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ABSTRACT To obtain turgor pressure, intracellular osmolalities, and cytoplasmic water activity of Escherichia coli as a
function of osmolality of growth, we have quantified and analyzed amounts of cell, cytoplasmic, and periplasmic water as
functions of osmolality of growth and osmolality of plasmolysis of nongrowing cells with NaCl. The effects are large; NaCl
(plasmolysis) titrations of cells grown in minimal medium at 0.03 Osm reduce cytoplasmic and cell water to ;20% and ;50%
of their original values, and increase periplasmic water by ;300%. Independent analysis of amounts of cytoplasmic and cell
water demonstrate that turgor pressure decreases with increasing osmolality of growth, from ;3.1 atm at 0.03 Osm to ;1.5
at 0.1 Osm and to less than 0.5 atm above 0.5 Osm. Analysis of periplasmic membrane-derived oligosaccharide (MDO)
concentrations as a function of osmolality, calculated from literature analytical data and measured periplasmic volumes,
provides independent evidence that turgor pressure decreases with increasing osmolality, and verifies that cytoplasmic and
periplasmic osmolalities are equal. We propose that MDO play a key role in periplasmic volume regulation at low-to-moderate
osmolality. At high growth osmolalities, where only a small amount of cytoplasmic water is observed, the small turgor pressure
of E. coli demonstrates that cytoplasmic water activity is only slightly less than extracellular water activity. From these
findings, we deduce that the activity of cytoplasmic water exceeds its mole fraction at high osmolality, and, therefore,
conclude that the activity coefficient of cytoplasmic water increases with increasing growth osmolality and exceeds unity at
high osmolality, presumably as a consequence of macromolecular crowding. These novel findings are significant for
thermodynamic analyses of effects of changes in growth osmolality on biopolymer processes in general and osmoregulatory
processes in particular in the E. coli cytoplasm.

INTRODUCTION

Escherichia coligrows over more than a hundred-fold range
of external osmolality (Osm), extending from as low as
0.015 Osm (Baldwin et al., 1995) up to;1.9 Osm (McLag-
gan et al., 1990; Cayley et al., 1991) in minimal medium
and up to;3.0 Osm in rich medium (Record et al., 1998a).
To grow over this range of external water activity (1.0.
aH2O

* 0.95, whereaH2O
5 e2Osm/55.5) requires a high

degree of thermodynamic sophistication. In general, grow-
ing cells may adapt to changes in osmolality of the growth
medium i) by making compensating changes in the intra-
cellular osmolality by changing the amounts of water and/or
solutes in the cytoplasm and periplasm, so that the osmola-
lity differenceDOsm and turgor pressureDP 5 RTDOsm
across the cell wall are maintained, and/or ii) by allowing
DOsm to change so that turgor pressure changes with ex-

ternal osmolality (Record et al., 1998a).E. coli makes large
and systematic changes in the amounts of cell and cytoplas-
mic water and in the amounts of periplasmic and cytoplas-
mic solutes in response to changes in osmolality of growth
(reviewed by Record et al., 1998a; Csonka and Epstein,
1996). How do these changes affect the activity of cytoplas-
mic water? Of particular relevance for the present study are
observations that the amount of periplasmic membrane-
derived oligosaccharide (MDO, heterogeneous anionic glu-
cose oligomers that are too large to pass through pores in the
outer membrane; Kennedy, 1996) increases as the osmola-
lity of growth decreases for all wildtypeE. coli K-12 strains
examined (Kennedy, 1982; Kennedy and Rumley, 1988;
Sen et al., 1988; Lacroix et al., 1989). Do these changes in
amount of periplasmic MDO demonstrate that turgor pres-
sure changes with osmolality of growth? Knowledge of
turgor pressure as a function of osmolality of growth is the
only way to determine the physiological range of cytoplas-
mic water activity, which, in turn, is needed for analyses of
the thermodynamics of cytoplasmic biopolymer processes
as a function of growth osmolality.

The activity of a small subset of genes and gene products
varies with the osmolality of the growth medium, although
the nature of the signal(s) controlling these osmoregulated
changes is not well understood (Wood, 1999). Changes in
turgor pressure have been considered as a possible osmo-
regulatory signal (Wood, 1999; Csonka and Epstein, 1996).
Few estimates of turgor pressure ofE. coli are available
under any conditions, however, and the questions of
whether turgor pressure exists only across the cell wall/
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outer membrane or across the inner (cytoplasmic) mem-
brane and whether turgor pressure changes with osmolality
of growth have been controversial and unresolved. Studies
of osmotic and Donnan properties of nongrowing suspen-
sions of the closely-related bacteriumSalmonella typhi-
murium led Stock et al. (1977) to conclude that the cyto-
plasm and periplasm are isoosmotic, and that turgor
pressure is maintained across the cell wall. However, stud-
ies of the osmoregulation of the expression of thekdpABC
operon inE. coli have been interpreted as indicating that
changes in turgor pressure are sensed by the cytoplasmic
membrane-bound kdpD sensor kinase (Laimins et al.,
1981). Phase and electron microscopy studies of growing
cells have led to the proposal that turgor pressure is main-
tained across the cytoplasmic membrane (Koch, 1995, 1998).

To address these issues, we have indirectly quantified the
variation of turgor pressure with external osmolality by
measuring the effects of osmolality of growth and of plas-
molysis with NaCl on the volumes (i.e., amounts) of cell,
periplasmic, and cytoplasmic water, and by analyzing the
dependence on growth osmolality of the concentration of
periplasmic MDO, calculated from published amounts of
MDO and from our measurements of periplasmic volume.
We interpret the observed changes in amounts or volumes
of water and in concentration of periplasmic MDO in terms
of simple physical models. We conclude that the periplasm
and cytoplasm are isoosmotic and thatE. coli systematically
varies turgor pressure with external osmolality.

Background on passive and active responses of
E. coli to changes in external osmolality

The cytoplasm ofE. coli exhibits both passive and active
responses to changes in external osmolality with NaCl or
other cytoplasmic membrane-impermeable solutes (Record
et al., 1998a). As an example of a passive response, consider
a so-called plasmolysis titration (Cayley et al., 1991, 1992)
in which a fresh, nongrowing cell suspension harvested
from exponential growth in minimal medium at low osmo-
lality (e.g., 0.1 Osm) is titrated with NaCl. Na1 and Cl2

equilibrate across the outer cell membrane, subject to the
Donnan distribution for ionic species, which results from
the presence of outer-membrane-impermeable anions in the
periplasm (Stock et al., 1977; Sen et al., 1988; and see
below). Because the cytoplasmic membrane is impermeable
to NaCl and incapable of supporting an osmotic pressure
difference, the cytoplasm loses water to increase its osmo-
lality to that of the periplasm; this passive response reduces
the amount of cytoplasmic water at 1.0 Osm to;30% of its
original value without changing the amounts of any cyto-
plasmic solutes (Cayley et al., 1991; Record et al., 1998a).
(Plasmolysis beyond 1.0 Osm results eventually in removal
of all unbound [osmotically active] water from the cyto-
plasm.) To recover from the plasmolyzed state at 1.0 Osm
and resume growth requires an active osmoregulated re-

sponse, initiated by increased uptake of extracellular K1,
with the end result (in minimal growth medium without
added osmoprotectants) that cytoplasmic amounts of K1,
glutamate2 (and other organic anions), trehalose, and water
increase, and the amount of cytoplasmic putrescine (21)
decreases (cf., Csonka and Epstein, 1996; Record et al.,
1998a for reviews). We propose that the fundamental reason
for the increases in amounts of cytoplasmic K1, gluta-
mate2, and trehalose is to allow the cell to increase the
amount of cytoplasmic water (by almost twofold over that
characteristic of the nongrowing plasmolyzed state at 1.0
Osm) and thereby achieve the highest growth rate possible
in a minimal medium without osmoprotectants at this os-
molality (Cayley et al., 1991, 1992; Record et al., 1998a).

In the present study, we use suspensions ofE. coli lacking
external K1 to prevent cells from adapting to osmotic stress,
and analyze measurements of the passive changes in cell
and compartment volumes in plasmolysis titrations of cells
with NaCl to quantify their osmotic properties. This novel
analysis provides the basis for our use of cell and cytoplas-
mic volume measurements to determine the osmotic prop-
erties and intracellular water activity ofE. coli as a function
of osmolality of growth.

The balloon model for turgor pressure of E. coli:
why measurements of cell volume provide
information about turgor

The bacterial cell wall has been considered balloon-like
(Doyle and Marquis, 1994) because it can stretch under
pressure. Outwardly directed turgor pressure (the osmotic
pressure difference between the cell interior and the external
medium) is the analog of the difference in air pressure,
which inflates a balloon. Turgor pressure stretches the pep-
tidoglycan of theE. coli cell wall (Woldringh, 1994 and
references therein) elastically (Koch and Woeste, 1992)
relative to the unstressed state existing in the absence of an
osmotic pressure difference.E. coli has two compartments
(periplasm and cytoplasm) with different permeabilities to
solutes, so osmotic responses of both compartments must be
considered to interpret effects of osmotic stress on cell
volume. In this work, we provide additional evidence that
the periplasm and cytoplasm are isoosmotic, in agreement
with the conclusion of Stock et al. (1977) and Sen et al.
(1988), which simplifies the physical situation. Thus, the
balloon analogy is instructive, and serves as the qualitative
basis for our model that changes in cell volume reflect
changes in turgor pressure.

MATERIALS AND METHODS

Bacterial strain, growth media,
buffers, and chemicals

All experiments were performed withE. coli K-12 strain MG1655. Cells
were grown aerobically at 37°C in a very low osmolality MOPS (3-(N-
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morpholino)-propanesulfonate)-buffered glucose minimal medium
(VLOM; 0.03 Osm; Capp et al., 1996), in the MOPS-buffered glucose
minimal medium (MBM; 0.1 Osm; Cayley et al., 1989), or in MBM with
NaCl used to adjust osmolality of the growth media. Wash buffer is growth
medium in which all K1 (present as KH2PO4) and glucose were replaced
by an isoosmotic amount of NaCl. Plasmolysis buffer is wash buffer with
additional NaCl to increase the osmolality.

3H2O (1 mCi/g) and [3H] polyethylene glycol (1.51 mCi/g) were ob-
tained from DuPont (Boston, MA). [14C] sucrose (621 mCi/mmol), [14C]
inulin (9.4 mCi/mmol), [14C] urea (54.0 mCi/mmol), and [3H] sucrose (12.0
Ci/mmol) were obtained from Amersham (Arlington Heights, IL). All
radiochemicals except3H2O and [14C] urea were purified of radiolabeled
contaminants that interfere with volume measurements by preincubation
with cell slurries as previously described (Cayley et al., 1991, 1992).
NH4OH (5.08 N in water), 1-bromododecane, and silicone oil were ob-
tained from Aldrich (Milwaukee, WI).

