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ABSTRACT In an effort to test the lever arm model of force generation, the effects of replacing magnesium with calcium as
the ATP-chelated divalent cation were determined for several myosin and actomyosin reactions. The isometric force
produced by glycerinated muscle fibers when CaATP is the substrate is 20% of the value obtained with MgATP. For myosin
subfragment 1 (S1), the degree of lever arm rotation, determined using transient electric birefringence to measure rates of
rotational Brownian motion in solution, is not significantly changed when calcium replaces magnesium in an S1-ADP-
vanadate complex. Actin activates S1 CaATPase activity, although less than it does MgATPase activity. The increase in actin
affinity when S1 z CaADP z Pi is converted to S1 z CaADP is somewhat greater than it is for the magnesium case. The ionic
strength dependence of actin binding indicates that the change in apparent electrostatic charge at the acto-S1 interface for
the S1 z CaADP z Pi to S1 z CaADP step is similar to the change when magnesium is bound. In general, CaATP is an inferior
substrate compared to MgATP, but all the data are consistent with force production by a lever arm mechanism for both
substrates. Possible reasons for the reduced magnitude of force when CaATP is the substrate are discussed.

INTRODUCTION

The actin-based molecular motor myosin generates force by
coupling mechanical action to binding and hydrolysis of a
substrate. The natural substrate is MgATP. In muscle, an
actin filament is surrounded by an array of myosin motor
domains. Force impulses to actin are coupled to cycles of
ATP hydrolysis by the motor domains. The mechanical
action of each cycle is currently hypothesized to involve
rotation of a segment of the motor domain, called the lever
arm. According to the lever arm hypothesis, MgATP bind-
ing dissociates a motor domain from actin. A hydrolysis-
coupled rotation of the lever arm then occurs while myosin
is free, and force is produced by reversal of the rotation after
the motor domain rebinds to actin. Associated with the
reverse rotation, the hydrolysis products dissociate and the
motor domain affinity for actin increases. For more detail,
muscle contraction (Cooke, 1997) and the lever arm model
of force generation (Geeves and Holmes, 1999; Highsmith,
1999) have been reviewed recently. Although the lever arm
mechanism has yet to be proven, several kinetic and struc-
tural features of the model can be quantitatively assessed.
One approach to testing the validity of the model is to compare
these features for MgATP and a non-natural substrate.

Here we examine CaATP as a substrate for skeletal
muscle fibers and for isolated myosin motor domain (sub-
fragment 1 or S1) and actin. CaATP has been suggested to
be a poor or non-force-generating substrate for muscle

fibers (Szent-Gyorgyi, 1947), although to the best of our
knowledge no fiber data have been published. Some data
exist for model systems. The force that is produced by
contraction of actomyosin threads is lower for CaATP than
for MgATP (Bowen, 1952). The degree of superprecipita-
tion is reduced when CaATP is the substrate (Weber and
Portzehl, 1954). We measured isometric force production
by glycerinated muscle fibers in the presence of CaATP and
confirm that it is lower than observed for MgATP under the
same conditions. In addition, several structural, energetic,
and kinetic features of the CaATP-myosin-actin system in
solution were determined and compared to the MgATP
case. Conditions as close as possible to those of the force
measurements were used. The steady-state kinetic parame-
ters for basal and actin-activated CaATPase activities of S1
were measured. The degree of lever arm rotation of S1z
CaADP z Vi, S1 z CaADP, and S1z Ca in solution were
compared to their magnesium counterparts by using tran-
sient electric birefringence (TEB). The actin affinity and
apparent electrical charge at the interface were measured for
S1 z CaADP z Pi and S1z CaADP. Our goals are to test the
lever arm hypothesis and to use the model to understand
what elements of the hydrolytic and/or mechanical cycles
may be responsible for the differences in force generation
by CaATP and MgATP.

