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ABSTRACT Within the context of DNA rings, we analyze the relationship between intrinsic shape and the existence of
multiple stable equilibria, either nicked or cyclized with the same link. A simple test, based on a perturbation expansion of
symmetry breaking within a continuum elastic rod model, provides good predictions of the occurrence of such multiple
equilibria. The reliability of these predictions is verified by direct computation of nicked and cyclized equilibria for several
thousand DNA minicircles with lengths of 200 and 900 bp. Furthermore, our computations of equilibria for nicked rings predict
properties of the equilibrium distribution of link, as calculated by much more computationally intensive Monte Carlo
simulations.

1. INTRODUCTION

Various elastic models have been used to calculate DNA
configurations subject to externally imposed constraints.
One of these constraints, studied experimentally by Pulley-
blank et al. (1975), Depew and Wang (1975), Shore and
Baldwin (1983), and Horowitz and Wang (1984), is circu-
larity, the requirement that the two ends of the DNA close
to form a ring. If the two strands of the sugar-phosphate
backbone are required to close, the DNA ring is referred to
ascyclized, whereas if only one strand is closed, the DNA
is said to benicked.

Models of such cyclization experiments often assume an
intrinsically straight reference state for the unconstrained
double-helical DNA, as, for instance, in Levene and Croth-
ers (1986), Shimada and Yamakawa (1988), Klenin et al.
(1991), and Tobias (1998). Although this hypothesis may
seem to be a fair first approximation, experimental evidence
for a mild but significant intrinsic curvature has accumu-
lated during the last 20 years (for a review, see, for instance,
Olson and Zhurkin, 1996). These observations have moti-
vated a refinement of DNA models by the incorporation of
intrinsically curved reference states, either as isolated bent
sites (Bauer et al., 1993; Tobias and Olson, 1993; Westcott
et al., 1995; Yang et al., 1995; Klenin et al., 1995; Rippe et
al., 1995), or in a sequence-dependent manner (De Santis et
al., 1992; Katritch and Vologodskii, 1997; Manning et al.,
1996; Kahn and Crothers, 1998).

DNA molecules can cyclize into several local minima of
different links, forming the so-called topoisomer distribu-
tion (as reviewed, for instance, in Bates and Maxwell
(1993), Levene (1994), and Stasiak (1996)). In this paper we
focus on a different phenomenon that arises when the in-

trinsic curvature of DNA is taken into account: the existence
of more than one cyclized local minimum of the same link,
which we will refer to asmultiple cyclized minima. In
addition, the presence of intrinsic curvature can cause the
DNA to have more than one nicked local minimum, a
phenomenon we refer to asmultiple nicked minima. We will
describe the two phenomena collectively asmultiple minima.

As reviewed by Schlick (1995) and Olson (1996), there
are several numerical strategies for determining local en-
ergy minima within elastic DNA models, including direct
minimization, solution of equilibrium equations, or some
form of simulated annealing (e.g., using Monte Carlo). This
paper will primarily be concerned with the solution of
equilibrium equations, particularly those associated with a
continuum rod model (Benham, 1979; LeBret, 1979; Yang
et al., 1993; Manning et al., 1996; Manning and Maddocks,
1999), as can be derived through standard procedures of the
calculus of variations. More precisely, we present an anal-
ysis of the equilibrium equations that provides a qualitative
understanding of the existence of multiple minima not
readily available from numerical minimization or simulated
annealing. (Because our results are derived from the equi-
librium equations, they apply not only to multiple minima,
but also to multiple equilibria of other types (such as saddle
points), but we will focus here on the implications for local
minima.)

