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ABSTRACT In this work we tested the hypothesis that skeletal muscle fibers from aging mice exhibit a significant decline
in myoplasmic Ca21 concentration resulting from a reduction in L-type Ca21 channel (dihydropyridine receptor, DHPR)
charge movement. Skeletal muscle fibers from the flexor digitorum brevis (FDB) muscle were obtained from 5–7-, 14–18-, or
21–24-month-old FVB mice and voltage-clamped in the whole-cell configuration of the patch-clamp technique according to
described procedures (Wang, Z.-M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709–2716). Total charge movement
or the DHPR charge movement was measured simultaneously with intracellular Ca21 concentration. The maximum charge
movement (Qmax) recorded (mean 6 SEM, in nC mF21) was 53 6 3.2 (n 5 47), 51 6 3.2 (n 5 35) (non-significant, ns), and 33 6
1.9 (n 5 32) (p , 0.01), for the three age groups, respectively. Qmax corresponding to the DHPR was 43 6 3.3, 38 6 4.1 (ns),
and 25 6 3.4 (p , 0.01) for the three age groups, respectively. The peak intracellular [Ca21] recorded at 40 mV (in mM) was
15.7 6 0.12, 16.7 6 0.18 (ns), and 8.2 6 0.07 (p , 0.01) for the three age groups, respectively. No significant changes in the
voltage distribution or steepness of the Q-V or [Ca21]-V relationship were found. These data support the concept that the
reduction in the peak intracellular [Ca21] results from a larger number of ryanodine receptors uncoupled to DHPRs in skeletal
muscle fibers from aging mammals.

INTRODUCTION

The mechanisms underlying decline in muscle power and
fatigue in aging mammals, including humans, are not
known. Studies on muscle contractility in rodents and hu-
mans in vivo and in vitro have demonstrated that skeletal
muscle strength declines with aging (Booth et al., 1994;
Brooks and Faulkner, 1988; Brooks and Faulkner, 1994b;
Eddinger et al., 1985; Edstrom and Larsson, 1987; Renga-
nathan et al., 1998). Several mechanisms have been postu-
lated to explain the age-related skeletal muscle weakness
(for a review see Loeser and Delbono, 1999). It is evident
that the loss of muscle mass (atrophy) does not explain
entirely the decrease in contractile properties with aging
(Brooks and Faulkner, 1994a,b; Moore, 1975). This means
that the conservation of the muscle mass over ages does not
ensure a complete preservation of the muscle tension. Stud-
ies on in vitro contractility showed that when the maximum
isometric force for aged mice and rats is normalized to the
smaller total muscle fiber cross-sectional area, a significant
deficit in specific isometric force remains unexplained by
atrophy (Brooks and Faulkner, 1988; Brooks and Faulkner,
1994b; Renganathan et al., 1998). These data suggest that
other factors in addition to reductions in contractile proteins
are contributing to muscle weakness in muscles from aging
mammals. Studies on skinned muscle fibers demonstrated

that the force generated per cross-sectional area does not
differ in adult and old mice during isometric and shortening
contraction (Brooks and Faulkner, 1994a). Therefore, it is
possible that earlier steps in excitation-contraction coupling
are altered. An incomplete Ca21 activation might account
for differences in normalized tension in muscles from adult
and aged mammals. In the present work we investigated
whether excitation-intracellular Ca21 coupling is a potential
defective step in the contraction of fast-twitch muscles from
aging mammals. Specifically, this study has been designed
to test the hypothesis that in addition to already identified
determinants of muscle impairment with aging a reduction
in L-type Ca21 channel (dihydropyridine receptor, DHPR)
charge movement results in a significant reduction in intra-
cellular Ca21 mobilization. To test this hypothesis, single
fibers from theflexor digitorum brevis(FDB) muscle from
young, middle-aged, and old mice have been voltage-
clamped with the whole-cell configuration of the patch-
clamp technique, and sarcolemmal currents and intracellular
Ca21 have been recorded simultaneously as described pre-
viously (Wang, 1999b). The application of this technique
for the first time to skeletal muscle from aging mouse
allowed us to assess changes in charge movement and
intracellular Ca21 under very stable recording conditions as
described previously for adult muscle fibers (Wang, 1999b).
Furthermore, the simultaneous recording of L-type Ca21

channel charge movement and intracellular Ca21 in the
muscle fiber permits a direct analysis of these associated
cellular events instead of relying on the statistical correla-
tion of both variables studied in separate sets of experiments.