MATERIALS AND METHODS

Fiber, protein, and buffer preparation

Fibers were obtained from strips of rabbit psoas muscle, which were
dissected and stored in 50% glycerol, 50 mM Mops, 120 mM KOAc, 5 mM
MgCl2, 1 mM EGTA, pH 7 at 0°C for 24 h and then at220°C for several
weeks before use (Cooke and Pate, 1985). Myosin was isolated from rabbit
skeletal muscle (Nauss et al., 1969) and S1 with both light chains present
was produced from myosin by proteolysis using papain (Margossian and
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Lowey, 1982) and purified by ion exchange and size exclusion chroma-
tography (Weeds and Taylor, 1975; Highsmith, 1997). Actin was isolated
from rabbit skeletal muscle (Spudich and Watt, 1971), dialyzed against a
specific buffer, pelleted by centrifugation, and resuspended in the buffer
for use. Buffers were made using reagent-grade chemicals and glass-
distilled water additionally deionized to greater than 18.03 106 Ohm-cm
resistivity using a Barnstead water purification system. Contaminating
[Mg21] in the calcium buffers was measured by an induction-coupled
plasma method (QTI, Whitehouse, NJ).

Force measurement

Individual fibers were dissected from a glycerinated psoas muscle prepa-
ration and attached to a force transducer (Pate et al., 1993). Fiber length
and diameter were measured (Cooke and Pate, 1985). The measured force
was normalized for fiber cross-section and is reported in mN/mm2. As a
control for a glycerinated muscle fiber preparation, the force for an indi-
vidual fiber was measured at 10°C in 50 mM Mops (pH 7.0), 120 mM
KOAc, 5 mM MgCl2, 1 mM EGTA, 1.10 mM CaCl2, 20 mM creatine
phosphate, 1 mg/ml creatine phosphokinase, 4 mM ATP, and 3 mM
K3PO4. Only glycerinated muscle preparations with fibers producing force
consistent with published values (Pate et al., 1993) were used as a source
of individual fibers for the calcium measurements.

To measure force generation from CaATP hydrolysis, a fiber was
mounted and incubated in 20 mM Mops, 1 mM EDTA, pH 7 for 10 min.
This wash to remove endogenous Mg21 was repeated at least twice, and in
some cases was lengthened to 20 min. The buffer was changed to 20 mM
Mops (pH 7.0), 4 mM CaCl2, and contraction was initiated by adding ATP
to obtain 3 mM. This buffer and the ones used in the other experiments
described below were chosen to obtain conditions as near as possible to
identical in all cases. The ionic strength is low to optimize the TEB
measurements. The divalent cation concentration is high to ensure satura-
tion of the ATP binding site by the various metal ion-nucleotide
complexes.

S1 ATPase activities

The steady-state rates of CaATP and MgATP hydrolyses by S1 were
measured at 25°C in 10 mM Mops (pH 7.0), 2 mM ATP plus either 5 mM
CaCl2 or 5 mM MgCl2, respectively. Aliquots were taken at increasing
times after the reaction was initiated, and [phosphate] was detected by a
Malachite green method (Kodama et al., 1986). S1 was 1.0–1.5mM for
MgATPase and 0.50–0.80mM for CaATPase activity measurements.
Actin-activated activities were measured with 2–60mM F-actin in the
same buffers.

S1-phosphate analog complex stabilities

The rates of formation of complexes of S1, ADP, orthovanadate, and either
Ca21 or Mg21 were determined at 25°C by measuring the loss of ATPase
activity. Conditions similar to those of Goodno (1979) for inactivation of
S1 by vanadate in the presence of Mg21 were modified to obtain low ionic
strength samples suitable for TEB measurements (Highsmith and Eden,
1990), and used for both Ca21 or Mg21. S1 (10mM) was incubated in 10
mM Mops (pH 7.0), 0.20 mM ADP, and 5 mM CaCl2 or 5 mM MgCl2 for
10 min. A stock solution of orthovanadate (Goodno, 1979) was used to
obtain 0.50 mM vanadate to start the reaction. At increasing times aliquots
were taken and diluted to obtain 1mM S1 in 10 mM Mops (pH 7.0), 2 mM
ATP, and either 5 mM CaCl2 and 5 mM MgCl2. The ATPase activity was
determined from the rate of phosphate production, measured using Mala-
chite green.

The rates of dissociation of orthovanadate from the inactive complexes
were determined by measuring the increase of KATPase activity in the

presence of EDTA. 10.0mM S1 complexes in 10 mM Mops (pH 7.0), 0.20
mM ADP, either 5 mM CaCl2 or 5 mM MgCl2, and 0.50 mM sodium
orthovanadate were incubated 16 h at 0°C to achieve maximal inactivation.
A solution of inactive S1 was warmed quickly to 25°C and diluted with 20
mM EDTA to obtain 5.0mM S1 complex and 10 mM EDTA. Aliquots
were taken at increasing times and diluted to give 0.50mM S1 in 50 mM
Tris (pH 8.0), 600 mM KCl, 2.0 mM ATP, 6.0 mM EDTA. Phosphate
production was determined using Malachite green.