In particular, we analyze the important consequences of
symmetry breaking in the equilibrium conditions in the
transition from the symmetrical case of an intrinsically
straight, isotropic model to the nonsymmetrical case incor-
porating intrinsic curvature. The same transition was the
focus of the recent Metropolis Monte Carlo study (Katritch
and Vologodskii, 1997, hereafter abbreviated as KV), and
we compare our results directly with their findings. For
cyclized DNA, there is an integer-valued linkLk, which is
related to total twistTw and writheWr by the well-known
formula Lk 5 Tw 1 Wr. Both the twist and writhe remain
well defined for nicked minicircles, and KV therefore define
the sumTw 1 Wr to be a generalized, usually noninteger,
link Lk. In their Monte Carlo simulations, KV discovered
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that the distributionP(Lk) of this noninteger link in nicked
DNA is dramatically affected by the presence of intrinsic
DNA curvature. They observed that whileP(Lk) for intrin-
sically straight DNA always looks Gaussian, the addition of
intrinsic curvature led in certain cases to aP(Lk) that could
only be fit by a sum of two (or more) Gaussians. They noted
that this bimodal behavior occurs especially when the in-
trinsic shape of the DNA is S-like. They concluded from
these findings that the addition of intrinsic curvature can
induce a second nicked minimum not found in the intrinsi-
cally straight case.

Of course, Metropolis Monte Carlo simulations do not
directly compute equilibria, but rather sample an assumed
equilibrium distribution of shapes about one or more local
minima. Thus the presence of multiple minima can only be
detected indirectly by Monte Carlo methods and then per-
haps computed via the addition of simulated annealing. In
contrast, we will show that a direct analysis of the equilib-
rium equations yields a computationally simple test for the
presence of multiple minima. This test is in good agreement
with the Monte Carlo findings of KV but is computationally
much less intensive. Specifically, we show that the exis-
tence of multiple nicked minima arises from the perturba-
tion of the family of degenerate equilibria that exists for the
symmetrical case of an intrinsically straight rod. The exis-
tence of multiple minima can be predicted via the evaluation
of certain simple integrals of intrinsic shape parameters that
are computable from the basepair sequence in a few sec-
onds. Our predictions are in agreement with the distinction
between C and S shapes proposed by KV, but they also
provide a quantitative, more refined selection criterion in
other cases where the presence of multiple minima is less
intuitive. The new criterion accordingly offers a valuable
tool in guiding the selection of interesting sequences for
further investigation.

In Section 2, we describe the continuum rod equilibrium
equations, along with the perturbation expansion developed
by Manning and Maddocks (1999) that is at the heart of our
classification of multiple minima. In Section 3, we describe
both the equilibrium and Monte Carlo computations used to
illustrate our results. In Sections 4.1–4.3, we present a study
of circular DNA minima (both nicked and cyclized) for
several thousand different DNA sequences of lengths 200
and 900 bp that verifies the efficiency of the perturbation
expansion as an indicator of multiple minima. Finally, in
Section 4.4, we investigate in detail the connections be-
tween the equilibria computed within our static elastic
model and the equilibrium distribution simulated by the KV
Metropolis Monte Carlo computations. We find strong cor-
relations between the number, locations, and areas of peaks
in the distributionP(Lk) with the number, links, and ener-
gies of the equilibria. Given the complexity of the strain-
energy surface on which the Monte Carlo simulation wan-
ders, it is perhaps surprising that a relatively simple and fast
equilibrium computation can yield such good predictions of

equilibrium distributions. This observation thus offers hope
that equilibrium computations can be used in the future as
valuable precomputations to guide the selection of interesting
sequences for Monte Carlo simulations, or indeed, experi-
ments.

2. THEORY

Section 2.1 presents the basic assumptions of rod mechan-
ics, and Section 2.2 describes our procedure for incorporat-
ing DNA parameters into this continuum model. Section 2.3
describes the static equilibrium configurations of an elastic
ring for an intrinsically straight isotropic rod. Then in Sec-
tion 2.4 we present the central result to be applied in this
paper: a perturbation computation that determines the num-
ber of ring equilibria that result when an infinitesimal in-
trinsic curvature is added to the model. Finally, in Section
2.5, we discuss what this infinitesimal result implies for the
typical curvatures appearing in real DNA.