Intramembrane charge movement associated with the L-
type Ca21 channel and sarcoplasmic reticulum Ca21 influx
are part of a signaling cascade that, among other factors,
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determine the magnitude of the muscle contraction tension
(Ashley et al., 1991; Melzer et al., 1995). Therefore, the
reduction in L-type Ca21 channel charge movement will
have an impact on the levels of cytosolic Ca21 available for
skeletal muscle force development in aging mammals. The
present data and previous studies on the number of DHPR
and ryanodine receptors (Renganathan et al., 1997, 1998)
allow us to conclude that the reduction in the peak intracel-
lular [Ca21] results from a larger number of ryanodine
receptors uncoupled to DHPRs (excitation-contraction un-
coupling) in skeletal muscle fibers from aging mammals.

METHODS

Mouse skeletal muscle single fibers

Single skeletal muscle fibers from the FDB muscle were obtained from
5–7- (young group), 14–18- (middle-aged), or 21–24- (old) month-old
FVB mice raised in a pathogen-free area at the Animal Research Program
of Wake Forest University School of Medicine (WFUSM). The maximum
life expectancy of FVB mice is 27 months. Animal handling and proce-
dures followed an approved protocol by the Animal Care and Use Com-
mittee of WFUSM. FDB muscles were dissected in a solution containing
155 mM cesium aspartate, 5 mM magnesium aspartate2, and 10 mM
HEPES (N-[2-hydroxyethyl]piperazine-N9-[2-ethanesulfonic acid]) (pH
7.4 with CsOH) (Beam and Franzini-Armstrong, 1997). Muscles were
treated with 2 mg/ml collagenase (Sigma, St. Louis, MO) in a shaking bath
at 37°C. After 3 h of enzymatic treatment, FDB muscles were dissociated
into single fibers with Pasteur pipettes of different tip sizes.

Charge movement and calcium
current recordings

Muscle fibers were voltage-clamped using an Axopatch-200B amplifier
(Axon Instruments, Foster City, CA) in the whole-cell configuration of the
patch-clamp technique (Hamill et al., 1981) according to procedures pre-
viously described (Wang et al., 1999b). Muscle fibers were transferred to
a small flow-through Lucite chamber positioned on a microscope stage.
Fibers were continuously perfused with the external solution (see below)
using a push-pull syringe pump (WPI, Saratoga, FL). Only fibers exhibit-
ing a clean surface and lack of evidence of contracture were used for
electrophysiological recordings. Patch pipettes were pulled from borosili-
cate glass (Boralex) using a Flaming Brown micropipette puller (P97;
Sutter Instrument Co., Novato, CA) and then fire-polished to obtain elec-
trode resistance ranging from 450 to 650 kV. For these measurements the
pipettes were filled with “pipette” solution. The pipette was filled with the
following “pipette” solution (mM): 140 cesium aspartate; 2 magnesium
aspartate2, 0.2 Cs2EGTA (ethylene glycol-bis(a-aminoethyl ether)-
N,N,N9N9-tetraacetic acid), and 10 HEPES, with pH adjusted to 7.4 with
CsOH (Adams et al., 1990; Wang et al., 1999a). The external solution used
for Ca21 current recording contained (in mM): 150 TEA (tetraethylammo-
nium hydroxide)-CH3SO3, 2 MgCl2, 2 CaCl2, 10 Na-HEPES and 0.001
tetrodotoxin (Delbono, 1992; Delbono et al., 1997b). Solution pH was
adjusted to 7.4 with CsOH. Both the pipette and the bath solution were
selected based on the ease of membrane seal formation and cell stability
over time. For charge movement recording, Ca21 current was blocked with
the external solution containing 0.5 mM Cd21 and 0.3 mM La31 (Adams
et al., 1990; Wang et al., 1999b).