S1 hydrodynamic size changes

The rates of rotational Brownian diffusion of S1 and S1-nucleotide com-
plexes in 10 mM Mops (pH 7.0) and either 5.0 mM CaCl2 or 5.0 mM
MgCl2 were determined at 3.7°C. The S1 permanent electric dipole was
partially aligned by a 10-ms 3570 V/cm electric field pulse. The decay of
the birefringence signal after the electric field was removed was analyzed
using the program DISCRETE (Provencher, 1976) to determine the rota-
tional decay time(s),ti. The decay data were always best fitted by a single
exponential decay function. The instrumentation has been described (Elias
and Eden, 1981; Eden and Highsmith, 1997). The rate of rotational Brown-
ian diffusion is related to hydrodynamic size. Low-resolution structures of
S1, obtained from fits of the rotational decay data using models of S1 that
are bent to various degrees about a hinge at its center (Highsmith and Eden,
1990), are in quantitative agreement with high-resolution S1 atomic struc-
tures (Rayment et al., 1993).

S1 actin binding

The association constants at 25°C for actin binding to the complexes S1z

MeADP and S1z MeADP z Pi, where Me is either magnesium or calcium,
were measured using a cosedimentation method (Highsmith and Murphy,
1992) in the same buffers used for the force measurements. The steady-
state intermediates S1z MgADP z Pi and S1z CaADPz Pi were maintained
by excess ATP in the solution.

Acto-S1 interface electrostatic charge

The product of the net effective electrostatic charge on the actin and
myosin sides of the binding interface,zMzA, was estimated for binding in
solution. Actin binding to S1z MeADP and S1z MeADP z Pi, where Me is
either magnesium or calcium, was measured in solutions of increasing
ionic strength andzMzA was calculated by the method of Pitzer (Pitzer,
1979; Highsmith and Murphy, 1992).

RESULTS

Force production

At 10°C in 27 mM ionic strength buffer, isometric force is
produced by glycerinated skeletal muscle fibers when
CaATP is the substrate (Fig. 1). The steady-state force, in
the plateau following the rapid initial rise, is 546 15
mN/mm2 (n 5 5), compared to 2896 84 mN/mm2 (n 5 5)
observed when Mg21 is substituted for Ca21 (data not
shown). Because of the low ionic strength of the buffer, the
peak force produced in the presence of MgATP is somewhat
higher than observed by others under more physiological
conditions (Pate et al., 1993). This is the first report of force
production by a muscle fiber due to CaATP hydrolysis. The
low ionic strength buffer was chosen to maximize interac-
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tions between actin and myosin in the fibers. However, if
after 120 s KCl was added to the bath to obtain 10, 50, and
100 mM KCl, it had a negligible effect on the force pro-
duced in the presence of calcium (data not shown).

A potential problem is that the force observed when ATP
is added to a fiber bathed in the Ca21 buffer might be due
to the hydrolysis of MgATP formed from Mg21 contami-
nation, either from the fiber or from the buffers. To test the
fiber as a source of Mg21, we varied the number and
duration of EDTA washes that were done before it was
immersed in the Ca21 buffer and force was measured (see
Materials and Methods). The force produced was un-
changed within the experimental error after one to three
10-min washes, or one 20-min wash. These control mea-
surements indicate that the fiber is not a significant source
of Mg21 in the procedure used. The Ca21 and ATP buffers
were also analyzed for Mg21. One method was to tabulate
the trace amounts of Mg21 in the reagents and water used to
prepare the buffers, using manufacturer specifications. By
this method the total [Mg21] was,2.1mM. Contaminating
[Mg21] in the Ca21 buffer was also measured, by induction
coupled plasma analysis. Total [Mg21] was below the de-
tection limit, ,5 mM. When 5mM MgCl2 was added to a
fiber contracting in the Ca21 buffer, the force increased by
,2%. It appears that the force observed for glycerinated
muscle fibers, 20% of that obtained with MgATP, is due to
the binding and hydrolysis of CaATP.