Measurement of amounts of cellular and
cytoplasmic water in nongrowing
cell suspensions

Volumes of cell water (V# cell
wa ) and cytoplasmic water (V# cyto

wa ) in units of mL
per mg cell dry weight (mL/mg DW) of fresh nongrowing cell suspensions
were obtained from comparisons of the volume of cell pellets accessible to
3H2O to that of14C inulin (a polymer that is outer-membrane impermeable)
or 14C sucrose (which freely diffuses into the periplasm but is not trans-
ported into the cytoplasm) using the method of Stock et al. (1977) as
described previously (Cayley et al., 1991, 1992). (These volumes are
equivalent to amounts of water in mg water/mg DW assuming a density of
intracellular water of 1.0 g/mL). Briefly, cells were harvested from expo-
nential growth (at;3 3 108 cells/mL,,0.2 mg DW/mL) by centrifugation
at 7,0003 g for 8 min. Cell pellets were suspended in isoosmotic wash
buffer, recentrifuged, resuspended to a final cell density of;5 mg DW/mL
with wash buffer and swirled periodically for the;30 min typically needed
to complete a series of measurements. ThreemCi/mL of 3H2O and 0.2
mCi/mL of either 14C sucrose or14C inulin were then added per mL of
suspension, after which the samples were immediately centrifuged at
12,0003 g for 30 s (a sufficient time to pellet cells completely). The cpm
in samples of the supernatant and cell pellets were then assayed by dual
isotope scintillation counting and used to determineV# cell

wa and V# cyto
wa (in

mL/mg DW) as described previously (Cayley et al., 1991). Measurements
of V# cyto

wa immediately after harvest and 40 min after harvest were the same,
demonstrating that the amount of cytoplasmic water did not vary during the
time needed to perform a series of measurements. In addition,V# cyto

wa was
independent of time of incubation of14C sucrose in suspensions before
volume assay for at least 10 min, the longest time tested. Control experi-
ments showed no significant differences in volumes determined with3H
PEG instead of14C inulin or with 14C taurine instead of14C sucrose or3H
sucrose, indicating the absence of any specific interactions of these probes
with cell components. Bubbling suspensions with O2 or incubation with 5
mM fructose, 11 mM glucose or 1.3 mM KH2PO4 for five min prior to
assay did not affectV# cyto

wa , showing that any deprivation of oxygen or
nutrients that occurred during preparation of suspensions did not lower
V# cyto

wa . All steps after cell growth were performed at room temperature.
In NaCl plasmolysis titrations to determine the passive responses of

V# cell
wa and V# cyto

wa to increases in external osmolality, suspensions of cells
grown at 0.03 Osm (in VLOM) or at 0.83 Osm (in MBM10.4 NaCl) were
assayed as described above except that, immediately before addition of
radiochemicals, samples were diluted fivefold with plasmolysis buffer to
achieve the desired range of final NaCl concentrations and a final cell
density of;5 mg DW/mL.

Most previously published values ofV# cyto
wa (Cayley et al., 1991, 1992)

referred to in this paper were determined using14C taurine in place of14C
sucrose. McLaggan and Epstein (1991) found that taurine can be accumu-

lated with a KM of ;30 mM at high osmolality by strains of growingE.
coli defective in the osmotically regulated accumulation of cytoplasmic
trehalose. However, in addition to controls that previously demonstrated
that neither purified14C taurine (typically used at a concentration of 0.28
mM) nor 14C sucrose is accumulated by nongrowing suspensions of our
wild-type strain under the conditions of our volume assays (Cayley et al.,
1991, 1992), we observe that 1)V# cyto

wa of suspensions measured with
purified 14C sucrose or14C taurine for cells grown in MBM10.5 M NaCl
are the same within error, 2) dilution of14C taurine to 1 mM with unlabeled
taurine does not alter measured values ofV# cyto

wa of cells grown in MBM10.2
M NaCl, and 3) variation of the concentration of14C taurine from 0.1 mM
to 1 mM does not significantly affect measured values ofV# cyto

wa of cells
plasmolyzed with 1 M NaCl. Use of taurine therefore introduced no
systematic errors in determinations ofV# cyto

wa .
We also tested whether the centrifugal harvest method used to prepare

suspensions caused physiological changes relative to growing cells. Upon
completion of a volume assay with suspensions of cells grown at 0.1 Osm,
samples examined in a phase microscope exhibited motility, indicating that
these suspensions retained and were capable of utilizing endogenous en-
ergy reserves. Cell viability (the number of colony forming units deter-
mined by plating on LB agar) andV# cyto

wa also remained constant over the
course of an assay, as determined by comparison of these values before and
after a series of volume measurements. Moreover, cell suspensions had not
entered stationary phase by completion of a typical volume assay, because
suspended cells resumed a normal growth rate immediately, with no
observable lag, upon dilution into fresh growth medium, and the thermo-
tolerance of centrifugally-harvested suspensions grown at 0.1 Osm (deter-
mined by the reduction in viability with time after heating at 48°C; see
Hengge-Aronis et al., 1991) was identical to that of growing cells and not
enhanced as it was in cells grown into stationary phase at 0.1 Osm (data not
shown).

Measurements of amounts of cellular and
cytoplasmic water and of protein in growing cells

Volumes of water in growing cells were determined by measuring the
distribution of radiolabeled probes in pellets of cultures harvested by brief
centrifugation through oil. Briefly, 2mCi/mL of 14C inulin, 14C sucrose, or
3H2O was added to midlog phase cultures growing in MBM (0.1 Osm, an
osmolality at which the density of cells is;1.08–1.09 g/mL; Baldwin et
al., 1995) immediately before centrifuging 1.4 mL aliquots in microfuge
tubes containing 200mL of 1-bromododecane (BDD;r 5 1.038 g/mL) at
12,0003 g for at least 90 s. (Centrifugation for less than;90 s incom-
pletely pelleted cells, whereas results were independent of centrifugation
times longer than 90 s). After removing 100mL of supernatant from each
tube, the remaining supernatant and BDD was carefully removed by
aspiration, the pellets suspended in 100mL of water, and the cpm in the
supernatant and pellet samples determined by scintillation counting. (The
cpm in the suspended pellets ranged from;1,000 cpm for samples
containing14C inulin up to;2,000 cpm for samples containing3H2O, and
no cpm was detected in the discarded BDD). The amount of protein in each
sample was determined by comparing the A550 of the culture at the time of
assay to a standard curve of mg protein/mL of culture versus A550 deter-
mined separately on multiple cultures grown in MBM, using the assay of
Lowry et al. (1951) with BSA as standard as previously described (Cayley
et al., 1991). Values were normalized to the dry weight of samples using
measurements of the protein/dry weight ratio determined separately. Vol-
umes of cytoplasmic and cellular water (inmL/mg dry weight) were then
calculated as for suspensions by subtracting the sucrose- or inulin-acces-
sible volumes, respectively, from the water-accessible volume. In experi-
ments to control for the effects of centrifugation of suspensions through
BDD, the procedure used for assaying volumes of suspensions was used
except that, after radiochemical addition, samples were centrifuged in tubes
containing 200mL of BDD for 120 s.
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Preliminary experiments showed that the error in the measurements of
volumes of growing cells assayed as above was much lower in cells
centrifuged through BDD than in cells centrifuged in the absence of BDD.
Preliminary experiments also showed that the firmness of pellets and
reproducibility of results obtained with cells spun through BDD (r 5 1.038
g/mL) was greater than for silicon oil (r 5 1.050 g/mL). Evaporation of
3H2O was an insignificant source of error because the membrane-perme-
able solute14C urea (which readily equilibrates into cytoplasmic water;
Mitchell and Moyle, 1956) gave results that were identical to those ob-
tained with3H2O as long as sufficient time (;90 s) was allowed for urea
to diffuse into the cytoplasm of cells before centrifugation of samples
through BDD.

Calculations of periplasmic MDO concentration
and of the contribution of MDO to
turgor pressure

To calculate concentrations of periplasmic MDO at different osmolalities
of growth, molar amounts of MDO inE. coli K-12 from the data of
Kennedy (1982) and Lacroix et al. (1989) were divided by the correspond-
ing amounts of free water in the periplasm obtained from our volume
measurements. Kennedy (1982) and Lacroix et al. (1989) measured the
relative amounts of MDO (in cpm/mg DW, using3H-glycerol to label
MDO) as a function of growth osmolality varied with NaCl. Values of the
radioactivity of the extracted MDO taken from Fig. 1 of Kennedy (1982)
were corrected for non-MDO material by subtracting the reported osmot-
ically-invariant amount of non-MDO radioactivity in MDO extracts. La-
croix et al. (1989) reported relative amounts of MDO determined after
purification from non-MDO-labeled material. The relative amounts of
MDO from Kennedy (1982) were normalized to nmol MDO/mg DW using
the value of 136 nmol MDO glucose/mg DW determined by Kennedy and
coworkers in cells grown at 0.07 Osm and their assumption of 9 glucose/
MDO (Rumley et al., 1992). The relative amounts of MDO from LaCroix
et al. (1989) were converted to nmol MDO/mg DW using their value of
125 6 20 nmol MDO glucose/mg DW determined in cells grown at 0.07
Osm and by assuming 9 glucose/MDO. (The principal MDO species have
8–9 glucose monomers; Kennedy, 1996).

To calculate periplasmic concentrations of MDO (CMDO, expressed as
moles of MDO per L of free periplasmic water), the amount of periplasmic
waterV# peri

wa (in mL/mg cell DW) as a function of osmolality were obtained
by interpolation of the linear fit (cf., Fig. 3B below) of measurements of
V# peri

wa determined in this study and in Cayley et al. (1991). Values ofV# peri
wa

were converted to volumes of free periplasmic water (V# peri,f
wa ) by subtracting

an osmolality-independent estimate of the volume of bound water of
hydration of periplasmic biopolymers (V# peri,b

wa 5 0.09 mL/mg cell DW)
obtained by assuming that periplasmic biopolymers are hydrated to the
same extent as cytoplasmic biopolymers (0.5 g H2O/g biopolymer; Cayley
et al., 1991, 1992) and that the protein/DW ratio of the periplasm and
cytoplasm are the same. Periplasmic protein was taken as 20% of cell
protein (Ames et al., 1984; Cronan et al., 1987).

The contribution of periplasmic MDO (concentration CMDO and appar-
ent valenceZMDO

app ) to turgor pressure across the cell wall as a function of
salt concentration was calculated from a Donnan equilibrium analysis, in
which the osmotic pressure difference across the cell wall is ascribed to
anionic MDO in the periplasm and to the unequal distribution of salt ions
between the periplasm and the external solution required for periplasmic
electroneutrality. For this calculation, the ionic composition of the minimal
growth medium with added NaCl was approximated as that of a univalent
salt with an anion concentrationCX equal to the sum of the anion concen-
trations in the growth medium (primarily Cl2 and the MOPS2 anion).
Then the MDO contribution to turgor pressure (DPMDO) is given by

DPMDO > RT@CMDO 1 ~ZMDO
app 2CMDO

2 1 4CX
2 !0.5 2 2CX#, (1)

whereR 5 0.0821 liter atm mol21 deg21 andT is Kelvin temperature. In
Eq. 1, nonideality effects are neglected. Subject to this approximation, Eq.

1 is valid over the entire range of concentration ratiosCMDO/CX, and gives
the correct limiting resultsDPMDO 5 RTCMDO for CX .. CMDO and
DPMDO 5 RT(uZMDO

app u 1 1)CMDO for CMDO .. CX.

Other methods

The osmolalities of the growth media, wash buffer, and low-osmolality
plasmolysis solutions (#0.1 Osm) were measured using a Wescor model
5520 vapor pressure osmometer. Osmolalities of other plasmolysis buffers
were calculated assuming additivity of osmotic contributions from the
wash buffer and added NaCl. The latter contribution was calculated using
osmotic coefficients of NaCl from Robinson and Stokes (1959). This
procedure was verified to be accurate to within 1% for representative
samples measured by osmometry. All fittings were performed using the
program NONLIN (Johnson and Frasier, 1985; Straume et al., 1991), a
nonlinear functional-form, least-squares fitting program. All errors re-
ported for fittings were obtained from NONLIN using a 67% confidence
probability.