Whole-cell currents were acquired and filtered at 5 kHz with pCLAMP
6.04 software (Axon Instruments). A Digidata 1200 interface (Axon In-
struments) was used for A-D conversion. Membrane current during a
voltage pulse, P, was initially corrected by analog subtraction of linear

components. The remaining linear components were digitally subtracted
on-line using hyperpolarizing control pulses of one-quarter test pulse
amplitude (-P/4 procedure) (Bezanilla, 1985; Delbono, 1992; Delbono and
Stefani, 1993a) as described for rat and mouse muscle fibers (Delbono,
1992; Delbono et al., 1997). Four control pulses were applied before the
test pulse. Charge movements were evoked by 25-ms depolarizing pulses
from the holding potential (280 mV) to command potentials ranging from
270 to 70 mV with 10-mV increments. Intramembrane charge movement
was calculated as the integral of the current in response to depolarizing
pulses (charge on,Qon) and is expressed per membrane capacitance (cou-
lombs per farad). The complete blockade of the inward Ca21 current was
verified by theQon-Qoff linear relationship (Wang et al., 1999b).

Intracellular Ca21 transient recording

Intracellular Ca21 transients were recorded simultaneously with sarcolem-
mal currents in single voltage-clamped FDB muscle fibers. A group of
experiments done in 0.05 and 0.1 mM EGTA did not show significant
changes in the intracellular Ca21 transient kinetics (data not shown). The
fluorescent indicator calcium green-5N (200mM) (Molecular Probes,
Eugene, OR) with low affinity for Ca21 was used as the Ca21 probe. The
fibers were loaded with the Ca21 dye via the patch pipette. After the
whole-cell voltage-clamp was attained the dye was allowed to diffuse for
20–30 min before the fiber was pulsed. As the fiber sarcomere space was
;1.5 mm, only slight movements were detected in some fibers on one or
both ends that did not interfere with the fluorescent recording in the center
of the fiber (see below). For fluorescent recordings, the fiber was illumi-
nated with a 75 W xenon lamp through a 203 Fluar objective (Zeiss,
Oberkochen, Germany). The light beam passed through an excitation filter
centered at 485 nm wavelength with 10 nm bandwidth (Omega Optical
Inc., Brattleboro, VT) mounted in a computer-controlled filter wheel (Ludl
Electronics, Hawthorne, NY). The light was reflected by a dichroic mirror
centered at 505 nm (DRLPO2, Omega Optical) and at a 45° angle. The
emitted light was collected by a frame-transferred CCD camera (PXL-
EEV-37, Photometrics, Tucson, AZ) after passing through an emission
filter centered at 535 (DF35) (Omega Optical). Hardware control, image
acquisition, and processing were done with ISee software (Inovision,
Durham, NC) run in a SUN (Mountain View, CA) or a Silicon Graphics O2

(Mountain View, CA) workstation. Although the fluorescence was re-
corded from the whole cell, only a rectangular region of interest (ROI) of
;2000 to 3000 pixels near the patch pipette was analyzed. The patch
pipette was not included in the ROI. Mean values of fluorescence changes
normalized to basal fluorescence were plotted over time. Sequences of
images for up to 2 s were acquired at 50 frames/s (20-ms interval). All of
the records were corrected for background fluorescence (optical pathway)
and photobleaching. Data are expressed as a percentage of change in
fluorescence relative to basal fluorescence (1003 DF/F) (Finch and
Augustine, 1998).

Calculation of intracellular Ca21 transients from
calcium green-5N signals

The in vivo calibration of the dye and calculations of the kinetic constants
of the calcium green-5N/Ca21 reaction followed described procedures
(Shirokova et al., 1996; Tsugorka et al., 1995) with some modifications.
Changes in fluorescence intensity, normalized to basal fluorescence (DF/F)
recorded in individual muscle fibers, were scaled to the concentration of
the dye bound to Ca21 ([dye/Ca21]) with the following equation

@dye;Ca21# 5 @dyeT#~F 2 Fmin!/~Fmax 2 Fmin! (1)

where [dyeT] is the total dye concentration andFmin and Fmax are the
minima (absence of Ca21) and maxima (saturating Ca21) of fluorescence.
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The time course of [Ca21](t) was calculated from the dye signal recorded
in the muscle fiber as

@Ca21#on
21 dF/dt 1 Kd~F 2 Fmin!]/~Fmax 2 F! (2)

wherekon is the dye/Ca21 association rate constant andKd the dissociation
constant.Kd was measured in non-contracting fibers from young mice
equilibrated with different Ca21 concentrations (0–100 mM) (Beuckel-
mann and Wier, 1988). Free Ca21 and Mg21 concentrations in solutions
were calculated according to Fabiato (1988). TheKd values recorded in
muscle fibers from young mice (336 1.8mM; n 5 20) did not differ from
those recorded in fibers from middle-age and old mice (316 2.1 and 296
3.1, respectively,n 5 18; p . 0.05). Thekon value was calculated askoff/
Kd, andkoff was obtained as the reciprocal oftoff for each experiment. Fig.
1 shows representative records of the dye/Ca21 complex and transient
changes in intracellular [Ca21].