Lever arm rotation

Rotation of the S1 lever arm to form a more compact motor
domain structure was measured using TEB (Highsmith and
Eden, 1990). Using a weak electric field to partially align an
S1 complex, the rotational decay time,t, was measured for
the rotation back to random orientation after the electric
field was removed. The smallert is, the more compact is the
structure of the complex. Measurements were made for 1.0

mM S1, S1 z CaADP, and S1z CaADP z Vi (Table 1).
Parallel measurements were made with MgCl2 replacing
CaCl2. The vanadate complexes were prepared at 0°C and
incubated overnight before making the transient electric
birefringence measurements. The MgATPase and CaAT-
Pase activities were 8% and 14% of normal, respectively,
confirming that the complexes were formed.

The data (Table 1) indicate that comparable changes in
hydrodynamic size are induced by ligand binding for the
calcium and magnesium complexes. The most important
observation is that the decrease int for S1 z CaADP z Vi,
compared to S1z CaADP, is quantitatively close to the
decrease observed for S1z MgADP z Vi, compared to S1z
MgADP. Assuming that in both cases decreases int are due
to lever arm rotation, the ratio oftADP z Vi/tADP is a quan-
titative indicator of the degree of rotation. The ratio is 0.92
for the calcium complexes and 0.94 for the magnesium
complexes. S1z MgADP z Vi is considered to be a analog of
S1 z MgADP z Pi (Goodno, 1979), although it is not clear as
to whether it best represents a transition state or hydrolysis
products (Smith and Rayment, 1996a; Ajtai et al., 1998).
The magnesium complex has the lever arm rotated (High-
smith and Eden, 1990). The data for ADP and ADPz Vi

strongly suggest that similar degrees of lever arm rotation
occur for magnesium and calcium complexes when ATP is
hydrolyzed.

The rotational times for the calcium complexes are
smaller in all cases than for the magnesium analogs. This is
true even in the absence of nucleotide, suggesting that Ca21

is binding to S1 independently of binding as a nucleotide-
complex. The effect ont of nucleotide-independent Ca21

binding appears to be additive to the effect of nucleotide-
dependent binding.

S1 z CaADP z Vi stability

The observed loss of S1 activity in the presence of Mg21 or
Ca21 plus ADP and orthovanadate indicates that the com-
plexes prepared for TEB measurements are stable in the
buffer used for those measurements. To quantitatively as-
sess the relative stabilities of the S1z MgADP z Vi and S1z
CaADPz Vi complexes, the rates of complex formation and
dissociation were measured. The loss of CaATPase activity
after the addition of Vi to S1z CaADP is shown in Fig. 2A.

FIGURE 1 Isometric force production. A glycerinated muscle fiber at
10°C was bathed in an EDTA buffer for several changes and then trans-
ferred to a Ca21 buffer, as described in Materials and Methods. When ATP
was added, tension increased smoothly to 546 15 mN/mm2.

TABLE 1 Myosin S1 rotational decay times

Ligand tMg21 (ns) tCa21 (ns)

None 421.66 2.4 417.46 1.3
ADP 428.36 1.1 413.86 1.7
ADP z Vi 396.26 2.2 383.86 2.4

The rates of rotational Brownian motion at 3.7°C were determined by TEB,
as described under Materials and Methods. Solutions contained 1mM S1,
10 mM Mops, with either 5 mM CaCl2 or 5 mM MgCl2, and ligands as
indicated at 0.20 mM ADP, 0.50 mM V.
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A pseudo-first-order rate constant,k1, determined by fitting
the data with the equation

A 5 Aoexp~2k1t!,

is 1.13 1024 s21, whereA andAo are the activities in the
presence and absence of orthovanadate, respectively. The
rate of dissociation Vi from the complex was measured in
the presence of EDTA. EDTA scavenges Ca21, and it is
assumed that the dissociation rates of CaADP from S1z
CaADP and of Ca21 from CaADP are much faster than the
dissociation rate of Vi from S1 z CaADP z Vi. The increase
in KATPase activity after the addition of EDTA to the
inactivated complex is shown in Fig. 2B. When the data are
fitted using the equation

A 5 Ao@1 2 exp~2k1t!#,

k21 is 2.03 1025 s21. When Mg21 is substituted for Ca21,
k21 is little changed, butk1 is much larger (Table 2). The
Ca21 complex is the less stable of the two, consistent with

the calcium complex being too unstable to detect under
some conditions (Peyser et al., 1996).