RESULTS

Variation of the volume of cell water of E. coli in
NaCl titrations of cells grown at very low (0.03)
and moderately high (0.83) osmolality

Figure 1 plots the volume of cell water (V# cell
wa ) per unit DW

of E. coli grown at 0.03 Osm (in VLOM) and during the
subsequent course of plasmolysis titrations with NaCl. At
the growth osmolality of 0.03 Osm,V# cell

wa 5 2.96 6 0.10
mL/mg DW. Numerically, values ofV# cell

wa correspond to
amounts of cell water in mg water/mg DW, assuming a
density of 1 mg/mL. Figure 1 shows that addition of NaCl
reducesV# cell

wa of these cells monotonically to a high osmo-
lality minimum value (designatedV# cell,min

wa ) of 1.9 6 0.05
mL/mg DW, attained within error at plasmolyzing osmola-

FIGURE 1 Reduction in water-accessible cellular volumeV# cell
wa of sus-

pensions of cells grown at 0.03 Osm (in VLOM;E) and at 0.83 Osm (in
MBM10.4 M NaCl;F) with increasing plasmolyzing osmolality adjusted
with NaCl. Each point shows the average (61 SD) of 2–7 independent
determinations, each performed in triplicate on separate cultures. The
curves are empirical hyperbolic best fits to the data, and were used to
estimateV# cell,min

wa .
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lities in excess of;1 Osm. Figure 1 also plots the behavior
of V# cell

wa in plasmolysis titrations of cells grown at 0.83 Osm
(in MBM10.4 M NaCl), at which osmolality the amount of
periplasmic MDO is very low (Kennedy, 1982; Lacroix et
al., 1989). The initial value ofV# cell

wa is much smaller for cells
grown at 0.83 Osm than at 0.03 Osm (cf., Fig. 1 and Table
1), in agreement with previous observations (summarized in
Table 1) thatV# cell

wa decreases with increasing osmolality of
growth (Richey et al., 1987; Larsen et al., 1987; Cayley et
al., 1991). Notably (cf., Fig. 1), after plasmolysis to any
osmolality greater than 0.83 Osm, the amount of water
remaining in cells grown at 0.83 Osm is always significantly
less than the amount of water in cells grown at 0.03 Osm.
Figure 1 shows that, for cells grown at 0.83 Osm and titrated
with NaCl, increasing external osmolality reduces the vol-
ume of cell water to a high osmolality minimum value
V# cell,min

wa of 1.56 6 0.05 mL/mg DW. This plateau value is
significantly less than the value ofV# cell,min

wa obtained from
plasmolysis titrations of cells grown at 0.03 Osm (1.906
0.05 mL/mg DW).

To verify that the variation ofV# cell,min
wa with osmolality of

growth is only the result of changes in the volume of water
per cell, and not in the amount of dry weight per cell, we
examined whether the dry weight per cell varies with os-
molality of growth. Table 1 lists the growth rate and mass of
protein per viable cell for cultures grown from 0.1 to 1.0
Osm. Whereas the growth rate exhibits a maximum near
0.28 Osm, the amount of protein per viable cell shows no
systematic variation with osmolality and has an average
value of 0.416 0.03 pg per cell, which is within the range
of published values forE. coli B/r (Bremer and Dennis,
1996). Because the protein/DW ratio of cells grown over
this range of conditions is 0.686 0.07, independent of
osmolality (Cayley et al., 1991), the dry weight per cell is

therefore also constant over the range of osmolalities and
growth rates examined.

Table 1 also lists volumes of water per viable cell, cal-
culated from determinations of the amount of protein per
viable cell, the protein/DW ratio, and the volume of cell
water per mg DW. The calculated amount of H2O per cell
decreases from;1.8 fL for cells grown at 0.03 Osm to;1.1
fL for cells grown at 1.0 Osm (Table 1). For cells grown at
0.1 Osm (in MBM), the volume of water per cell is;1.5 fL.
Because the water-inaccessible volume of these cells is
0.636 0.09mL/mg DW (or ;0.4 fL per cell), independent
of osmolality (Cayley et al., 1991), therefore, the total
volume of the average cell grown at 0.1 Osm is;1.9 fL per
cell. The corresponding dimensions of a cell with this vol-
ume, assuming a cylindrical shape with hemispherical ends
and an overall 2:1 length:width ratio, is approximately 2.2
mm 3 1.1 mm, consistent with accepted dimensions ofE.
coli (Neidhardt et al., 1990).

Changes in water-accessible cytoplasmic and
periplasmic volume during NaCl plasmolysis
titrations of E. coli grown at very low osmolality
(0.03 Osm)

Figure 2 plots the volumes of cytoplasmic and periplasmic
water of E. coli grown at 0.03 Osm and subsequently
plasmolyzed with NaCl. The initial volumes of water in
these compartments areV# cyto

wa 5 2.53 6 0.08 mL/mg DW
andV# peri

wa [ V# cell
wa 2 V# cyto

wa 5 0.436 0.13mL/mg DW. As the
concentration of NaCl is increased,V# cyto

wa decreases mono-
tonically to an apparent plateau volume of;0.4 mL/mg
DW, approached at plasmolyzing osmolalities in excess of
3 Osm. (For reference, the curve for the reduction inV# cell

wa

TABLE 1 Dependence on growth osmolality of volume accessible to water, growth rate, and amounts of protein and water per
E. coli cell

Growth Osmolality
(Osm)

Growth rate*
(generations/hr)

V# cell
wa *

(ml/mg DW)
Protein/cell†

(pg/cell)
H2O/cell‡

(fL/cell)

0.03 0.846 0.07 2.966 0.10 ND 1.776 0.14
0.1 0.916 0.04 2.526 0.06 0.396 0.02 1.526 0.12
0.28 1.006 0.10 2.456 0.11 0.436 0.04 1.486 0.13
0.56 0.796 0.06 ND 0.416 0.01 ND
0.65 0.736 0.03 2.066 0.05 0.416 0.01 1.246 0.10
0.83 0.636 0.11 1.996 0.05 0.406 0.04 1.206 0.09
1.0 0.496 0.04 1.876 0.12 0.426 0.05 1.136 0.11

1.0 1 1 mM proline§ 0.566 0.05 ND 0.416 0.03 ND

*Growth rates and amounts of cell waterV# cell
wa for cells grown at 0.03 Osm, 0.1 Osm and 0.83 Osm were determined in this study; the other values of growth

rate andV# cell
wa are from Cayley et al. (1991).

†Amounts of protein per viable cell in picograms are the average (61 SD) of approximately five measurements, each performed in triplicate. Viable cell
counts were determined by dilution plating samples on LB agar. The average of all measurements at all osmolalities is 0.416 0.03 pg/cell.
‡The volume of water per cell in femtoliters was calculated using the average amount of protein per cell (0.416 0.03 pg), the ratio of protein to dry weight
of cells grown under these conditions (0.68) and tabulated values ofV# cell

wa .
§Proline is an osmoprotectant, accumulated from the medium, that increases the growth rate of osmotically stressed cells (Cayley et al., 1992; Csonkaand
Epstein, 1996).
ND, not determined.
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with plasmolyzing osmolality from Fig. 1 is also shown in
Fig. 2.) Plasmolysis of cells grown at 0.03 Osm affectsV# cyto

wa

much more thanV# cell
wa , reducingV# cyto

wa to less than 20% of its
initial value, whereasV# cell

wa is reduced to 60% of its original
value. ConsequentlyV# peri

wa (the difference betweenV# cell
wa and

V# cyto
wa ) increases during these plasmolysis titrations by more

than 300%, to a plateau value of approximately 1.456 0.07
mL/mg DW. This increase inV# peri

wa indicates that outer-
membrane impermeable periplasmic solutes (including
MDO) are diluted to about 30% of their initial concentration
upon plasmolysis with high concentrations of NaCl. The
observed variations in cell and compartment volumes in
NaCl plasmolysis titrations are larger but otherwise quite
analogous to those reported by Stock et al. (1977) for
sucrose plasmolysis titrations of cells grown at 0.14 Osm.

Volume measurements on fresh cell suspensions
are applicable to growing cells

K1-deprived suspensions of cells were used in the plasmol-
ysis titrations to study the passive response of cells to
osmotic stress, because increased uptake of K1 from the
medium is the initial response required for adaptation ofE.
coli to hypertonic shock (Csonka and Epstein, 1996). The
suspensions also lacked glucose to prevent new synthesis of
organic osmolytes, further ensuring that plasmolyzed cells
are unable to respond to increases in external osmolality by
active osmoregulated mechanisms, and, instead, exhibit
only the passive response of loss of cell water. The absence
of an active response in plasmolyzed cell suspensions was

verified by our observation (data not shown) that the
amount of cytoplasmic water in cells after plasmolysis with
1 M NaCl remained unchanged for at least 15 min, the
longest time tested.

To test directly whether the amounts of cell and cytoplas-
mic water in cell suspensions and in growing cells are the
same, we used a radiochemical method to measure volumes
of growing cells harvested by brief centrifugation through
BDD oil as described in Methods. Table 2 shows that the
water-accessible cell and cytoplasmic volumes of mid-log
phase cells growing at 0.1 Osm are the same, within error,
as in fresh suspensions, indicating that fresh suspensions
have the same osmotic properties as growing cells (and see
Discussion). Table 2 also shows that centrifugation of cells
through BDD per se does not perturb the amount of intra-
cellular water, because cell and compartment volumes of
suspensions assayed by centrifugation through BDD are the
same as suspensions assayed without BDD. A bathing at-
mosphere of medium must therefore accompany cells as
they sediment through BDD, a conclusion verified by our
observation that the extracellular (i.e., inulin-accessible)
volume in pellets of samples spun through BDD contained
;1.8mL extracellular water/mg total cell protein. Although
significantly less than the;2.5 mL extracellular water/mg
protein of samples of pellets spun in the absence of BDD,
the 1.8mL/mg protein greatly exceeds that estimated for a
monolayer coverage (;0.02 mL/mg protein) of a smooth
surface with the dimensions of theE. coli cell.

The equivalence of the amounts of cell and cytoplasmic
water in fresh suspensions and growing cells validates our
use of suspensions in this study. Measurements on suspen-
sions are preferable to measurements of growing cells be-
cause they are of higher accuracy (see Table 2), in large part
because the cell density of log phase cultures is;25-fold
lower than that of suspensions. Moreover, to measure only
the passive response of cells to osmotic stress, plasmolysis

FIGURE 2 Reduction in water-accessible cytoplasmic volume (E) and
increase of water-accessible periplasmic volume (‚) of cells grown at 0.03
Osm (in VLOM) with increasing plasmolyzing osmolality adjusted with
NaCl. Each point shows the average (61 SD) of 6–12 measurements
performed on 2–4 cultures. The curve through theV# cyto

wa data is an empirical
best-fit hyperbolic function. The corresponding fit to theV# cell

wa data for cells
grown at 0.03 Osm from Fig. 1 is shown for comparison. Periplasmic data
points were obtained by subtraction of cytoplasmic volumes from cell
volumes. The periplasmic volume curve was determined by subtraction of
the fitted curves for cell and cytoplasmic volumes.