2.1. Elastic rod equilibria

We begin by summarizing the formulation presented by
Dichmann et al. (1996) of the special Cosserat theory (see,
e.g., Antman, 1995), commonly used in continuum mechan-
ics to model an inextensible and unshearable elastic rod. For
each value of arc lengths along the rod (0# s # 1), the
center line is denoted byr (s), and the orientation of the rod
cross section is given by an orthonormal frame of directors
(d1(s), d2(s), d3(s)). Under the assumptions of inextensibil-
ity and unshearability, the vectord3 normal to the cross
section coincides with the unit tangent vector to the center-
line r * (differentiation bys being denoted throughout by a
prime).

Rod equilibria, by definition, are critical or stationary
points of a strain energyE over a specified space of rod
configurations, generally described via a set of constraints.
First we describe the particular form that we will assume for
E and then present the constraints of interest for application
to DNA rings.

The strain energyE is defined in terms of the strainsui(s):

u1~d1, d2, d3! ; 2d2
Td93,

(1)
u2~d1, d2, d3! ; d1

Td93,

u3~d1, d2, d3! ; d2
Td91.

In the absence of external forces, we assume the rod has a
unique minimal-energy intrinsic shape (d̂1(s), d̂2(s), d̂3(s)),
with associated intrinsic strainsûi(s) [ ui(d̂1, d̂2, d̂3). Under
the assumption of hyperelasticity, the strainsui determine a
strain energy via a density functionW(u1, u2, u3, s):

E 5 E
0

1

W~u1~s!, u2~s!, u3~s!, s!ds. (2)
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In this paper, we further assume the particular form

W~u1, u2, u3, s! 5
1

2 O
i51

3

Ki~ui 2 ûi!
2, K1 5 K2,

although the procedures we describe could similarly be
applied to other, more general strain-energy functions. In all
computed examples, we takeK3 5 0.8K1, a value near the
bottom of the typically reported range for the ratio of twist
to bending stiffnesses, 0.7# K3/K1 # 2.0 (Schlick, 1995).
For this choice, we have previously found good agreement
between rod model energies and cyclizationJ factors (Man-
ning et al., 1996). However, all of our analytic consider-
ations (such as Eq. 9) hold for arbitrary values ofK3 . 0,
and the numerical computations could readily be repeated
for any other value.

We first consider the constraints for a ring, as shown in
Fig. 1, which require that the rod center line be closed, the
tangent vectors match at the closure point, and a twist angle
a be imposed:

r ~1! 5 r ~0!,
(3)

d3~1! 5 d3~0!,

d1~1! 5 cosa d1~0! 1 sina d2~0!,

d2~1! 5 2sina d1~0! 1 cosa d2~0!.

If a is a multiple of 2p, then these conditions model
cyclization. In contrast, and following KV, our physical
model of a nicked equilibrium is that the DNA double helix
on either side of the nick site has a common tangent direc-
tion but is free to rotate about it. Thus for a nick site ats 5
1 we impose only the constraints that require the center line
to be closed and the tangent vectors to match at the closure

point:

r ~1! 5 r ~0!,
(4)

d3~1! 5 d3~0!.

In the case of cyclization, the ribbon is closed, and the
two edges of the ribbon are closed curves. We can thus
define an integer linking number (or simply link)Lk of the
two edges, which is a topological invariant of the ribbon.
The Călugăreanu-White-Fuller theorem (Ca˘lugăreanu,
1959, 1961; White, 1969; Fuller, 1971) (see Moffatt and
Ricca (1992) for a discussion of the history of this theorem)
states that the integerLk can be written as

Lk 5 Tw1 Wr, (5)

where the twistTw and writheWr are defined as

Tw;
1

2p E
0

1

u3~s!ds,

Wr ;
1

4p E
0

1E
0

1 ~r ~s! 2 r ~s!!T~r *~s! 3 r *~s!!

ur ~s! 2 r ~s!u3 ds ds.