Actin activation of S1 CaATPase activity

To compare the mechanisms of force production from the
hydrolysis of CaATP to that from MgATP, it is important to
determine whether actin interacts with the steady-state in-
termediate S1z CaADP z Pi and accelerates the rate of
product dissociation. The basal CaATPase activity in the
absence of actin is high, approaching that of actin-activated
MgATPase activity. At 25°C in the buffer used for the fiber
force measurements, S1 CaATPase activity is 1.6 s21, con-
sistent with published values (Shriver and Sykes, 1981;
Wagner and Giniger, 1981). This is 40-fold higher than S1
MgATPase activity for the same conditions (Table 3). Actin
activates the rate of CaATP turnover, but only 2.4-fold
when the data for the lower [actin] range are fitted assuming
Michaelis-Menten kinetics (Fig. 3). There is 90-fold activa-
tion for MgATP hydrolysis for the same conditions (Table
3). The reduced actin-activation when calcium is present is
due at least partially to the high basal CaATPase activity.
Actin activation of CaATPase activity is sensitive to con-
ditions, and has been reported to be as low as 1.5-fold
(Nihei and Tonomura, 1959) and as high as 22-fold (Peyser
et al., 1996). The apparentKm for actin activation is 20-fold
higher for CaATPase than it is for MgATPase activity
(Table 3). The higherKm and reduced activation indicate

FIGURE 2 Formation and dissociation of S1z CaADP z Vi. (A) Or-
thovanadate was added to S1z CaADP at 25°C and the loss of CaATPase
activity (filled circles) was measured for aliquots taken at increasing times,
as described in Materials and Methods. The rate was determined for the
exponential loss of activity. When Mg21 was substituted for Ca21 (data not
shown), the rate was much faster (Table 2). (B) EDTA was added to a
solution of the inactive complex at 25°C and the increase of KATPase
activity (open circles) was measured for aliquots taken at increasing times.
The data were fitted by a single exponential function to determine the rate.
When Mg21 was substituted for Ca21, the rate was similar (Table 2).

TABLE 2 Rates of S1 z CaADP z Vi and S1 z MgADP z Vi

formation and dissociation

Calcium Magnesium

Formation, s21 (1.1 6 0.1) 3 1024 (1.7 6 0.4) 3 1022

Dissociation, s21 (2.0 6 0.9) 3 1025 (3.1 6 1.9) 3 1025

For the pseudo-first-order rates of formation, orthovanadate was added to
start the reaction (see Materials and Methods for reaction conditions).
Aliquots were taken and the ATPase activity was determined (Fig. 2). The
loss of activity was fitted using a single exponential decay function. For
dissociation rates, the inactivated complex was incubated in the presence of
EDTA, aliquots were taken, and KATPase activity was determined.

TABLE 3 Steady-state ATPase activities

Calcium Magnesium

S1 ATPase, s21 1.646 0.12 0.0456 0.007
Actin-activated S1 ATPaseVmax, s21 3.86 0.7 4.16 0.7
Km, mM 50 6 26 2.56 0.5

The steady-state rates were measured at 25°C in 10 mM Mops (pH 7.0), 4
mM ATP, and 5 mM CaCl2. Aliquots were taken at increasing times after
the reaction was initiated, and phosphate concentration was detected as
described in Materials and Methods.Vmax and Km were determined by
fitting the dependence of the activity on actin concentration up to 40mM
(Fig. 3), assuming Michaelis-Menten kinetics. The decrease in activity at
higher actin concentration may be making the values obtained forVmaxand
Km lower than the true values (see Discussion). Magnesium data are from
Highsmith (1997).
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that actin interaction with S1z CaADP z Pi is less effective
than it is with S1z MgADP z Pi, but the data show that actin
does bind to S1z CaADP z Pi and accelerates the rate of
product dissociation.