TABLE 2 Water-accessible volumes (mL H2O/mg DW) of the
cell and compartments of growing cells and of centrifugally
harvested suspensions

V# cell
wa V# cyto

wa V# peri
wa

Growing cells spun through oil* 2.546 0.10 2.116 0.20 0.436 0.23
Suspensions† 2.546 0.06 2.196 0.11 0.356 0.13
Suspensions spun through oil‡ 2.606 0.05 2.266 0.12 0.346 0.13

*Values of V# cell
wa and V# cyto

wa are the mean (61 SD) of measurements per-
formed on four and five separate cultures, respectively, each grown at 0.1
Osm in MBM and assayed in triplicate.
†Suspensions of centrifugally harvested cells were prepared and assayed as
described in Methods. The reported values are the mean (61 SD) of results
obtained in this study combined with those of Cayley et al. (1991) per-
formed under identical conditions.
‡Volumes of suspensions spun through oil were assayed as for samples
without oil except that samples were assayed by centrifugation through 200
mL of bromododecane oil. The value ofV# cell

wa is the average (61 SD) of a
single triplicate measurement. The value ofV# cyto

wa is the average (61 SD) of
measurements performed on four separate cultures, each assayed in triplicate.
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titrations must be performed on nongrowing samples lack-
ing extracellular K1, because the initial active response to
the increase in external osmolality of increased uptake of
K1 from the medium (Csonka and Epstein, 1996) begins
immediately after external osmolality increases (Epstein
and Schultz, 1965).

Variation of periplasmic MDO concentration with
osmolality of growth: implications for
turgor pressure

Figure 3A summarizes amounts of MDO calculated by us
as described in Methods from the data of Kennedy (1982)

and Lacroix et al. (1989) forE. coli K-12 strains grown at
various osmolalities. Amounts of MDO decrease monoton-
ically from ;15 nmol MDO/mg DW at 0.07 Osm to very
low levels at high osmolality. Figure 3B shows our deter-
minations of the volume of free periplasmic waterV# peri,f

wa ,
obtained from the difference between measured volumes of
cell and cytoplasmic water as a function of osmolality of
growth as described in Methods. At least above 0.3 Osm,
V# peri,f

wa increases slightly as osmolality of growth increases,
in agreement with previous measurements ofV# peri

wa (Richey
et al., 1987; Larsen et al., 1987). The experimental uncer-
tainty is too large to allow us to conclude whether a differ-
ent behavior occurs at lower osmolality, and, consequently,
we have fit all these data to a line for purposes of interpo-
lation. Interpolated values ofV# peri,f

wa (Fig. 3B) were used
with determinations ofnMDO (Fig. 3A) to estimate concen-
trations of MDO (cMDO; see Methods) in the free water of
the periplasm as a function of the osmolality of growth.
Figure 3C shows thatcMDO decreases from;0.05 mol/L at
a growth osmolality of 0.07 Osm to;0.003 mol/L at a
growth osmolality of 0.8 Osm. Uncertainties in absolute
MDO concentrations are approximately635%; this uncer-
tainty, although large, has no effect on the semiquantitative
conclusions obtained from analyses of these results below.
(The trend in relative amounts of MDO is known to higher
accuracy; Lacroix et al., 1989). In particular, the contribu-
tion of MDO (which Kennedy [1996] concluded are free
and not bound to other periplasmic components) to turgor
pressure across the cell wall may be estimated from these
cMDO and from the concentration of anions of the medium,
as described in Methods and analyzed below.

ANALYSIS

Analysis of V# cyto
wa in plasmolysis titrations of cells

grown at low osmolalities (0.03 Osm to 0.28 Osm)
demonstrates that turgor pressure decreases
with increasing osmolality of growth

For cells grown at 0.1 and 0.28 Osm, Cayley et al. (1991)
quantitatively analyzed the behavior of the volume occupied
by cytoplasmic waterV# cyto

wa in plasmolysis titrations to ob-
tain both the volume occupied by bound water of hydration
V# cyto,b

wa and the amount of osmotically-significant solutes
fcyto(( nj)cyto (see below) in the cytoplasm. Here, we ex-
tend this analysis to determine turgor pressure of these cells
and of cells grown at 0.03 Osm. Turgor pressure is funda-
mentally related to the difference between the osmolality of
the cytoplasm (Osmcyto) and the external medium (Osmex)
by

DP 5 RT~Osmcyto 2 Osmex!. (2)

The osmolality of the cytoplasm is related to the molar
amount of cytoplasmic solutes (( nj)cyto and to the volume

FIGURE 3 Reduction of the amount and concentration of periplasmic
MDO with increasing osmolality of growth.Panel Aplots the amounts of
MDO (nMDO) in nmol/mg cell DW calculated as described in Methods
from the analytical data of Kennedy (1982;E) and Lacroix et al. (1989;‚)
versus growth osmolality. The curve is the empirical best hyperbolic fit to
all the data.Panel Bplots the volumes of free periplasmic waterV# peri,f

wa

(determined as described in Methods) inmL/mg cell DW versus osmolality
of growth. The line is the best linear fit to the data and is shown for
purposes of interpolation.Panel Cshows the decrease in concentration of
periplasmic MDO (cMDO) (in mol/L free periplasmic water) calculated
from values of nMDO (A) and interpolated values ofV# peri,f

wa (B) with
increasing osmolality of growth.
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occupied by free (unbound) cytoplasmic water (V# cyto,f
wa ) by

Osmcyto 5 fcytoSO njD
cyto

YV# cyto,f
wa , (3)

where fcyto is the osmotic coefficient of the cytoplasm
(Cayley et al., 1991). In Eq. 3,

V# cyto,f
wa ; V# cyto

wa 2 V# cyto,b
wa , (4)

whereV# cyto,b
wa is defined as the volume occupied by bound

cytoplasmic water (expected to be primarily water of mac-
romolecular hydration; Cayley et al., 1991; Record et al.,
1998a). Combining Eqs. 2–4 gives

V# cyto
wa 5 V# cyto,b

wa 1 fcytoSO njD
cyto

Y~DP/RT1 Osmex!. (5)

Plots of V# cyto
wa versus 1/Osmex for data obtained in NaCl

plasmolysis titrations of cells grown at 0.1 Osm and 0.28
Osm (Cayley et al., 1991) and at 1.02 Osm (Cayley et al.,
1992) are linear for all plasmolyzing NaCl concentrations
investigated, although the initial (unplasmolyzed) value of
V# cyto

wa at 0.1 Osm deviates from the best fit line. Interpreted
using Eq. 5, this linear behavior indicates most simply that
DP/RT is negligible relative to Osmex in the range of
plasmolyzing NaCl concentrations investigated, and that
both fcyto(( nj)cyto and V# cyto,b

wa are independent of plasmo-
lyzing NaCl concentration (Cayley et al., 1991). A similar
plot of the V# cyto

wa data from Fig. 2 versus Osmex
21 for cells

grown at 0.03 Osm is highly nonlinear (Fig. 4), indicating
most simply that residual turgor pressure is significant rel-
ative to RTOsmex at low NaCl concentrations. To simplify
determination offcyto(( nj)cyto and V# cyto,b

wa , we therefore
linearly fit V# cyto

wa versus 1/Osmex for cells plasmolyzed to an
osmolarity exceeding 1 Osm to Eq. 5 assuming turgor
pressure is zero. (Above 1 Osm,V# cell

wa ceases to vary signif-
icantly with Osmex, from which we deduce that residual
turgor pressure is insignificant relative to RTOsmex). These
data are well fit by a line (r2 5 0.99) with best-fit slope
fcyto(( nj)cyto 5 0.31 6 0.04 mmol/mg DW and intercept
V# cyto,b

wa 5 0.45 6 0.03 mL/mg DW, labeledA in Fig. 4.
(Fitting these data assuming cells grown at 0.03 Osm exhibit
a small residual turgor pressure (;0.4 atm) at high plasmo-
lyzing osmolalities (see below) yields insignificantly differ-
ent values ofV# cyto,b

wa andfcyto(( nj)cyto.) The value ofV# cyto,b
wa

for cells grown at 0.03 Osm is within error of previous
determinations ofV# cyto,b

wa of cells grown at higher osmolality
(see Table 3). The value offcyto(( nj)cyto is approximately
equal to that for cells grown at 0.1 Osm (Cayley et al.,
1991), consistent with our previous conclusion (Capp et al.,
1996; see also Record et al., 1998a) that the primary differ-
ence in the pool of cytoplasmic osmolytes in these cells is
that cells grown at 0.03 Osm have;0.046 0.02mmol/mg
DW more putrescine(21) and, thus, ;0.08 6 0.04
mmol/mg DW less K1 than cells grown at 0.1 Osm.

The linearity of the high-osmolality region of the plas-
molysis plot in Fig. 4 indicates thatV# cyto,b

wa and
fcyto(( nj)cyto for cells grown at 0.03 Osm are independent
of plasmolyzing osmolality. Because we use nutrient-de-
prived suspensions to ensure that the sum of the amount of
cytoplasmic solutes (( nj)cyto is constant throughout these
plasmolysis titrations (see above),fcyto is also constant at
high plasmolyzing osmolalities. We assume thatfcyto does
not vary at lower plasmolyzing osmolality, which is con-
sistent with the K1-nucleic acid polyion model used to
interpret fcyto (Cayley et al., 1991). BecauseV# cyto,b

wa is
independent of growth osmolality (see Table 3), we assume
it is also independent of low plasmolyzing osmolality. With
these plausible assumptions, the turgor pressure of these
cells before or in the initial stages of plasmolysis may be
estimated from experimental values ofV# cyto

wa using

DP 5 RTSfcyto~O nj!cyto/V# cyto,f
wa 2 OsmexD. (6)

From the value ofV# cyto
wa of unplasmolyzed cells (2.536 0.08

mL/mg DW) and the values offcyto(( nj)cyto and V# cyto,b
wa

FIGURE 4 Effects of periplasmic MDO onV# cyto
wa in a NaCl plasmolysis

titration of cells grown at 0.03 Osm (VLOM). Contributions to turgor
pressureDP from the Donnan osmotic pressure of periplasmic MDO as a
function of Osmex were calculated with Eq. 1 using a lower bound estimate
of nMDO 5 15 nmol/mg DW (estimated by extrapolation of Fig. 3A as
described in the text), interpolated values ofV# peri,f

wa from Fig. 3B, and
several choices of MDO valenceZMDO

app . These contributions toDP were
used in Eq. 6 to predict the behavior ofV# cyto

wa versus 1/Osmex, where Osmex

was varied with NaCl in a plasmolysis titration (cf. Methods).Curve A
shows the linear fit to the data of cells plasmolyzed to;1 Osm and above
(see text).Curve Bshows the fit assumingZMDO

app 5 0 to calculateDP;
curve Cshows the fit assumingZMDO

app 5 23 to calculateDP; curve D is
the best fit of Eq. 6 to the data and corresponds to the situation in which
uZMDO

app u is initially 2 in unplasmolyzed cells and increases to 3 as the
concentration of NaCl increases (see text).Inset: Reduction in turgor
pressure of cells grown at 0.03 Osm (VLOM) with increasing osmolality of
plasmolysis. Turgor pressure was predicted from the concentration of
periplasmic MDO by Eq. 1 with a value ofZMDO

app that varied with [NaCl]
as incurve D.
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obtained above and tabulated in Table 3, the calculated
turgor pressure of cells grown at 0.03 Osm isDP 5 3.1 6
0.4 atm. This value significantly exceeds the turgor pres-
sures calculated from Eq. 6 from the published values of
fcyto(( nj)cyto andV# cyto,b

wa for cells grown at 0.1 Osm (MBM;
DP 5 1.5 6 0.3 atm) and at 0.28 Osm (MBM10.1 M
NaCl; DP 5 0.7 6 1.1 atm, i.e.,DP & 1.8 atm; see Table
3 and Cayley et al., 1991).

A limitation of our plasmolysis titration method seen in
these results is that the propagated error becomes compara-
ble to the turgor pressure itself for growth osmolalities
above 0.1 Osm, because the absolute error infcyto(( nj)cyto/
V# cyto,f

wa increases and the turgor pressure decreases with
increasing osmolality. Hence, other approaches (developed
below) are needed to establish whether turgor pressure
varies with osmolality of growth above 0.1 Osm.