All of the experiments were carried out at room temperature (22°C).
Data values are given as means6 SEM with the number of observations
(n). Experimental groups have been statistically analyzed using Student’s
unpairedt-test, andp , 0.05 was considered significant.

RESULTS

Charge movement in skeletal muscle fibers from
young, middle age and old mice

Intramembrane charge movement was recorded after block-
ing the inward Ca21 current (see Methods). Fig. 2A shows
a group of charge movement traces recorded in a muscle

fiber from a young (5-month-old) mouse. Charge move-
ments have been evoked by applying 25-ms depolarizing
voltage steps from the holding potential (280 mV) to the
command potentials ranging from210 to 30 mV. The
current recorded after blocking the Ca21 current is the
intramembrane charge movement because it shows satura-
tion at both extremes of the voltage range, and the amount
of charge moved during depolarization (Qon) is equal to the
charge that returns during the repolarization (Qoff). This has
been demonstrated previously for adult skeletal muscle fi-
bers voltage-clamped in the whole-cell configuration of the
patch-clamp technique (Wang et al., 1999b). We have also
recorded the charge movement corresponding to gating of
the L-type Ca21 channel/DHPR (Adams et al., 1990). To
this end, we used a pulse protocol consisting of a 2-s
prepulse to230 mV and a subsequent 5-ms repolarization
to a pedestal potential of250 mV, followed by a 12.5-ms
depolarization from250 to 50 mV with 10-mV intervals
(Adams et al., 1990). The optimal duration of the prepulse
has been defined as the value at which no further immobi-
lization of charge movement is attained. The optimal dura-
tion of the prepulse has been determined to be 2 s after
testing a range of prepulses from 1 to 6 s. Prepulses longer
than 2 s did not significantly modify the integral of the
charge movement elicited by the test pulse in fibers from
young, middle-aged, and old mice (data not shown). There-
fore, a 2-s prepulse protocol was applied systematically to
all of the muscle fibers included in the present study. Fig. 2
B shows charge movement traces in response to the appli-
cation of the prepulse protocol from210-mV to 30-mV
command pulses to the same fiber recorded in Fig. 2A.
Total charge movement and the immobilization-resistant
charge have been plotted in Fig. 2D. For the analysis of the
voltage-dependence of the charge, data points were fitted to
a Boltzmann equation of the form:

Qon 5 Qmax/$1 1 exp@zQF~V1/2Q 2 Vm!/RT#%, (3)

whereQmax is the maximum charge,Vm is the membrane
potential,V1/2Q is the charge movement half-activation po-
tential,zQ is the effective valence, andF, R, andT have their
usual thermodynamic meanings. The best-fitting parameters
for Qmax, V1/2Q, andzQ recorded in response to either the
prepulse or the non-prepulse protocol in muscle fibers from
young mice are included in Table 1. From these measure-
ments we conclude that 196 2.1% (n 5 47, 35, and 32 for
young, middle-aged, and old fibers, respectively) of the
total charge is immobilized by the prepulse depolarization,
and the voltage distribution of the charge is shifted toward
more negative potentials.

Fig. 3 shows representative traces of charge movement
recorded in response to either the non-prepulse (A) or the
prepulse (B) protocol in a muscle fiber from a middle-aged
(15-month-old) mouse. The maximum charge movement
and its voltage distribution in both recording conditions are

FIGURE 1 Calculation of intracellular Ca21 concentration. (A) FDB
muscle fiber voltage-clamped in the whole-cell configuration of the patch-
clamp technique. The calcium green-5N/Ca21 signal was elicited by a
25-ms depolarizing pulse from the holding potential of280 mV to 20 mV
(command potential). (B) Transient increase in intracellular free Ca21

concentration calculated as explained in Methods.Kd 5 33 mM, toff 5 3.7
ms,koff 5 0.27 ms21, andkon 5 0.0082mM21 ms21.
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represented in Fig. 3. The best-fitting parameters forQmax,
V1/2Q, andz are given in Table 1. The statistical analysis of
these parameters did not show significant differences with
those recorded in muscle fibers from young mice.