The decrease in CaATPase activity shown in Fig. 3 for
[actin] above 40mM was consistently observed. For tech-
nical reasons it was difficult to obtain data for [actin]. 60
mM, so the CaATPase activity at saturating levels of actin
was not determined. The decrease at higher [actin] may
have introduced a systematic error of unknown magnitude
into the results obtained from fitting the data in the lower
[actin] range. This systematic error, if it exists, does not
change the conclusion that actin activates S1 CaATPase
activity, but it would make the measuredKm larger than the
true value and the measuredVmaxsmaller than the true value
(Table 3). A similar decrease in MgATPase activity is
observed at high [actin] (White et al., 1997). At low [actin]
the rate-determining step for the MgATP hydrolysis cycle is
A 1 S1 z MgADP z Pi 3 A z S1 z MgADP z Pi (White and
Taylor, 1976). At high [actin], actin remains bound when
MgATP binds to Az M and the rate-determining step in the
cycle changes to Az S1MgATP3 A z S1MgADP z Pi

(White et al., 1997). The data (Fig. 3) suggest that this
change of rate-determining step also occurs for the CaATP
hydrolysis cycle.

S1-actin interactions

If force production from CaATP hydrolysis follows the
same steps as it does for MgATP, actin affinity should
increase by several orders of magnitude when Pi is released.
This is the case (Table 4). In 200 mM ionic strength solu-
tion, the fitted value ofKA for S1 z CaADP z Pi binding to

actin is 2.03 103 M21 and increases to 2.73 107 M21 for
S1 z CaADP. This corresponds to an increase in standard
free energy change for actin binding of25.6 kcal/mol when
phosphate is released, which is larger than the23.2 kcal/
mol change for actin binding to S1z MgADP z Pi and S1z
MgADP (Table 4). There is more than enough binding
energy available from the actinz S1 z CaADP z Pi to S1 z
CaADP transition to support force generation.

The ionic strength dependence of actin binding provides
information about electrical interactions at the binding in-
terface. When equilibrium binding to actin of S1z CaADP
and of the steady-state intermediate S1z CaADP z Pi are
measured in the presence of increasing [KOAc], the appar-
ent affinity of S1z CaADP z Pi is more dependent on ionic
strength than its magnesium counterpart (Fig. 4). S1z
CaADP binding to actin is also more dependent on ionic

FIGURE 3 Actin activation of S1 CaATPase activity. F-actin was added
to S1 at 25°C in the same buffer used for measuring tension by glycerinated
fibers, and the activity was measured (see Materials and Methods). The
data for [actin] up to 40mM were fitted to the Michaelis-Menten equation
to determineKm and Vmax (Table 3). At [actin] .40 mM the activity
decreased, probably due to actin remaining bound to S1z CaATP (see
Discussion).

TABLE 4 Actin affinities and electrostatic charge at S1-actin
binding interface

Complex lnKA (0 M) ln KA (0.2 M) zMzA (esu2)

S1 z MgADP z Pi 11.26 0.2 8.76 0.2 26.46 0.7
S1 z CaADP z Pi 13.06 0.8 7.66 0.7 212.26 2.5
S1 z MgADP 15.46 0.1 14.16 0.2 23.66 0.2
S1 z CaADP 20.86 0.7 17.16 0.5 29.76 1.2

Measurements were made at 25°C using cosedimentation methods (see
Materials and Methods).KA is the association constant at the ionic strength
specified. lnKA (0 M) is the association constant at zero ionic strength,
obtained by extrapolation, andzMzA is the product of the electric charge at
the actin-motor domain interface, which is determined from the ionic
strength dependence of the binding (Pitzer, 1979; Highsmith and Murphy,
1992).

FIGURE 4 Ionic strength dependence of actin binding. Apparent asso-
ciation constants for actin binding to calcium and magnesium complexes
were determined using a sedimentation method. The ionic strength depen-
dence of actin binding to S1z CaADP z Pi (filled circles) was greater that
than to S1z MgADP z Pi (filled squares), indicating there is more electro-
static charge at the actin-S1z CaADP z Pi binding interface (see Table 4).
Similarly, the ionic strength dependence of the actin affinity for S1z

CaADP (open circles) was greater than for S1z MgADP (open squares).
The magnitude of the actin affinity for S1z CaADP was significantly larger
than for S1z MgADP at all ionic strengths.
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strength than is that of S1z MgADP. These data can be used
to estimate the product of the net effective electric charge at
the acto-S1 binding interface,zAzM (Pitzer, 1979; High-
smith and Murphy, 1992). The calcium complexes have
more apparent electrostatic charge at the acto-S1 interface
than their magnesium counterparts (Table 4). In both cases
the data indicate a decrease in apparent charge for the S1z
MeADP z Pi to S1 z MeADP transition (Table 4). The
magnitude of the decrease is about the same (2.5 and 2.8
esu2), despite the greater charge for the calcium complexes,
suggesting that the structural changes at the actin binding
site, which occur when Pi dissociates, are similar.