Contribution of MDO to periplasmic osmolality
and turgor pressure as functions of the
osmolality of growth and of plasmolysis

We evaluated periplasmic MDO concentration as functions
of osmolality of plasmolysis and growth from the amounts
of MDO and volumes of unbound periplasmic water in Fig.
3. These values were then used in Eq. 1 to quantify the
effect of periplasmic MDO concentrationCMDO, MDO ap-
parent valenceZMDO

app , and external salt (anion) concentra-
tion CX on DP. These calculations, described below, make
a strong case for our conclusions that 1) the periplasm and
cytoplasm are isoosmotic under all conditions, 2) the turgor
pressure exerted across the cell wall at any condition of
plasmolysis is primarily determined byCMDO, ZMDO

app , and
CX, and 3) periplasmic MDO concentration and turgor
pressure decrease together with increasing osmolality of
growth or of plasmolysis with NaCl.

Donnan analysis of effects of residual turgor from
periplasmic MDO on the initial stages of a plasmolysis
titration of cells grown at 0.03 Osm

In Fig. 4, the linear fit of the high osmolality data, where the
effects of residual turgor are minimized as discussed above,

is designatedA. The large systematic deviations of the data
of Fig. 4 from lineA at low Osmex (i.e., high Osmex

21) are in
the direction expected if cells grown at 0.03 Osm have a
large residual turgor pressure at low plasmolyzing osmolality.

To assess whether the residual turgor pressure calculated
from the amount of periplasmic MDO can predictV# cyto

wa over
the entire range of plasmolyzing osmolalities in Fig. 4 (and
thus to test whether the cytoplasm and periplasm are isoos-
motic), we estimated the amount of MDO in cells grown at
0.03 Osm by extrapolation of the empirical fit to the data of
Fig. 3A to be;186 3 nmol MDO/mg DW. A conservative
lower-bound estimate ofnMDO (15 nmol MDO/mg DW)
was then used to estimate residual turgor from the Donnan
model (Eq. 1) for two choices of MDO apparent valence.
CurveB represents the caseZMDO

app 5 0, corresponding to the
situation in which MDO bear no net charge (for example, as
a result of Mg21 binding). Although clearly CurveB is an
improvement over lineA, it does not fit theV# cyto

wa plasmol-
ysis data below 0.2 Osm. CurveC was calculated assuming
ZMDO

app 5 23, corresponding to the situation in which there
is no cation binding to MDO and therefore MDO have their
full structural charge (the primary species of MDO have an
approximate structural charge of23; Kennedy, 1996).
CurveC provides a better fit than curveB to theV# cyto

wa data
at 0.1 and 0.2 Osm, but deviates at lower osmolality, pre-
dicting values ofV# cyto

wa that are significantly smaller than
those measured at 0.03 and 0.05 Osm. (The discrepancy
increases if higher values ofnMDO or ZMDO

app are assumed.)
Despite this, CurveC demonstrates unambiguously that the
Donnan osmotic pressure contribution of negatively
charged MDO is more than sufficient to account for the
effects of turgor pressure onV# cyto

wa . We then letZMDO
app vary

with Osmex, and calculated the values ofZMDO
app that yield the

observed values ofV# cyto
wa (CurveD). We find thatZMDO

app in
Eq. 1 must be smaller in magnitude at the low osmolality of
growth than after plasmolysis with high concentrations of
NaCl. To fit theV# cyto

wa data of Fig. 4 requires thatuZMDO
app u >

2 at the growth osmolality of 0.03 Osm, but thatuZMDO
app u 5

3 upon plasmolysis of these cells with$0.05 M NaCl, an
increase inuZMDO

app u which could result from dissociation of

TABLE 3 Amounts of cytoplasmic water and osmotic properties of E. coli grown at different osmolalities*

Osmolality of
Growth Medium V# cyto

wa V# b,cyto
wa * (f ( nj)cyto

DP†

(atm)
«‡

(atm)

0.03 Osm (VLOM) 2.536 0.08 0.456 0.03 0.316 0.04 3.16 0.4 4.96 0.9
0.10 Osm (MBM)§ 2.196 0.11 0.406 0.02 0.296 0.01 1.56 0.3 3.46 0.7
0.28 Osm§ (MBM10.1 M NaCl) 2.086 0.06 0.386 0.08 0.526 0.07 0.76 1.1 1.76 2.7

*The average and standard deviation of the values shown plus the value ofV# b,cyto
wa determined for cells grown at 1.02 Osm in MBM10.5 M NaCl11 mM

betaine (0.406 0.05 mL/mg DW; Cayley et al., 1992) is 0.416 0.03 mL/mg DW.
†Turgor pressure was calculated as the differenceDP 5 Pcyto 2 Pex 5 RT[(f ( nj)cyto/V# f,cyto

wa ) 2 Osmex], whereR5 0.0821 L atm mol21 K21, T 5 310 K,
andV# f,cyto

wa 5 V# cyto
wa 2 V# b,cyto

wa .
‡Values of the volumetric elastic modulus« were calculated from Eq. 7 usingV# cell,0

tot 5 2.196 0.03mL/mg DW, values ofV# cell
tot from Fig. 1, and the tabulated

DP.
§Values ofV# cyto

wa andV# b,cyto
wa (mL/mg DW) and (f ( nj)cyto (mmoL/mg DW) for cells grown at 0.10 Osm and 0.28 Osm are from Cayley et al. (1991) except for

the value ofV# cyto
wa for cells grown at 0.1 Osm, which was obtained by combining data obtained in the present study with data reported in Cayley et al. (1991).
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bound Mg21 (or other oligovalent cations) from MDO with
increasing NaCl concentration.

Taken together, the semiquantitative calculations in Fig.
4 show that a reasonable estimate of the amount and appar-
ent valence of periplasmic MDO is sufficient to satisfy the
condition Osmcyto 5 Osmperi. We therefore propose that the
Donnan osmotic pressure of charged MDO is the primary
determinant of turgor pressure for cells grown at 0.03 Osm
and conclude that the periplasm and cytoplasm are isoos-
motic, in agreement with the findings of Stock et al. (1977)
and Sen et al. (1988) (see Discussion).

Role of MDO as a determinant of the extent of cell wall
stretch and cell volume in plasmolysis titrations

For cells grown at 0.03 Osm, the turgor pressure calculated
from cMDO by Eq. 1 over the course of a plasmolysis
titration does not reach zero, even at high osmolalities of
plasmolysis. Plasmolyzed cells retain residual turgor pres-
sure because the large amount of MDO in the periplasm of
cells grown at 0.03 Osm is diluted no more than fourfold by
plasmolysis. (The volume occupied by periplasmic water
increases from 0.43mL/mg DW to a maximum of;1.45
mL/mg DW; see Fig. 2.) The inset to Fig. 4 plots the turgor
pressureDP predicted fromCMDO andZMDO

app as a function
of plasmolyzing osmolality, on the basis of the variation of
ZMDO

app with NaCl concentration, which yields CurveD of
Fig. 4. From the maximum value ofV# peri

wa obtained at high
plasmolyzing osmolality and the lower bound value of
nMDO estimated for cells grown at 0.03 Osm (;15 nmol/mg
DW), we calculate that cells grown at 0.03 Osm retain at
least 0.3 atm of residual turgor pressure at the highest
plasmolyzing osmolality (6 Osm) employed. (This calcula-
tion is independent of the choice ofZMDO

app because the
Donnan contribution of salt ions to turgor pressure is negligible
in cells suspended in plasmolyzing media of high [NaCl].)

If the large amount of MDO in cells grown at 0.03 Osm
at high plasmolyzing osmolality results in retention of sig-
nificant residual turgor at high plasmolyzing osmolalities,
then cells grown at high osmolality (a growth condition
where cells contain very low amounts of MDO; see Fig.
3 A) should exhibit negligible residual turgor and com-
pletely unstretched cell walls after extensive plasmolysis
with NaCl, and thus have a lower minimum cell volume
(V# cell,min

wa ) than cells grown at 0.03 Osm. This prediction was
confirmed by our observation thatV# cell,min

wa of cells grown at
0.83 Osm is significantly lower than that of cells grown at
0.03 Osm (see Fig. 1), consistent with our conclusion that
the amount of MDO is a primary determinant of periplasmic
osmolality and therefore of turgor pressure and cell wall
stretch inE. coli K-12.

Contribution of MDO to turgor pressure as a function of
growth osmolality

Figure 5 plots predicted turgor pressures of growingE. coli
as a function of osmolality of growth. Figure 5 predicts a

monotonic decrease inDP from ;3 atm for cells grown at
0.03 Osm to less than 0.5 atm for cells grown at 0.8 Osm.
Included in this figure are values ofDP at low growth
osmolality (0.03–0.28 Osm) determined from measure-
ments ofV# cyto

wa in plasmolysis titrations (cf., Table 3) and
values ofDP predicted from contributions of outer mem-
brane-impermeable periplasmic solutes, including: the Don-
nan contribution of the concentration of periplasmic MDO
(calculated assuming that the MDO apparent valenceZMDO

app

(Eq. 1) changes the same way with [NaCl] for growth and
for plasmolysis of cells grown at 0.03 Osm); and an estimate
of the contribution of periplasmic proteins (and any other
outer membrane-impermeable periplasmic solutes) to turgor
pressure, obtained from the analysis of the cell volume data
(see below). The latter effect is approximately 0.3 atm, and
is therefore predicted to become the dominant contribution
to DP in cells growing above 0.8 Osm.

Relationship between cell volume and
turgor pressure

As an independent method of quantifying turgor pressure to
compare with our estimates based on analysis of periplas-
mic MDO concentration, we applied an empirical relation-
ship between changes in cell volume and changes in turgor

FIGURE 5 Reduction in turgor pressure (DP) with increasing osmolal-
ity of growth. (‚) Turgor pressure calculated with Eq. 6 from the cyto-
plasmic water-accessible volumeV# cyto

wa determined for cells grown at 0.03,
0.10, and 0.28 Osm, using the values offcyto(( nj)cyto andV# b,cyto

wa in Table
3. Uncertainties in these values are6(0.3–1) atm (Table 3). (Œ) Turgor
pressures calculated with Eq. 1 from the values ofcMDO from Fig. 3C and
from the variation ofZMDO

app with [NaCl] inferred from the best-fit curve D
of Fig. 4; uncertainties in these values are approximately635%. (1)
Turgor pressures determined by measuring collapse pressures of gas vacu-
oles in Microcystis sp. grown at 15 mOsm and 45 mOsm (Reed and
Walsby, 1985). (3) Turgor pressure determined by measuring collapse
pressures of gas vacuoles inAncylobacter aquaticusgrown at 0.1 Osm
(Koch and Pinette, 1987), which has an error of;15%. The osmolalities
of the media used by Reed and Walsby (1985) and Koch and Pinette (1987)
were estimated from their composition.
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pressure previously used to characterize turgor–volume re-
lationships in plant (Zimmermann, 1978; Cosgrove, 1988)
and microbial (Walsby, 1980; Reed and Walsby, 1985)
cells.