Fig. 4 shows a set of charge movement traces recorded in
a single muscle fiber from an old mouse (22 months old) in
response to the non-prepulse (A) and prepulse (B) protocol.
TheQon-voltage relationships have been plotted in Fig. 3D.
Figs. 2D, 3 D, and 4D have been plotted in the same scale
to compare the magnitude of the age-related decline in the
maximum charge movement.Qmax recorded in fibers from
the older group was significantly smaller than in fibers from
young and middle-aged mice, whereas no statistically sig-
nificant differences inV1/2Q and z have been recorded
(Table 1). The fraction of immobilized charge recorded in
muscle fibers from either middle-aged or old mice (256 2.9

and 246 2.7%, respectively) was similar to that recorded in
fibers from young mice.

Intracellular Ca21 recording in FDB muscle fibers
from young, middle-aged, and old mice

Intracellular Ca21 has been recorded with the relatively low
affinity Ca21 fluorescent dye calcium-green-5N. This Ca21

indicator has been selected based onKd measurements in
this and previous works (Wang et al., 1999b) and on the
peak of intracellular Ca21 recorded in rat skeletal muscle
fibers (Delbono and Stefani, 1993b; Garcia and Schneider,
1993). Therefore, saturation of the calcium green-5N with
Ca21 is not expected. This dye also exhibits an acceptable
quantum yield that allows for recordings of changes in the

FIGURE 2 (A) Charge movement recorded in an
FDB muscle fiber from a 5-month-old mouse
evoked by 25-ms depolarizing voltage steps from
the holding potential (280 mV) to the command
potentials ranging from210 to 30 mV. (B) Charge
movement evoked by a prepulse protocol consist-
ing of a 2-s depolarization to230 mV followed by
a 5-ms repolarization to a pedestal potential of250
mV and a 12.5-ms depolarization from250 to 50
mV with 10-mV intervals in the same fiber shown
in A. (C) Intracellular fluorescence recorded with
calcium green-5N as a Ca21 probe in the cell
shown in A and B in response to the prepulse
protocol. The dotted line represents the baseline
after subtracting the linear components (A and B)
or after correcting for the basal fluorescence (C).
(D) Qon-Vm relationship for charge movement re-
corded in response to non-prepulse and prepulse
protocols. The data points were fitted to a Boltz-
mann equation (Eq. 3) (continuous line). The best-
fitting parameters are given in Table 1.
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dye/Ca21 complex with the photo-detector device used in
the present work. Figs. 2C, 3 C, and 4C show represen-
tative traces of intracellular Ca21 fluorescence recorded
simultaneously with DHPR charge movement (prepulse
protocol). It is apparent that the peak fluorescent signal
recorded in the fiber from the old mouse (Fig. 4C) is
significantly lower than in fibers from young mice. Fig. 5
shows the voltage-dependence of the calculated peak Ca21

transient recorded in muscle fibers from young, middle-
aged, and old mice. The data points were fitted to Eq. 3 and
the best-fitting parameters are included in Table 1. No
significant differences between muscle fibers from young
and middle-aged mice were found. However, the peak Ca21

concentration in fibers from old mice was significantly
reduced compared with fibers from middle-aged and old
mice without. No significant changes in theV1/2Q and z
parameters were recorded among fibers from the same
animal groups (Table 1).

DISCUSSION

In this work we demonstrate that the peak intracellular Ca21

evoked by sarcolemmal depolarization under voltage-clamp
conditions in muscle fibers from old mice is significantly
smaller than that recorded in fibers from middle-aged or
young mice. Intracellular Ca21 measurements performed in
muscle fibers from mice of different ages demonstrates that
it is senescence and not maturation which determines a
substantial reduction in intracellular Ca21 concentration
upon fiber activation. The sarcoplasmic reticulum Ca21

release is a crucial step in sarcolemmal excitation-contrac-

tion coupling because the levels of free cytosolic Ca21

regulate muscle tension (Ashley et al., 1991). In the present
study we demonstrate that muscle fibers from old mice
exhibit a reduction of;48% of the peak Ca21 concentration
recorded in fibers from young and middle-aged mice. This
significant reduction in free Ca21 available to bind to con-
tractile proteins might account for the reported decline in
specific muscle tension (tension normalized to cross-sec-
tional area) not explained by atrophy in skeletal muscle
fibers from aging mammals (Brooks and Faulkner, 1994b).