BecauseTw andWr are well defined for nonclosed ribbons,
it is reasonable to generalize the notion ofLk to a real-
valued quantity defined by Eq. 5. This generalization is
consistent with the Monte Carlo study in KV, to which we
will make comparisons. We will also use the fact, reported
by KV, that the fractional parts ofLk and ofa/2p are equal.
See Hoffman et al. (manuscript in preparation) for a proof of
this result and further discussion.

By standard techniques in the calculus of variations,
critical points ofE are found by solving a system of first-
order ordinary differential equations (ODEs); see Section
3.3 for a precise description of these equations. Throughout
this article, a ring equilibrium denotes a rod configuration
satisfying these ODEs, subject to the twisted ring boundary
conditions in Eq. 3. A cyclized equilibrium is a ring equi-
librium wherea is a multiple of 2p, i.e., Lk is an integer.
For nicked molecules the absence of the twist anglea in the
imposed conditions in Eq. 4 leads to a “natural boundary
condition” (Gelfand and Fomin, 1963, p. 26) that must be
satisfied by any equilibrium. The specific form of this
natural boundary condition ism3(1) 5 0, wherem3(s) 5
K3u3(s) is the twist moment about the tangent vectord3(s).
Thus a nicked equilibrium is any ring equilibrium that also
satisfiesm3(1) 5 0.

Because the approach taken here is to solve equilibrium
equations rather than numerically minimizeE, the ring
equilibria that we find may be (unstable) saddle points of
the strain energy in addition to the (stable) local minima of
primary interest. Minima and saddle points can be distin-
guished by the computation of a certain instability index

FIGURE 1 Ring boundary conditions. The center liner (s) is depicted as
a tube and is constrained to form a smooth ring. The directord1(s) is depicted
as a ribbon, and a twist anglea is imposed betweend1(0) andd1(1).
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that gives the number of negative eigenvalues of an appro-
priate second derivative (roughly, the number of indepen-
dent downward directions of the energy surface); in partic-
ular, local minima have index zero, while equilibria with
positive index can be anticipated to be unstable. The index
can be determined by a straightforward computation based
on the conjugate point test described by Manning et al.
(1998).

The solutions of primary interest in this paper are stable
cyclized equilibria and stable nicked equilibria, which we
refer to as cyclized minima and nicked minima. We have
seen above that a nicked equilibrium is a ring equilibrium
for some value ofa at whichm3(1) 5 0. It is easy to show,
furthermore, that a nicked minimum must satisfy two addi-
tional conditions. It must be a stable ring equilibrium at
fixed link, i.e., a minimum among nearby configurations
with the same value ofa, and its energy must also be a local
minimum among ring equilibria at nearbyLk (because ifE
were not a local minimum, the rod could lower its energy by
rotating d1(1) about d3(1) and hence would not be at a
nicked minimum).

2.2. Applying the continuum rod model to DNA

We summarize the procedure from Manning et al. (1996)
for determining values of the continuum parametersKi and
ûi(s) appropriate for our DNA sequences. For the stiffnesses
Ki, we take

K1 5 K2 5
PRT

N,
, K3 5 0.8K1,

whereT is the temperature,R 5 8.314 J/mol-Kelvin,P '
500 Å is the persistence length,, ' 3.4 Å is the helix rise
per basepair, andN is the number of basepairs (which
appears here because the continuum rod has nondimension-
alized length one). We note that at the basepair level, DNA
almost certainly has a preferential direction for bending, i.e.,
K1 Þ K2, but that this local anisotropy is effectively aver-
aged by the rapid DNA intrinsic twist to yield an effective
isotropic rod over the length scales of concern here (hence
the widely used assumptionK1 5 K2; cf. Kehrbaum, 1997).