Changes in turgor pressure (DP) and the corresponding
changes in total cell volume (DV# cell

total) have been related by
the empirical equation (Broyer, 1952; Phillip, 1958; Zim-
mermann, 1978)

DP 5 «DV# cell
total/V# cell,0

total , (7)

where« is the volumetric elastic modulus (Cosgrove, 1988),
DV# cell

total 5 V# cell
total 2 V# cell,0

total , andV# cell,0
total is the total cell volume

in the zero-turgor reference state. Total cell volumes are
defined as the sum of the water-accessible cell volume
(V# cell

wa ) and the water-inaccessible cell volume (V# cell
wi )

V# cell
total 5 V# cell

wa 1 V# cell
wi . (8)

For the conditions of the present study,V# cell
wi 5 0.636 0.09

mL/mg DW, independent of external osmolality (Cayley et
al., 1991). The empirical elastic modulus« is apparently
independent of bothV# cell

total and of turgor pressure over a
range of volumes and pressures for some plant cells (Cos-
grove, 1988) and for the gram negative cyanobacterium
Microcystis(where turgor pressure can be measured directly
from the pressure that must be applied to collapse cytoplas-
mic gas vacuoles; Reed and Walsby, 1985). However,« can
vary up to 20-fold with cell volume andDP in some plant
cells (Zimmermann, 1978) and, given the absence of quan-
titative studies of the elasticity of the cell wall of intactE.
coli cells, « cannot be assumed to be constant.

Analysis of behavior of cell volume in plasmolysis titrations

The decrease in cell volume with increasing osmolality of
plasmolysis of cells grown at 0.03 Osm (VLOM) and 0.83
Osm (MBM10.4 M NaCl) from Fig. 1 is replotted in Fig.
6 A according to Eq. 7. To calculateDV# cell

total/V# cell,0
total for both

data sets, we used the same value ofV# cell,0
total (2.19 6 0.10

mL/mg DW), calculated by addingV# cell
wi to the minimum

value of cell water (V# cell,min
wa ) reached at high osmolalities in

the plasmolysis titration of cells grown at 0.83 Osm (1.566
0.05mL/mg DW), because these cells have very low levels
of MDO and should therefore have negligible residual tur-
gor when plasmolyzed with high concentrations of NaCl.
From Fig. 6A and Eq. 7, we conclude thatDP/« decreases
from approximately 0.6 to 0.18 with increasing osmolality
of plasmolysis of cells grown at 0.03 Osm, and thatDP/«
decreases from approximately 0.2 to zero for cells grown at
0.83 Osm. Inasmuch as we and others have demonstrated
that turgor pressure decreases during a plasmolysis titration
of bacterial cells (cf., Fig. 4,inset; Reed and Walsby, 1985;
Koch and Pinette, 1987), this reduction inDP/« in plasmol-
ysis, at least in part, reflects a reduction inDP with increas-
ing osmolality of plasmolysis. To assess if« also varies with

osmolality of plasmolysis, we compared the variation ofDP
(from Fig. 4, inset) and DP/« (from Fig. 6A) for cells
grown at 0.03 Osm as a function of plasmolyzing osmola-
lity. From this comparison, we calculate that« initially
decreases with increasing osmolality of plasmolysis from
;4.9 atm at 0.03 Osm to;2.5 atm at 0.4 Osm and plateaus
at ;2 atm at higher plasmolyzing osmolalities. (This vari-
ation of« generates CurveD in Fig. 4 when Eq. 7 is used to
calculate turgor pressure).

Analysis of behavior of cell volume as a function of
growth osmolality

It is well known thatV# cell
wa decreases with increasing growth

osmolality (Richey et al., 1987; Larsen et al., 1987; Cayley
et al., 1991; and see Table 1). Figure 6B plots both our new

FIGURE 6 (A) Reduction inDV# cell
total/V# cell,0

total 5 DP/« (Eq. 7) with increas-
ing osmolality of plasmolysis for cells grown at 0.03 Osm (E) or 0.83 Osm
(F). The difference in total cell volume between stressed and unstressed
state isDV# cell

total 5 V# cell
total 2 V# cell,0

wa , whereV# cell
total 5 V# cell

wa 1 V# cell
wi andV# cell,0

total 5
2.19 ml/mg DW (see text). The curves through the data are empirical
best-fit hyperbolic functions. (B) Reduction inDV# cell

total/V# cell,0
total 5 DP/« with

increasing osmolality of growth. The curve is an empirical best fit hyper-
bolic function to the points calculated from the values ofV# cell

wa for cells
grown in minimal medium shown in Table 3 (■). The value ofDV# cell

total/
V# cell,0

total for cells grown at 1.02 Osm with 1 mM of the osmoprotectant
betaine (h) was calculated using the value ofV# cell

wa reported by Cayley et al.
(1992).
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and published (Cayley et al., 1991) cell volume data ac-
cording to Eq. 7. Figure 6B shows thatDV# cell

total/V# cell,0
total de-

creases monotonically from a value of;0.6 for cells grown
at 0.03 Osm to;0.15 for cells grown at 1.0 Osm. The
reduction inDV# cell

total/V# cell,0
total 5 DP/« in Fig. 6B with increas-

ing growth osmolality is similar to the behavior ofDP
calculated from cytoplasmic and periplasmic data in Fig. 5,
indicating that the reduction inV# cell

total with increasing osmo-
lality of growth is principally the result of the reduction in
DP. Values of« calculated fromV# cell

total by Eq. 7, using values
of DP obtained from analysis ofV# cyto

wa (cf., Table 3) or from
analysis of periplasmic MDO (Fig. 5) differ only marginally
given the large uncertainties, but are consistent both in
magnitude and in direction of change with osmolality with
the values of« calculated from the plasmolysis data in Fig.
6 A. As a working hypothesis, we therefore propose that«
decreases with increasing growth osmolality from approxi-
mately 5 atm at 0.03 Osm to a plateau value of approxi-
mately 2 atm above 0.4 Osm. Whether this decrease in« is
most fundamentally the result of the increase in NaCl con-
centration, or of the decrease in cell volume and turgor
pressure, remains to be determined.

Assuming that the variation of« with osmolality obtained
from analysis of plasmolysis titrations (Fig. 6A) also ap-
plies to growing cells, then« for cells growing at 0.83 Osm
is ;2 atm. From this value of« and values ofDV# cell

total/V# cell,0
total

(and henceDP/«) from Fig. 6B, we estimate that the initial
turgor of cells grown at 0.83 Osm is;0.4 atm. The corre-
sponding turgor estimated from the concentration of
periplasmic MDO at this osmolality (see Fig. 3C) is ;0.15
atm. This difference indicates that periplasmic proteins or
outer-membrane impermeable solutes in addition to MDO
contribute to periplasmic osmolality and therefore contrib-
ute an additional;0.3 atm to turgor pressure in cells grown
at high osmolality. This value was added to the turgor
calculated from the concentrations of MDO to obtain the
predictions shown in Fig. 5.

DISCUSSION

Osmolalities of the periplasm and
cytoplasm are equal

From our analyses of the contributions of anionic MDO to
periplasmic osmolality in growth and in plasmolysis, we
conclude that the periplasm and cytoplasm are always isoos-
motic, and that the osmolality of both compartments always
exceeds that of the external environment, especially for cells
grown at low osmolality, where the amount of MDO is
largest. The Donnan osmotic contribution of periplasmic
MDO, together with a small contribution from periplasmic
biopolymers, determines the osmotic pressure difference
(turgor pressure) across the cell wall. We show that the
turgor calculated from our estimate of the amount of
periplasmic MDO is indeed capable of predictingV# cyto

wa over

the course of the plasmolysis titration of cells grown at 0.03
Osm, confirming that the periplasm and cytoplasm are
isoosmotic. Because turgor pressure stretches the cell wall,
our observation that the cell wall is more stretched in
plasmolyzed cells containing large amounts of MDO (i.e.,
growing at 0.03 Osm) than in cells with small amounts of
MDO (i.e., growing at 0.83 Osm) confirms our hypothesis
that the periplasm and cytoplasm are isoosmotic and that the
amount of MDO determines turgor pressure.

Our findings are in agreement with those of Stock et al.
(1977), who found that the osmolality of the periplasm,
estimated from the Donnan distribution of periplasmic ions
in S. typhimurium, is the same within error as the osmolality
of the cytoplasm estimated from analysis of plasmolysis
titrations of cell suspensions. Sen et al. (1988) extended
these findings by showing that the amount of periplasmic
MDO was sufficient to predict the observed Donnan poten-
tial maintained across the outer membrane inE. coli grown
at low osmolality. Our conclusion that the Donnan ion
distribution contributes to turgor pressure and cell-wall
stretch is also consistent with the finding of Alemohammad
and Knowles (1974) that use of NaCl to increase the osmo-
lality of suspensions ofE. coli reduced the water-accessible
cell volume to a greater extent than an equiosmolal concen-
tration of the nonelectrolyte sucrose. Taken together, these
results indicate that negatively charged MDO and the re-
sultant Donnan ion distribution are significant determinants
of periplasmic osmolality, that the periplasm and cytoplasm
are isoosmotic, and thatE. coli maintains turgor pressure
across the cell wall and not across the cytoplasmic membrane.

An alternative view is that turgor pressure is maintained
across the cytoplasmic membrane in growing cells (i.e., that
Osmcyto . Osmperi; Koch, 1995, 1998). Because a signifi-
cant periplasmic space separates the cytoplasmic membrane
from the peptidoglycan, a necessary consequence of this
alternative view is that periplasmic biopolymers must form
an incompressible matrix or gel which presses against the
peptidoglycan, thereby stretching the cell wall. Supporting
this proposal is the observation that the periplasmic space
has a uniformly smooth and narrow width (see Schwarz and
Koch, 1995 and references therein) in electron micrographs
of cryofixed and freeze substitutedE. coli. However, this
method has been criticized because it causes cell shrinkage
(Woldringh, 1994). Furthermore, our observation that, in
the initial stages of a NaCl plasmolysis titration,E. coli cells
grown at 0.03 Osm still have residual turgor and stretched
cell walls but have significantly larger periplasmic water
volumes than unplasmolyzed cells (see Figs. 1 and 2) is
inconsistent with cell-wall stretch originating from the cy-
toplasmic membrane pressing an incompressible periplas-
mic matrix pressing into the cell wall. That periplasmic
proteins have measurable translational diffusion coefficients
(Brass et al., 1986), whereas cytoplasmic proteins are trans-
lationally immobilized when most free water is removed
from cytoplasm by hyperosmotic shock (Jacobson and
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Wojcieszyn, 1984), also suggests that periplasm must have
significant amounts of free water, a conclusion supported by
the finding of Stock et al. (1977) that the amount of
periplasmic water is reduced in cells osmotically stressed
with high concentrations of the outer-membrane imperme-
able solute sodium polyglutamate. (Indeed, the accumula-
tion of MDO at low osmolality provides a mechanism for
retention of free water in the periplasm; see below). We
therefore conclude that periplasm and cytoplasm must be
isoosmotic, and that turgor is exerted across the cell wall.
Presumably, the outer membrane can withstand an out-
wardly directed turgor pressure because it is tethered to the
cell wall peptidoglycan by lipoproteins and porins.

The use of cell suspensions (for example by Stock et al.,
1977; Cayley et al., 1991, 1992; and the present study) to
measure osmotic properties ofE. coli has been criticized as
being irrelevant to growing cells (Koch, 1995, 1998). This
criticism would be valid if the cytoplasmic pools of os-
molytes and/or metabolites of these cells could leak or
become depleted relative to growing cells during harvest of
suspensions. Neither of these potentially serious scenarios
apparently occurs, however. Cells centrifugally harvested
from growth at both low and high osmolalities by the
conditions used in this study have the same amounts of the
primary osmolytes (K1, glutamate, betaine, and proline) as
rapidly filter-harvested growing cells (Cayley et al., 1991,
1992) and do not detectably leak cytoplasmic K1 for at least
an hour after harvest (Richey et al., 1987). The osmotic
contribution from cytoplasmic metabolites is also presum-
ably not significantly altered by our harvest procedure be-
cause the most abundant metabolites inE. coli are anionic,
and anions must be retained in some form in the cytoplasm
to neutralize the charge of cytoplasmic K1. Fresh suspen-
sions do retain the osmotic properties of growing cells, as
demonstrated by our observation that the cell and cytoplas-
mic volumes of growing cells and of fresh suspensions are
the same (see Table 2). Thus, we conclude that our results
are relevant for growing cells and in agreement with the
conclusion of Stock et al. (1977) that the periplasm and
cytoplasm are isoosmotic.