Absolute reductions in the number and/or function of the
DHPR and/or RyR1 are potential explanations for the age-
related impairment in intracellular Ca21 mobilization in
skeletal muscle from aging mammals (Delbono et al.,
1997a). The percent decline in myoplasmic Ca21 concen-
tration mentioned above is very similar to the magnitude of
the decrease in total charge movement and in the charge
movement corresponding to the DHPR. The application of
a prolonged depolarizing pulse to the muscle fiber induces
inactivation of voltage-gated ion channels that potentially
contribute to the charge movement recorded (Adams et al.,
1990). We tested different prepulse durations and the
amount of charge immobilization was similar (see above).
The charge immobilized by the prepulse protocol in muscle
fibers from young, middle-aged, and old mice is approxi-
mately half of that reported in myotubes (40%) (Adams et
al., 1990). This means that the contribution of voltage-gated
ion channels other than the DHPR to the charge movement
recorded in adult fibers is less prominent than in myotubes,
and it does not change significantly at older ages.

TABLE 1 Best-fitting parameters describing the voltage-dependence of charge movement and intracellular Ca21

simultaneously recorded in FDB muscle fibers

Best-fitting parameters
5–7-month-old mice

(n 5 47)
14–18-month-old mice

(n 5 35)
21–24-month-old mice

(n 5 32)

Charge movement
Non-prepulse Qmax (nC mF21) 536 2.5 516 3.2 336 1.9

(ns) (p , 0.01)
VQ1/2 (mV) 2186 1.1 2176 1.6 2186 1.3

(ns) (ns)
z 1.56 0.21 1.36 0.15 1.66 0.18

(ns) (ns)
Prepulse Qmax (nC mF21) 436 3.3 386 4.1 256 3.4

(ns) (p , 0.01)
VQ1/2 (mV) 21.56 0.18 21.66 0.7 21.96 1.1

(ns) (ns)
z 1.76 0.08 1.86 0.07 2.26 0.13

(ns) (ns)
Intracellular [Ca21] Maximum [Ca21] (mM) 15.76 0.12 16.76 0.18 8.26 0.07

(ns) (p , 0.01)
V1/2 (mV) 6.36 0.05 6.16 0.07 5.76 0.08

(n 5 29) (n 5 23) (n 5 25)
(ns) (ns)

z 2.36 0.15 2.16 0.18 2.36 0.19
(ns) (ns)

n, Number of muscle fibers; ns, non-significant statistically.
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The percent decrease in total and DHPR charge move-
ment recorded in fibers from young or middle-aged to old
mice is similar (see above). Although the decrease in charge
movement and myoplasmic Ca21 concentration at older
ages is similar, it may be possible that the smaller peak
Ca21 in fibers from older animals does not result only from
the deficit in charge movement. Therefore, evidences that
support this concept and some alternative explanations will
be discussed. Previous studies from our laboratory demon-
strated that the number of DHPR expressed in mouse EDL
muscles decreases with aging, whereas no significant
changes in the number of RyR1 were detected in fast-twitch
muscles from the same group of mice (Renganathan et al.,
1997, 1998). In these publications no significant changes in
the pharmacological properties of the two receptors for their
high-affinity ligands were detected. The reduction in the
number of DHPR measured by radioligand binding assay is
consistent with the decrease in charge movement corre-

sponding to the DHPR reported here. The ratio between the
number of DHPRs and RyR1s in adult EDL muscle showed
a mean value of 0.92. This ratio suggests that every fourth
RyR1 is linked to a group of four DHPR (Delbono and
Meissner, 1996). The reduction in DHPR charge movement
in fibers from aging mice is consistent with measurements
of DHPR maximum binding capacity (Renganathan et al.,
1997). The magnitude of this reduction indicates that every
sixth to eighth RyR1 is linked to a group of four DHPR in
muscles from aging mice.