DISCUSSION

CaATP hydrolysis supports force production (Fig. 1). One
goal is to determine whether the force production by CaATP
is consistent with the lever arm model. According to that
model, properties that are required for a substrate to support
contraction include:

1. The substrate must be hydrolyzed by myosin;
2. Rotation of the lever arm must occur while the motor

domain is dissociated from actin;
3. Actin must bind to the motor domain before the products

dissociate and the lever arm returns to its original orien-
tation;

4. The lever arm must change its orientation while the
motor domain is bound to actin;

5. The actin affinity of the motor domain should increase as
a result of product dissociation.

These properties describe a minimal contractile cycle, based
on a simple kinetic scheme, which has the motor domain
free from actin during part of the cycle (Lymn and Taylor,
1971). The real case is more complex, but the key elements
of the lever arm model are explicit, making the above list
useful for discussing the CaATP results.

The first property, that CaATP is a substrate for myosin
and acto-myosin, is well established by measurements made
as long ago as 40 years (Nihei and Tonomura, 1959). It is
confirmed here for the buffer used in the fiber experiments
(Table 3).

The TEB data provide strong evidence that the lever arm
rotates when S1z CaADPz Vi is formed (Table 1). The ratio
of tADP z Vi/tADP is almost identical for the two cases,
suggesting that S1z CaADP z Pi has the lever arm rotated,
and to a degree similar to that of S1z MgADP z Pi. The
second requirement in the above list is also satisfied.

It is interesting that in the absence of nucleotide, Ca21

has an effect on the hydrodynamic size of S1. Ca21 must be
binding to S1 independently from the nucleotide-chelated
mechanism (Table 1). The divalent cation binding site on
the regulatory light chain is a probable binding location,
although other sites of calcium binding are possible, includ-
ing non-specific binding. Relevant to this question, calcium

binding to single-headed heavy meromyosin decreases its
radius of gyration, probably by binding the regulatory light
chain and changing the conformation where the motor do-
main is attached to the rod portion of myosin (Harris et al.,
1999). The regulatory light chain abuts the myosin rod, and
the calcium-induced decrease in the hydrodynamic size of
S1, detected by TEB, is consistent with a conformational
change in the regulatory light chain region. In any event, the
effects of free and nucleotide-chelated calcium binding on
S1 conformation appear to be independent (Table 1), and
the free calcium binding was not pursued further.

The S1z CaADP z Vi complex is stable, at least in the
presence of a small excess of orthovanadate. The rates of
formation and dissociation (Table 2) indicate that the cal-
cium complex is less stable than the magnesium complex by
two orders of magnitude. The dissociation rates in the
presence of EDTA are similar. The difference in stability is
due to differences in the rates of association, suggesting that
a protein conformational change occurring after CaADP and
Vi have bound is slower for the calcium complex. In the
absence of EDTA the dissociation of Vi from S1z MgADP z
Vi has a half-time of days (Goodno, 1982), and the nucle-
otide is considered to be “trapped.” Whether the nucleotide
is actually trapped in S1z CaADPz Vi was not investigated.

The actin-activation of CaATPase activity (Fig. 3) indi-
cates that actin interacts with the steady-state intermediate.
The inhibition of CaATPase activity at high [actin] strength-
ens the conclusion that the activation at low [actin] is due to
actin binding to S1z CaADPz Pi rather than to S1z CaATP.
This interaction in solution is consistent with myosinz
CaATPz Pi binding to the thin filament to generate force in
fibers, and satisfies requirement four above. The actin-
activated S1 CaATPase activity is similar to that of MgAT-
Pase, but the activation is much smaller because the higher
basal CaATPase activity (Table 3). The higher basal CaAT-
Pase activity indicates the rate of Pi dissociation in the
absence of actin is increased. The reduced stability of S1z
CaADPz Vi compared to S1z MgADP z Vi is consistent with
this idea, although the kinetic data above suggest the dif-
ference in stability is due to a step on the pathway to
forming S1z CaADP z Vi, rather than its decomposition.