The centerliner̂ of the continuum intrinsic shape is
derived by smoothing a piecewise linear center line con-
structed from a basepair-level wedge-angle model (see, e.g.,
Bolshoy et al., 1991). First, a tapered averaging filter of
width w basepairs is applied to the wedge-angle center line,
and then the filtered center line is fit via least squares to a
piecewise polynomial with continuous third derivative
throughout the rod. (See Manning et al. (1996) for further
details on the smoothing algorithm, including padding of
the center line to minimize end effects of the averaging filter
and the use of a double filtration to reduce the tendency of
an averaging filter to straighten out intrinsic curvature.) The
choice of w corresponds to a modeling decision of the

length scale of interest in the problem. We therefore varyw
according to the number of basepairsN. WhenN 5 200, we
choosew 5 20, the value used by Manning et al. (1996) for
a study of 150–160-bp DNA. WhenN 5 900, we choose
w 5 50, because in that case, we are interested in curvature
on the order of several tens of basepairs.

Having determined the intrinsic center liner̂ , we find the
directord̂3 via the inextensibility-unshearability assumption
d̂3 5 r̂ *. It is then straightforward to generate a continuum
(d̂1, d̂2), using the intrinsic twist of the wedge-angle model.
Physically, d̂1(s) will track the orientation of the major
groove in the DNA intrinsic shape. Similarly,d1(s) tracks
the major groove in any deformed shape. Thus we will call
(d1, d2, d3) the DNA-framing of the rod.

Unfortunately, the high twist in the DNA frame induces
rapid variations inû1(s) andû2(s), hindering the coarse (but
highly accurate) numerical rod discretizations that are one
goal of the continuum model. This difficulty can be over-
come by reexpressing the equilibrium equations in terms of
a new natural framing of the rod that we denote by (D1(s),
D2(s), D3(s) 5 d3(s)). A crucial fact is that given an equi-
librium shape (D1(s), D2(s), d3(s)) for the naturally framed
rod, an equilibrium shape (d1(s), d2(s), d3(s)) of the DNA-
framed rod is recovered by rotating (D1(s), D2(s)) about
d3(s) through an angleV(s) (Manning and Maddocks,
1999), as shown in Fig. 2. Both the DNA and natural
framings depend on the configuration of the rod, but the
angle V between the two framings is independent of the
configuration; the angleV is defined once and for all by the
following procedure. Given the DNA frame (d̂1(s), d̂2(s),
d̂3(s)) of the intrinsic shape, define the intrinsic natural
frame (D̂1(s), D̂2(s)) by the conditions

D̂1~0! 5 d̂1~0!,

u3~D̂1~s!, D̂2~s!, d̂3~s!! 5 0, @s[ ~0, 1!.

(Note thatu3(D1(s), D2(s), D3(s)) is not in general zero for
deformed shapes, so that the natural framing is only known
to have zero twist for the intrinsic shape.) Then letV(s)
denote the angle betweend̂1(s) andD̂1(s). (It is important to
ensure thatV(s) is an increasing continuous function, by
choosingV(s) [ [2np, 2(n 1 1)p) if d̂1(s) has undergone
n full rotations with respect toD̂1(s) for 0 # s # s.) We
emphasize that no approximation is involved in the use of
the natural framing for computations. The equilibria of the
naturally framed rod with the twist functionV(s) added
back in are exactly the same as the equilibria of the DNA-
framed rod; the natural frame is merely a computational
convenience that makes the coefficients of the equilibrium
equations much more slowly varying. Similarly, there is no
assumption about local twist variation implied by the use of
the natural frame. Any basepair-to-basepair twist variation
is encapsulated in the functionV(s) and thus is fully ac-
counted for by the continuum computations.
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Settings 5 1 in the definition ofV(s), the twist anglea
for a DNA-framed ring is related to the twist anglean for
the corresponding naturally framed ring bya 5 an 1 V(1).
Furthermore, by Eq. 5, the linkLk of any DNA-framed
configuration is related to the linkLkn of the corresponding
naturally framed configuration by

Lk 5 Lkn 1 Tŵ, (6)

whereTŵ is the twist of the intrinsic DNA frame:

Tŵ5
1

2p E
0

1

u3~d̂1~s!, d̂2~s!, d̂3~s!!ds5
V~1!