The lack of changes in the receptor affinity for the ligand
does not rule out completely functional alterations in the
DHPR. To completely ascertain this point, single DHPR
recordings would be needed in muscle fibers. However, the
DHPR is not accessible to patch pipettes due to its location
at the t-tubule membrane. Similar considerations can be
applied to the RyR1. Although the maximum binding ca-
pacity and affinity of the RyR1 for its ligand did not change

FIGURE 3 Charge movement recorded in a
muscle fiber from a 15-month-old mouse
evoked by a non-prepulse (A) or prepulse pro-
tocol (B) in the same muscle fiber. (C) Intracel-
lular fluorescence recorded with calcium
green-5N as a Ca21 probe in the cell shown in
A and B in response to the prepulse protocol.
The dotted line represents the baseline after
subtracting the linear components (A andB) and
after correcting for the basal fluorescence (C).
(D) Qon-Vm relationship for charge movement
recorded in response to a non-prepulse and pre-
pulse protocols. The data points were fitted to a
Boltzmann equation (Eq. 3) (continuous line).
The best-fitting parameters are given in Table 1.
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in fast-twitch muscle fibers from aging mice, single RyR1
recordings in vivo would be desirable. Single RyR1 record-
ings in living muscle fibers have not been reported yet due
to technical difficulties in accessing an intracellular or-
ganelle (sarcoplasmic reticulum). It has been demonstrated
that confocal microscopy is a very powerful technique to
assess the function of a single RyR1 or a group of RyR1 in
living frog muscle cells (Klein et al., 1996; Tsugorka et al.,
1995). However, this technique failed to show Ca21 sparks
in mammalian skeletal muscle (Shirokova et al., 1998;
Niggli, 1999). These studies suggest that technical devel-
opment is required to address whether the age-related de-
crease in the voltage-activated Ca21 release in skeletal
muscle is associated with alterations in DHPR and/or RyR1
function.

Another potential explanation for the lower peak myo-
plasmic Ca21 concentration in muscle fibers from old mam-
mals is a sarcoplasmic reticulum Ca21 depletion faster than

in fibers from young mice. Shorter depolarizations could
deplete SR luminal Ca21 in fibers from older mammals.
This alternative has not been fully explored. There are some
indications that there is a residual free luminal Ca21 in the
fibers from older humans even after prolonged depolariza-
tions. This is based on the observation that caffeine can
elicit further increases in myoplasmic Ca21 concentration
after a maximal activation (Delbono et al., 1995). To ex-
plore this issue in more depth, direct recordings of sarco-
plasmic reticulum luminal Ca21 in muscle fibers from an-
imals of different ages are needed.

In summary, the lower peak myoplasmic Ca21 concen-
tration recorded in fibers from the FDB muscle is associated
with a reduction in DHPR charge movement and in the
number of DHPRa1 subunits (Renganathan et al., 1997).
The impact of these events on single muscle fiber contrac-
tility remains to be addressed and it is the subject of ongoing
studies in our laboratory (Gonza´lez and Delbono, 2000).

FIGURE 4 Charge movement recorded in a mus-
cle fiber from a 22-month-old mouse evoked by a
non-prepulse (A) or prepulse protocol (B) in the
same muscle fiber. (C) Intracellular fluorescence re-
corded with calcium green-5N as a Ca21 probe in the
cell shown inA and B in response to the prepulse
protocol. The dotted line represents the baseline after
subtracting the linear components (A and B) and
after correcting for the basal fluorescence (C). (D)
Qon-Vm relationship for charge movement recorded
in response to a non-prepulse and prepulse protocols.
The data points were fitted to a Boltzmann equation
(Eq. 3) (continuous line). The best-fitting parameters
are given in Table 1.

E-C Coupling and Aging Skeletal Muscle 1953

Biophysical Journal 78(4) 1947–1954



This work was supported by the National Institutes of Health/National
Institute on Aging Grants AG00692, AG13934, AG10484, and AG15820
(to O.D.).

REFERENCES

Adams, B. A., T. Tanabe, A. Mikami, S. Numa, and K. G. Beam. 1990.
Intramembrane charge movement restored in dysgenic skeletal muscle
by injection of dihydropyridine receptor cDNAs.Nature.346:569–572.