Requirement four in the list above is not demonstrated
here for CaATP hydrolysis. There are data indicating lever
arm rotation occurs while a motor domain is bound to actin
(Whittaker et al., 1995; Uyeda et al., 1996; Gollub et al.,
1996; Baker et al., 1998; Hopkins et al., 1998), but direct
detection of lever arm motion during force production for
any substrate remains elusive. The detailed nature of the
reverse rotation is not known. Indeed, the term “reverse” is
being used for convenience; the actin-free and actin-bound
trajectories are probably different. Based on high-resolution
structures of S1 and S1z MgADP z AlF4, the motion in the
absence of actin may involve rotations about two fulcrum
sites (Rayment et al., 1993; Dominguez et al., 1998). In
muscle fibers that have fluorescent probes attached to the
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lever arm, the motion appears to include rotation about the
long axis of the lever arm and axial rotation about a fulcrum
(Hopkins et al., 1998). The magnitude of force produced by
CaATP (Fig. 1), 20% of that obtained with MgATP, is at
least consistent with the two substrates supporting similar
mechanisms for the actin-bound cross-bridge motion.

The fifth requirement is met. The actin interactions of S1z
CaADP and S1z CaADP z Pi are similar to those of their
magnesium counterparts. The increase in binding energy for
the transition from Az S1 z CaADPz Pi 3 A z S1 z CaADP1
Pi is somewhat larger than it is for the comparable transition
when magnesium is present (Table 4), due the greater af-
finity of S1 z CaADP for actin. The change in apparent
electric charge at the interface is comparable, whether the
complexes contain calcium or magnesium.

Taken together, the data are fully consistent with the lever
arm model of force production being applicable to force
generation by CaATP hydrolysis. This answers the primary
question being investigated here. Given the similarity of the
calcium and magnesium data regarding lever arm rotation
and actin interactions in solution, one can ask why the force
produced by glycerinated muscle fibers in the presence of
calcium is smaller. There are several possible explanations
that are consistent with the above data, although this sec-
ondary question cannot be answered unequivocally at this
time.

One possibility is that the reduced force is due to the
higher affinity of a cross-bridgez CaADP complex for actin,
which keeps the cross-bridge bound to actin longer, and
creates an opposing force that is greater than the MgADP
complex does during the fiber hydrolytic cycle. An in-
creased opposing force, if real, would be expected to have a
greater role when shortening is occurring than for isometric
force, as measured in the present study. A second possibility
is that the reduced force observed with CaATP may be due
to the high basal CaATPase activity. The lifetime of the
steady-state intermediate S1z MgADP z Pi is 36-fold greater
than that of S1z CaADPz Pi, as estimated by the reciprocals
of the steady-state activities in Table 3. It may be that in a
fiber, myosin z CaADP z Pi is more likely than myosinz
MgADP z Pi to dissociate Pi before it binds to actin. If
hydrolysis and force production were uncoupled, more heat
would be produced by fibers performing work by hydrolyz-
ing CaATP. However, a third possibility is that force is
reduced because the rate of hydrolysis is slower for CaATP
that it is for MgATP, when a cross-bridge is bound to actin.
The rate for MgATP drops by;50% from theVmax value
when the [actin] is high enough to saturate S1z MgATP
(White et al., 1998). We could not obtain a value for S1z
CaATPase activity at saturating [actin] (Fig. 4), but for
isometric force conditions the fiber [actin] may reduce
CaATPase activity to levels lower than MgATPase activity.
Finally, it is possible that lever arm motion occurs when the
motor domain is bound to actin, but it is “less forceful”
when Ca21 is bound. Ca21 may distort the structure in the

fulcrum region (see Dominguez et al., 1998), changing the
trajectory taken and/or force produced. As discussed above,
the details of the motion of a force-producing lever arm are
not known. Analogous to the G-protein family members,
myosin has a switch II located near the ATP site (Smith and
Rayment, 1996b) which may be part of an allosteric path-
way from the ATP site to the fulcrum region (Kirshenbaum
et al., 1999). The TEB data (Table 1) suggest that there are
only small, if any, differences in the degree of rotation of
the lever arm when calcium replaces magnesium for free
S1 z MgADP z Vi. However, near-ultraviolet circular dichro-
ism measurements indicate that there are structural differ-
ences between S1-ADP-phosphate analog complexes made
with calcium and magnesium (Peyser et al., 1997). Even
small changes in the structure of the ATP site-switch II-
fulcrum region could change the amount of force produced
by the reverse rotation of the lever arm under a load.
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