2p
. (7)

Some discussion of notation is in order.Tŵ is the appro-
priate continuum version of the quantities “relaxed twist” or
“relaxed link,” denotedTw0 or Lk0 in the literature (Bates
and Maxwell, 1993). There seems to be no standard defi-
nition for Tw0 or Lk0, however; e.g., they have been used to
denote the center of a Gaussian fit to the topoisomer distri-
bution, or the ratio of number of basepairs to the average
number of basepairs per full turn. The absence of an exact
definition for Tw0 or Lk0 may be no accident; this article
demonstrates that for some sequences there are multiple
nicked minima, so that there may not be a unique “relaxed”
ring.

In the literature, one often uses the symbolDLk to denote
Lk 2 Lk0, i.e., the difference of a given link from its relaxed

value. ThusLkn 5 Lk 2 Tŵ is the exact analog of this
concept for the continuum rod, so we shall henceforth write
DLk instead ofLkn, so that Eq. 6 can be rewritten as

Lk 5 DLk 1 Tŵ. (8)

Most of our results in Section 4 refer to the true DNA link
Lk, but elements of our computations and theory are ex-
pressed in terms of the natural frame linkDLk. We caution
that ourDLk is not generally an integer for cyclized con-
figurations, as this notation sometimes implies. Instead, we
will call a cyclized configuration a 0-topoisomerif its DLk

is such thatLk is the nearest integer toTŵ, a11-topoisomer

if its link is one more than the nearest integer toTŵ, etc.

2.3. The perfect diagram

The principal goal of this article is to understand the mul-
tiplicities of ring equilibria in the transition from an ideal-
ized symmetrical case that we call theperfect problem(ûi [
0) to variousimperfect problems(û1, û2 Ó 0). The reason
for studying the perfect problem is that its solution set acts
as an organizing center for the solution set of more realistic
problems with nonzero intrinsic curvature. Physically, the
perfect problem involves a uniform isotropic rod that is
intrinsically straight, while the imperfections considered
here involve the introduction of intrinsic curvature. Because
all computations involve the naturally framed rod, we need
only consider zero intrinsic twist,û3 [ 0. Arbitrary intrinsic
twist parameters, whether constant or sequence dependent,
are accounted for via the angleV(s) relating the natural and
DNA framings of the rod, as described in Section 2.2.

The perfect problem has been studied by several authors
(see, e.g., Schlick, 1995; Olson, 1996; Kehrbaum and Mad-
docks, 1997) for a discussion of the literature. Here we
follow the notation and formulation that are described in
detail by Dichmann et al. (1996).

2.3.1. The set of perfect equilibria

Fig. 3 shows a portion of the set of ring equilibria for the
perfect problem, with the energyE plotted as a function of

FIGURE 2 Natural and DNA framings of a ring equilibrium. The two
framings are related through the known DNA-frame intrinsic twist (see
text). Note that a cyclized DNA frame as shown here will not in general
correspond to a cyclized natural frame.
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the link DLk. There are many branches of higher-energy
equilibria not shown, but they are not of concern here. This
perfect bifurcation diagram is described in detail by Li and
Maddocks (1999). The trivial branch containing pointsA, B,
and C corresponds to configurations with circular center
lines and constant twist rates. Connected to the trivial
branch is a nontrivial branchADC corresponding to ring
equilibria with nonplanar center lines, with a planar figure
eight embedded atD. Note that the link jumps by two at
points of self-intersection such asD, i.e., the whole segment
between the two points markedD actually represents the
same figure-eight solution. Solid lines denote stable equi-
libria (local minima), while dashed lines denote unstable
equilibria.

