that the 95% level
of significance for a sample size of 72 triskelions (N 5 216 arms) lies
between20.27 and 0.26; that is, ifu rs, 72(A) u# 0.27, then the calculated
tricorrelation coefficient is not significantly different from the value zero
that would be obtained by sampling independently fluctuating random
variables.

APPENDIX D

RIGIDITY ANALYSIS

C(s) is related to a local shape function,u(s), according toC(s) 5 u(s)/s.
Let us now suppose that the shape function of an individual arm can be
decomposed into a series of normal modes (Gittes et al., 1993; Ka¨s et al.,
1996)

u~s! 5 O
n50

`

un~s!

5 ~2L21!1/2O
n50

`

an cosSnps

L D , (D1)

whereL is the intrinsic length of an arm. Then, from Eq. 6, the variance in
the amplitude of each mode,^(an 2 an

0)2&, is related to the flexural rigidity
according to

^~an 2 an
0!2& 5

kBT

EI S L

npD
2

, (D2)

so that, in principle, an analysis of the individual modes can give indepen-
dent measures ofEI. Equation D2 reflects the notion of equipartition of
energy (Reif, 1965), which signifies that the energy associated with each
mode excited by the thermal bath is equal to1⁄2kBT.

To first order, the mode amplitudes and variances can be calculated
from the triskelion images according to Eqs. A2–A4 as

an
(i,j) 5 O

s50

m(L) ~2m~L!!1/2

50 Fa(i,j)~s! z cos
nps

m~L!G, n 5 1, 2, . . .

(D3)

and

^~an 2 an
0!2& 5

Oi,j
N ~an

(i,j) 2 m~an
(i,j)!!2

N 2 1
, (D4)

whereN 5 216 is the total number of triskelion arms in our data set. In fact,
though, our numerical data reduction is complicated by two factors: (1) an
uncertainty in determining the node coordinates from the original electron
micrographs (Kocsis et al., 1991) and (2) our spline-based fitting procedure
(see Appendix A). The first progressively increases the amplitude variance
for higher modes (Gittes, et al., 1993; Ka¨s et al., 1996), whereas the second
suppresses the absolute amplitude at higher mode numbers (especially
those forn $ 1⁄2nm, wherenm is the total number of spline nodes used to
describe arm shape). Because our data analysis for arm shapes generally
yields nm values of 96 1, these effects limit the useful normal modes to
approximately the first 5. For the leading modes (i.e., smalln), numerical
modeling (data not shown) suggests that the combined effect of these two
factors is to add an approximately constant background term to the 1/n2

behavior of Eq. D2, so we obtain the expression given in Eq. 7.
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