Ashley, C. C., I. Mulligan, and J. L. Trevor. 1991. Ca21 and activation
mechanisms in skeletal muscle.Q. Rev. Biophys.24:1–73.

Beam, K. G., and C. Franzini-Armstrong. 1997. Functional and structural
approaches to the study of excitation-contraction coupling.Meth. Cell
Biol. 52:283–306.

Beuckelmann, D. J., and W. G. Wier. 1988. Mechanism of release of
calcium from sarcoplasmic reticulum of guinea-pig cardiac cells.
J. Physiol. (Lond.).405:233–255.

Bezanilla, F. 1985. Gating of sodium and potassium channels.J. Membr.
Biol. 88:97–111.

Booth, F. W., S. H. Weeden, and B. S. Tseng. 1994. Effect of aging on
human skeletal muscle and motor function.Med. Sci. Sports.26:
556–560.

Brooks, S. V., and J. A. Faulkner. 1988. Contractile properties of skeletal
muscles from young, adult and aged mice.J. Physiol. (Lond.).404:71–82.

Brooks, S. V., and J. A. Faulkner. 1994a. Isometric, shortening, and
lengthening contractions of muscle fiber segments from adult and old
mice.Am. J. Physiol. Cell Physiol.267:C507–C513.

Brooks, S. V., and J. A. Faulkner. 1994b. Skeletal muscle weakness in old
age: underlying mechanisms.Med. Sci. Sports.26:432–439.

Delbono, O. 1992. Calcium current activation and charge movement in
denervated mammalian skeletal muscle fibres.J. Physiol. (Lond.).451:
187–203.

Delbono, O., and G. Meissner. 1996. Sarcoplasmic reticulum Ca21 release
in rat slow- and fast-twitch muscles.J. Membr. Biol.151:123–130.

Delbono, O., K. S. O’Rourke, and W. H. Ettinger. 1995. Excitation-
calcium release uncoupling in aged single human skeletal muscle fibers.
J. Membr. Biol.148:211–222.

Delbono, O., M. Renganathan, and M. L. Messi. 1997a. Excitation-Ca21

release-contraction coupling in single aged human skeletal muscle fiber.
Muscle Nerve.5: S88–S92.

Delbono, O., M. Renganathan, and M. L. Messi. 1997b. Regulation of
mouse skeletal L-type Ca21 channel by activation of the insulin-like
growth factor-1 receptor.J. Neurosci.17:6918–6928.

Delbono, O., and E. Stefani. 1993a. Calcium current inactivation in dener-
vated rat skeletal muscle fibres.J. Physiol. (Lond.).460:173–183.

Delbono, O., and E. Stefani. 1993b. Calcium transients in single mamma-
lian skeletal muscle fibres.J. Physiol. (Lond.).463:689–707.

Eddinger, T. J., R. L. Moss, and R. G. Cassens. 1985. Fiber number and
type composition in extensor digitorum longus, soleus, and diaphragm
muscles with aging in Fisher 344 rats.J. Histochem. Cytochem.33:
1033–1041.

Edstrom, L., and L. Larsson. 1987. Effects of age on contractile and
enzyme-histochemical properties of fast- and slow-twitch single motor
units in the rat.J. Physiol. (Lond.).392:129–145.

Fabiato, A. 1988. Computer programs for calculating total from specified
free or free from specified total ionic concentrations in aqueous solutions
containing multiple metals and ligands.In Methods in Enzymology,
Biomembranes. Vol. 157, part A. S. Fleisher and B. Fleisher, editors.
Academic Press, Inc., San Diego. 378–417.

Finch, E. A., and G. J. Augustine. 1998. Local calcium signalling by
inositol-1,4,5-trisphosphate in Purkinje cell dendrites.Nature. 396:
753–756.

Garcia, J., and M. F. Schneider. 1993. Calcium transients and calcium
release in rat fast-twitch skeletal muscle fibres.J. Physiol. (Lond.).
463:709–728.
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FIGURE 5 Peak intracellular Ca21 concentration-membrane voltage re-
lationship recorded in FDB muscle fibers from young, middle-aged, and
old mice in response to the prepulse protocol. The data points were fitted
to a Boltzmann equation (Eq. 3) and represented as a continuous, dotted, or
dotted-dashed line for experiments in muscle fibers from young, middle-
aged, or old mice.
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