Turgor pressure decreases with increasing
osmolality of plasmolysis or growth; implications
for the activity and activity coefficient of
cytoplasmic water

Independent analyses of measurements of cytoplasmic vol-
ume, cellular volume and the concentration of periplasmic
MDO all indicate that turgor pressure decreases with in-
creasing osmolality of plasmolysis and of growth (Table 3
and Fig. 5). Our conclusion that turgor pressure decreases
with increasing osmolality of plasmolysis is in agreement
with direct measurements showing that turgor pressure of
cytoplasmic gas vacuole-containing bacteria decreases dur-
ing plasmolysis titrations (Koch and Pinette, 1987; Reed

and Walsby, 1985). The decrease in turgor pressure ofE.
coli with increasing osmolality of growth also has precedent
in plants, where turgor pressure can decrease significantly
with increasing growth osmolality (Cosgrove, 1993). A
nonosmotic variability of turgor pressure also has been
previously reported in growing bacteria: measurements of
collapse pressures of cytoplasmic gas vacuoles in the pho-
totrophic gram-negative bacteriumAnabaena flos-aqua
have shown that turgor pressure varies by at least 2 atm as
a function of light intensity (Kinsman et al., 1991).

Our estimates of turgor pressure forE. coli are compa-
rable to those measured directly in gram-negative bacteria
containing gas vacuoles (Reed and Walsby, 1985; Koch and
Pinette, 1987; see Fig. 5), and to a previous estimate of
turgor pressure from volume measurements ofS. typhi-
murium (Stock et al., 1977), all of which indicateDP is
;2–4 atm in cells grown at,0.15 Osm. Koch and Pinette
reported that the turgor pressure of the gram negative het-
erotrophMicrocystisgrown at low osmolality (;0.1 Osm),
estimated from measurements of the pressures needed to
collapse cytoplasmic gas vesicles, is;2 atm. From their
reported vesicle-collapse pressures for cells growing at
higher osmolality (;0.4 Osm), we estimate that the turgor
pressure of cells growing at;0.4 Osm (;0.9 atm) is lower
than in cells grown 0.1 Osm, a trend consistent with Fig. 5.
Given the recent functional expression of gas vacuoles
cloned fromBacillus megateriuminto E. coli (Li and Can-
non, 1998), gas vacuole collapse-pressure measurements
could provide a way to directly test our conclusion that
turgor pressure ofE. coli decreases as growth osmolality
increases.

Because turgor pressure is very low at high osmolality of
growth, the activity of cytoplasmic wateraw

cyto is only very
slightly less than the external water activityaw

ex at high
osmolality. (For example, at 1.0 Osm whereDP > 0.3 atm,
the osmolality differenceDOsm > 0.013 andaw

cyto/aw
ex >

0.99977.) This result is surprising because the amount of
cytoplasmic water (and, in particular, the amount of free
cytoplasmic water) decreases strongly with increasing os-
molality of growth (cf. Table 3 and Cayley et al., 1991;
Record et al., 1998a). Comparison of activities and mole
fractions of cytoplasmic water indicates that the activity
coefficient of cytoplasmic water (gw

cyto 5 aw
cyto/Xw

cyto) in-
creases with increasing osmolality of growth, and exceeds
unity at high osmolality. For example, for cells grown at 1.0
Osm, we determined the molar amount of cytoplasmic water
nw

cyto > 65.6 6 3.3 mmol/mg DW and a lower bound for
the amount of osmotically significant cytoplasmic solutes
(( nj)cyto 5 1.79 6 0.10 mmol/mg DW (Cayley et al.,
1991). Therefore, at 1.0 Osm, an upper bound on the mole
fraction of cytoplasmic water isXw

cyto # 0.97. (If only free
cytoplasmic water is used in this calculation, then the cor-
responding bound isXw,free

cyto # 0.964.) FromDP > 0.3 atm
at 1.0 Osm, we calculateaw

cyto 5 0.959. Hence, the activity
coefficient gw

cyto * 1.01; if only free water is used in the
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calculation,gw,free
cyto * 1.02. Extrapolation of the trends in

nw
cyto and (( nj)cyto to higher osmolality of growth predicts

much larger positive derivations from ideality; we predict
that gw

cyto ' 1.04 at 1.5 Osm (andgw, free
cyto ' 1.2), and are

currently testing these predictions. These unusual effects on
the activity coefficient of cytoplasmic water must be a
thermodynamic consequence of macromolecular crowding,
which causes thermodynamic activities of cytoplasmic
biopolymers to exceed their concentrations by large
amounts; biopolymer activity coefficients are predicted to
increase greatly, which increase with increasing osmolality
of growth (Cayley et al., 1991; Guttman et al., 1995).

Cell wall elasticity and the volumetric elastic
modulus of E. coli

The peptidoglycan sacculus ofE. coli determines cell shape
and expands as a result of turgor pressure. Koch and Woeste
(1992) have shown that isolated peptidoglycan sacculi can
stretch elastically with little if any hysteresis to about four
times (;400%) their unstretched volume, consistent with
molecular modeling studies of the extent to which the
peptide bridges of peptidoglycan can extend under stress
(Labischinski and Maidhof, 1994). We find (cf. Fig. 1) that
the increase inV# cell

total at 0.03 Osm from its high osmolality
plateau value is approximately 40%, which corresponds to
only 10% of the range over which Koch and Woeste (1992)
observed reversible stretching. The change inV# cell

total with
osmolality, therefore, constitutes a relatively small defor-
mation, which is likely to be elastic (and see Doyle and
Marquis, 1994). In the elastic regime, a reduction in turgor
pressure should result in a corresponding reversible reduc-
tion in the extent of cell-wall stretch, which we measure
directly as a reduction in cell volume.

The volumetric elastic modulus (Eq. 7) is an empirical
parameter previously used to quantify pressure–volume re-
lations of bacterial (Reed and Walsby, 1985; Walsby, 1980)
and many plant (Zimmermann, 1978; Cosgrove, 1988)
cells. Analysis of the variation ofV# cell

total with osmolality of
growth and of plasmolysis using Eq. 7 indicates that, in both
cases (Fig. 6,A andB, respectively),DP/« decreases with
increasing osmolality. Our proposal forE. coli that « de-
creases as NaCl concentration increases andV# cell

wa decreases
is consistent with the behavior of« deduced for plant
(Zimmermann, 1978; Cosgrove, 1988) and bacterial (Reed
and Walsby, 1985; Walsby, 1980) cells. Given recent
progress in applying atomic force microscopy to examine
the elasticity of biological materials (Vinckier and Se-
menza, 1998), it may be possible to directly test this pre-
diction regarding«. Although the reduction in« with in-
creasing NaCl or decreasingV# cell

wa is only marginally outside
of experimental uncertainty, clearly our analysis provides
no basis for proposing that« could increase with increasing
osmolality of plasmolysis or growth. Hence, the reduction

in DP/« with increasing osmolality must be interpreted as a
decrease inDP.

The values of« we report forE. coli (;2–5 atm) are at
the low end of the range of« determined in plants (5–500
atm; Zimmermann, 1978), consistent with the expectation
that the mostly monolayered (Labischinski and Maidhof,
1994) cell wall of E. coli should be less rigid than the
multilayered cell walls of plants. Previous estimates of« in
cyanobacteria with Eq. 7 (11–13 atm; Reed and Walsby,
1985; Walsby, 1980), based on direct measurement of the
pressure required to collapse cytoplasmic gas vesicles but
indirect estimates of volumes, are higher than forE. coli.
Whether the differences in« measured in these cyanobac-
teria andE. coli reflect differences in the elasticity of their
cell walls or differences in the methods used to estimate«
remains to be established.

Implications of the variation of turgor pressure with
osmolality of growth

It is widely believed that cells with walls require turgor
pressure for cell expansion, although Money (1997) re-
ported an exception. Studies with plant cells have shown
that both turgor pressure and growth rate can decrease as the
osmolality of the growth medium increases (Cosgrove,
1993). However, this correlation is not evidence for a direct
functional dependence of growth rate onDP. To test for
such a dependence directly, Zhu and Boyer (1992) changed
the turgor pressure in the algaChara corallinaby injecting
or removing cell solution at constant Osmex, and observed
that growth rate is independent of turgor pressure unless
turgor pressure is lowered below a threshold (;0.4 atm in
their study) at which point growth ceases. WhetherE. coli
also has a threshold turgor is unclear, but our conclusion
that turgor is,0.5 atm in cells grown at high osmolality
suggests thatE. coli needs only a small turgor pressure for
growth. However, even low turgor pressure can stretch the
cell wall significantly. For example, plasmolysis of cells
grown at 0.83 Osm significantly reduces cell volume (Fig.
1), even though the initial turgor pressure we estimate for
these cells is less than;0.5 atm (see Analysis). The ability
of low levels of turgor to stretch the cell wall is consistent
with our inference that the elastic modulus of the cell wall
of E. coli decreases with increasing osmolality of plasmol-
ysis or growth (and hence with decreasing cell volume and
turgor pressure). If a stretched cell wall is required for
cell-wall synthesis in growing bacteria (see Wood, 1999 and
Höltje, 1998), then the parallel reduction in« with the
reduction inDP as osmolality of growth increases may have
physiological relevance as a mechanism to ensure that cells
growing with low turgor will have sufficiently stretched cell
walls to permit new cell-wall synthesis.

At low osmolality, turgor pressure is an unavoidable
consequence of the fact that the osmolality of the cytoplasm
exceeds that of the external growth medium, primarily be-
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cause of the osmotic contributions of the K1 required for
electroneutrality of cytoplasmic nucleic acids (Record et al.,
1998a) and metabolites. At low osmolality, MDO are re-
quired to elevate the osmolality of the periplasm to that of
the cytoplasm. If the osmolality of the periplasm were less
than that of the cytoplasm, the cytoplasmic membrane
would expand and compress periplasmic components into
the cell wall, thereby eliminating the free periplasmic water
presumably required for diffusion. We propose that the high
concentration of periplasmic MDO and the relatively high
turgor pressures of cells grown at low osmolality is funda-
mentally a consequence of the need to maintain a functional
periplasmic volume.