2.3.2. The register symmetry

Because of material symmetries of the perfect rod, every
point on the perfect diagram is not a single equilibrium, but
instead represents an entire manifold of ring equilibria, all
with the same energy. The equilibria on this manifold are
related by the action of a symmetry transformation that we
will call rotational register, or simply register, following
Sanghani et al. (1996). This register symmetry involves
keeping the center line fixed, but spinning the framing
(d1(s), d2(s)) through a constant angleu about the tangent
d3(s). In the language of DNA, the register determines
whether the major groove at a particular basepair of a DNA
ring faces the center of the ring or away from the center or
is somewhere in between. See Manning and Maddocks
(1999) for further discussion of this symmetry. Using this
register transformation, we find that every point on the
trivial branchABCactually represents a circle of ring equi-
libria. Similarly, the register transformation plus a second
transformation based on translation in arclength imply that
each point on the nontrivial branch of Fig. 3 represents a
torus of ring equilibria (Manning and Maddocks, 1999).

However, because forK3/K1 5 0.8 all solutions on this
nontrivial branch are unstable, we will not have need in this
paper to consider the nature of the splitting of the nontrivial
branch (although the images after perturbation of the non-
trivial branch will certainly appear in all computed diagrams
shown). Our focus will be to determine the fate of the circle
of degenerate solutions when intrinsic curvature is added.

2.4. Perturbation of the trivial branch

As described in the previous section, whenûi [ 0, the rod
equilibrium conditions at any fixedDLk have a circle of
twisted-circle solutions, parameterized by the registeru. For
ûi Ó 0, this circle of solutions typically breaks up into only
a finite set of solutions. For infinitesimal intrinsic curva-
tures, i.e., intrinsic curvatures of the formeûi with e suffi-
ciently small, we can draw some general conclusions about
the symmetry-breaking from the perturbation expansion de-
scribed by Manning and Maddocks (1999). Of course, we
are ultimately interested in the casee 5 1 (see Section 2.5).

It has been proved (Manning and Maddocks, 1999) that
for infinitesimal intrinsic curvatures, whenever one of the
two integrals

I1~DLk! 5 E
0

1

@û1~s!sin~2pDLks! 1 û2~s!cos~2pDLks!#ds,

(9)

I2~DLk! 5 E
0

1

@û1~s!cos~2pDLks! 2 û2~s!sin~2pDLks!#ds,

is nonzero, then the circle of trivial solutions at linkDLk
will yield exactly two solutions; see Section 4.3 for one
geometric interpretation of the integralsI1, I2.

FIGURE 4 Portion of the bifurcation diagram for an imperfect rod.
Stability is indicated as in Fig. 3. Approximate images of pointsA, B, C,
andD are marked. Each circle labeledA or C represents two images of the
respective point in the perfect diagram. The stable trivial branchABC from
Fig. 3 yields two branches in the imperfect diagram, one stable and one
unstable.

FIGURE 3 Portion of the bifurcation diagram for the perfect problem for
K3 5 0.8K1. As the linkDLk is varied, the energyE and link DLk of the
ring equilibria are plotted; ——, stable equilibria (local minima); – – –,
unstable equilibria.
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Of these two equilibria, only one is expected to be stable,
as shown in Fig. 4. Proving this assertion about stability
involves computations beyond the perturbation expansion
presented here but can be made plausible by a finite-dimen-
sional example. Consider a surface of revolution as shown
in Fig. 5, containing a circular “valley” of local minima
(analogous to the circle of solutions existing at each point
on the stable trivial branch in the perfect diagram). Each
critical point is a local minimum but contains a single flat
direction along the circle of critical points. When we add a
small perturbation to the surface of revolution as in Fig. 6
(analogous to adding intrinsic curvature to the perfect prob-
lem), the circle of critical points is perturbed to only two
critical points in the tilted surface, one local minimum and
one saddle point. Of course, we can engineer infinitesimal

perturbations to the surface of revolution so that the per-
turbed surface has more than two critical points, or more
than one local minimum; such special perturbations are
exactly analogous to intrinsic shapes for whichI1(DLk) 5
I2(DLk) 5 0.