At high external osmolality, the challenge to the cyto-
plasm from its osmotic environment has reversed, from the
need to reduce the amounts of cytoplasmic osmolytes to the
need to increase them to increase the amount of cytoplasmic
water. As the osmolality of minimal growth media is in-
creased, the amount of cytoplasmic K1 increases, and the
growth rate and amount of cytoplasmic water decreases
(Cayley et al., 1991). From these observations, we con-
cluded that osmolality-dependent changes in the amounts of
cytoplasmic K1, water, and growth rate are linked for all
growth conditions examined (Cayley et al., 1992; Record et
al., 1998b). The linkage provides a resolution of the paradox
that, although increasing K1 concentration dramatically re-
duces the extent of protein–DNA interactions in vitro, in-
creases in K1 concentration have no effect on gene expres-
sion in vivo (Cayley et al., 1991). In this explanation, the
reduction in V# cyto

wa with increasing osmolality of growth
greatly increases the extent of macromolecular crowding,
which we propose must compensate for the effect of in-
creasing concentration of cytoplasmic K1 on the equilibria
and rates of protein–nucleic acid interactions (Record et al.,
1998b). In support of this proposal, we observe that accu-
mulation of the osmoprotectant betaine by osmotically
stressed cells increases growth rate andV# cyto

wa and reduces
cytoplasmic K1 concentration (Cayley et al., 1992). The
observations that the amount of MDO and turgor pressure
(and possibly the elastic modulus of the cell wall) decrease
with increasing osmolality of growth in minimal media
suggest that these periplasmic and cell-wall parameters may
also be linked to growth rate in cells above 0.28 Osm. If
correct, this proposal indicates a thermodynamic sophisti-
cation and coordinated regulation of the volumes of the
cytoplasm and periplasm ofE. coli.

Because accumulation of the osmoprotectant glycine be-
taine increases the volume of cells growing at high osmo-
lality (Cayley et al., 1992), Eq. 7 predicts thatDP/« and,
hence, the turgor pressure of cells grown at high osmolality
in the presence of betaine are higher than that in cells grown
in its absence. When added to the medium of cells growing
at high osmolality, betaine is transported into the cytoplasm
by the osmotically regulated porters proU and proP (Csonka
and Epstein, 1996) and increases the amount of cytoplasmic

(Meury, 1994; Cayley et al., 1992) and cellular (Cayley et
al., 1992) water. From the value ofV# cell

wa (2.32 6 0.17
mL/mg DW) of E. coli K-12 grown at 1 Osm1betaine (in
MBM 1 0.5 M NaCl1 1 mM betaine; Cayley et al., 1992),
the value ofDP/« calculated from Eq. 7 is 0.35, signifi-
cantly higher than the corresponding value of cells grown at
1 Osm in the absence of betaine (see Fig. 6B). Hence,
assuming that accumulation of betaine does not decrease«,
Eq. 7 predicts that the turgor pressure of cells grown at 1
Osm11 mM betaine is higher than that of cells grown
without betaine. In light of our proposal that the amount of
MDO and turgor pressure are linked to growth rate, it will
be of interest to test the effect of accumulation of betaine on
the amount of MDO or other turgor-generating periplasmic
solutes.

Our study has implications for the mechanism of osmo-
regulation of gene expression. Studies of expression of the
lacZ gene fused to thekdpABC operon (encoding the high-
affinity K1 transport system ofE. coli) led to the proposal
that turgor pressure regulates expression of thekdpABC
operon (Laimins et al., 1981). For cells growing in media
with high concentrations of K1, an increase in osmolality
caused a transient increase inkdpABC expression, which
returned to the prestress level as growth resumed at the new
osmolality. Because the KdpD sensor kinase (which is pro-
posed to regulatekdpABC gene expression by responding to
changes in turgor pressure; Malli and Epstein, 1998) is in
the cytoplasmic membrane and we conclude that turgor
pressure is exerted across the cell wall, presumably KdpD
does not sense turgor pressure directly but may respond to
the consequences of water efflux and loss of turgor (e.g.,
changes in solute concentration, crowding or other biophys-
ical properties of the cytoplasm or cytoplasmic membrane;
Wood, 1999).
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Höltje, J.-V. 1998. Growth of the stress-bearing and shape-maintaining
murein sacculus ofEscherichia coli. Microbiol. Molec. Biol. Rev.62:
181–203.

Jacobson, K., and J. Wojcieszyn. 1984. The translational mobility of
substances within the cytoplasmic matrix.Proc. Natl. Acad. Sci. USA.
81:6747–6751.

Johnson, M. L., and S. G. Frasier. 1985. Nonlinear least-squares analysis.
Methods Enzymol.117:301–342.

Kennedy, E. P. 1996. Membrane-derived oligosaccharides (periplasmic
beta-D-glucans) ofEscherichia coli. In Escherichia coliandSalmonella
Cellular and Molecular Biology. F. C. Neidhardt, R. Curtis, J. L. Ingra-
ham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley,
M. Schaecter, and H. E. Umbarger, editors. 2nd Ed. ASM Press, Wash-
ington, DC. 1064–1071.

Kennedy, E. P. 1982. Osmotic regulation and the biosynthesis of mem-
brane-derived oligosaccharide inEscherichia coli. Proc. Natl. Acad. Sci.
USA.79:1092–1095.

Kennedy, E. P., and M. K. Rumley. 1988. Osmotic regulation of biosyn-
thesis of membrane-derived oligosaccharides inEscherichia coli. J.
Bacteriol.170:2457–2461.

Kinsman, R., B. W. Ibelings, and A. E. Walsby. 1991. Gas vesicle collapse
by turgor pressure and its role in buoyancy regulation byAnabaena
flos-aquae. J. Gen. Microbiol.137:1171–1178.

Koch, A. L. 1995. The geometry and osmotic relation of plasmolysis
spaces in bacteria and the role of endocytosis, tubular structures and
Scheie structures in their formation.J. Theor. Biol.176:471–492.

Koch, A. L. 1998. The biophysics of the gram-negative periplasmic space.
Crit. Rev. Microbiol.24:23–59.

Koch, A. L., and M. F. S. Pinette. 1987. Nephelometric determination of
turgor pressure in growing gram-negative bacteria.J. Bacteriol. 169:
3654–3663.

Koch, A. L., and S. Woeste. 1992. Elasticity of the sacculus ofEscherichia
coli. J. Bacteriol.174:4811–4819.

Labischinski, H., and H. Maidhof. 1994. Bacterial peptidoglycan: overview
and evolving concepts.In Bacterial Cell Wall. J.-M. Ghuysen and R.
Hakenbech, editors. Elsevier Science, Amsterdam. 23–38.

Lacroix, J.-M., M. Tempete, B. Menichi, and J.-P. Bohin. 1989. Molecular
cloning and expression of a locus (mdoA) implicated in the biosynthesis
of membrane-derived oligosaccharides inEscherichia coli. Mol. Micro-
biol. 3:1173–1182.

Laimins, L. A., D. B. Rhodes, and W. Epstein. 1981. Osmotic control of
kdp operon expression inEscherichia coli. Proc. Natl. Acad. Sci. USA.
78:464–468.

Larsen, P. I., L. K. Sydnes, B. Landfald, and A. R. Strøm. 1987. Osmo-
regulation inEscherichia coliby accumulation of organic osmolytes:
betaines, glutamic acid, and trehalose.Arch. Microbiol. 147:1–7.

Li, N., and M. C. Cannon. 1998. Gas vesicle genes identified inBacillus
megateriumand functional expression inEscherichia coli. J. Bacteriol.
180:2450–2458.

Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951.
Protein measurements with the Folin phenol reagent.J. Biol. Chem.
193:265–275.

Malli, R., and W. Epstein. 1998. Expression of the Kdp ATPase is con-
sistent with regulation by turgor pressure.J. Bacteriol.180:5102–5108.

McLaggan, D., and W. Epstein. 1991.Escherichia coliaccumulates the
eukaryotic osmolyte taurine at high osmolality.FEMS Microbiol. Lett.
81:209–214.

McLaggan, D., T. M. Logan, D. G. Lynn, and W. Epstein. 1990. Involve-
ment of g-glutamyl peptides in osmoadaptation ofEscherichia coli.
J. Bacteriol.172:3631–3636.

Meury, J. 1994. Immediate and transient inhibition of the respiration of
Escherichia coli under hyperosmotic shock.FEMS Microbiol. Lett.
121:281–286.

Mitchell, P., and J. Moyle. 1956. Osmotic function and structure in bac-
teria. In Bacterial Anatomy. Symposia of the Society for General Mi-
crobiology. Cambridge University Press, Cambridge, MA. 150–180.

Money, N. 1997. Wishful thinking of turgor revisited: the mechanics of
fungal growth.Fungal Genet. Biol.21:173–187.

Neidhardt, F. C., J. L. Ingraham, and M. Schaechter. 1990. Physiology of
the Bacterial Cell: A Molecular Approach. Sinauer Associates, Inc.,
Sunderland, MA. 8.

Phillip, J. R. 1958. The osmotic cell, solute diffusibility, and the plant
water economy.Plant. Physiol.33:264–271.

Record, M. T., Jr., E. S. Courtenay, D. S. Cayley, and H. J. Guttman.
1998a. Responses ofE. coli to osmotic stress: large changes in amounts
of cytoplasmic solutes and water.Trends Biochem. Sci.23:144–149.

Record, M. T., Jr., E. S. Courtenay, D. S. Cayley, and H. J. Guttman.
1998b. Biophysical compensation mechanisms bufferingE. coli
protein–nucleic acid interactions against changing environments.Trends
Biochem. Sci.23:190–194.

Biophysical Responses of E. coli to Osmotic Stress 1763

Biophysical Journal 78(4) 1748–1764



Reed, R. H., and A. E. Walsby. 1985. Changes in turgor pressure in
response to increases in external NaCl concentration in the gas-vacuolate
cyanobacterium Microcystissp.Arch. Microbiol. 143:290–296.

Richey, B., D. S. Cayley, M. C. Mossing, C. Kolka, C. F. Anderson, T. C.
Farrar, and M. T. Record, Jr. 1987. Variability of the intracellular ionic
environment ofEscherichia coli: differences between in vitro and in
vivo effects of ion concentrations on protein–DNA interactions and gene
expression.J. Biol. Chem.262:7157–7164.

Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. Academic
Press, New York. 476.

Rumley, M. K., H. Therisod, A. C. Weissborn, and E. P. Kennedy. 1992.
Mechanisms of regulation of the biosynthesis of membrane-derived
oligosaccharides inEscherichia coli. J. Biol. Chem.267:11806–11810.

Sen, K., J. Hellman, and H. Nikaido. 1988. Porin channels in intact cells of
Escherichia coliare not affected by Donnan potentials across the outer
membrane.J. Biol. Chem.263:1182–1187.

Schwarz, H., and A. L. Koch. 1995. Phase and electron microscopic
observations of osmotically induced wrinkling and the role of endocy-
totic vesicles in the plasmolysis of the Gram-negative cell wall.Micro-
biology.141:3161–3170.

Stock, J. B., B. Rauch, and S. Roseman. 1977. Periplasmic space in
Salmonella typhimuriumand Escherichia coli. J. Biol. Chem.252:
7850–7861.

Straume, M., S. G. Frasier-Cadoret, and M. L. Johnson. 1991. Least-
squares analysis of fluorescence data.In Topics in Fluorescence Spec-
troscopy. R. J. Lakowicz, editor. Plenum Press, New York. 177–240.

Vinckier, A., and G. Semenza. 1998. Measuring elasticity of biological
materials by atomic force microscopy.FEBS Lett.430:12–16.

Walsby, A. E. 1980. The water relations of gas-vacuolate prokaryotes.
Proc. R. Soc. Lond. B.208:73–102.

Woldringh, C. L. 1994. Significance of plasmolysis spaces as markers for
periseptal annuli and adhesion sites.Mol. Microbiol. 14:597–607.

Wood, J. M. 1999. Osmosensing by bacteria: signals and membrane-based
sensors.Microbiol. Mol. Biol. Rev.63:230–262.

Zhu, G. L., and J. S. Boyer. 1992. Enlargement inChara studied with a
turgor clamp.Plant Physiol.100:2071–2080.

Zimmermann, U. 1978. Physics of turgor- and osmoregulation.Annu. Rev.
Plant Physiol.29:121–148.

1764 Cayley et al.

Biophysical Journal 78(4) 1748–1764