2.5. Implications of perturbation results for
curved DNA

The perturbation expansion from Section 2.4 predicts that
for infinitesimal curvatureseûi, if there are to be two or
more stable ring equilibria of linkDLk, we must have
I1(DLk) 5 I2(DLk) 5 0. By the nature of perturbation
expansions, this result is only directly applicable to suffi-
ciently small e. However, for small to moderatee, the

FIGURE 5 A finite-dimensional example of a functionz 5 r4/4 2 r2/2
(r 5 =x2 1 y2) with a circle of local minimax2 1 y2 5 1 (drawn with a
thick line).

FIGURE 6 The surface from Fig. 5 with a small linear perturbationx/10
added. The circle of critical points breaks up to yield just two critical points
(marked bydots), one a local minimum and one a saddle point.
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perturbation results should still correlate with the observed
behavior. Thus, for realistic DNA curvatures we can con-
jecture that the existence of multiple stable ring equilibria is
well correlated withuI1u, uI2u being small. We verify this
conjecture in Sections 4.1 and 4.2.

3. METHODS

3.1. Random sequences

Random DNA sequences, 5017 of 200 bp and 2176 of 900
bp, were generated using the random number generator
ran1 (Press et al., 1992), with equal probability of A, C, G,
or T at each base. Data collection was stopped at the above
sample sizes as sufficient numbers of examples exhibiting
multiple minima occurred to give qualitatively stable statistics.

3.2. Intrinsic shape parameters

For each sequence, a preliminary piecewise-linear intrinsic
shape was determined using a standard wedge-angle model.
We confined our study to dinucleotide wedge angles based
on those presented by Bolshoy et al. (1991), but our com-
putations could easily be repeated for any other set of wedge
angles or other basepair level models for intrinsic shape.
Our first angle set (AS1) uses the intrinsic tilts and rolls
derived by Bolshoy et al. (1991), while our second angle set
(AS2) scales these tilts and rolls by 0.61, thereby producing
less intrinsic curvature (and increasing the static persistence
length (Trifonov et al., 1987) by 1/(0.61)2 from 168 to 467
nm). This scaling, inspired by Kahn and Crothers (1992), is
used here to demonstrate the effects of smaller intrinsic
curvature on the quality of predictions based on the pertur-
bation expansion. In contrast to the sequence-dependent
intrinsic twists found in Bolshoy et al. (1991), our angle sets
AS1 and AS2 use a common intrinsic twist of 34.45°/bp for
all dinucleotide steps. This change is purely a matter of
convenience for the statistical survey of many molecules in

Section 4.2, so that the total intrinsic twistTŵ will be
approximately constant across the molecules in the sample.
However, the general theory presented here allows basepair-
dependent intrinsic twists if desired. Each preliminary
wedge-angle intrinsic shape was smoothed via the proce-
dure summarized in Section 2.2 to yield continuum intrinsic
shape parametersûi(s) and the auxiliary functionV(s).

3.3. Equilibrium equations

For completeness we here present the specific equations we
solved numerically in our determination of ring equilibria,
namely differential equations (Eq. 10) subject to the ring
boundary conditions in Eq. 12. However, a detailed under-
standing of the particular form of these equations is not
necessary to understand the results presented later.

We chose to parameterize the spaceSO(3) of directors
(d1, d2, d3), using Euler parameters (or quaternions)q [
R4:

@d1~q! d2~q! d3~q!#

5 F q1
2 2 q2

2 2 q3
2 1 q4

2 2q1q2 2 2q3q4 2q1q3 1 2q2q4

2q1q2 1 2q3q4 2q1
2 1 q2

2 2 q3
2 1 q4

2 2q2q3 2 2q1q4

2q1q3 2 2q2q4 2q2q3 1 2q1q4 2q1
2 2 q2

2 1 q3
2 1 q4

2
G.

In this case, the equilibrium equations can be cast in the
Hamiltonian form (see, e.g., Dichmann et al., 1996):

r * 5
H

n
5 d3~q!,

(10)

q* 5
H

m
5

1

2 O
i51

3

ui~m, q!Biq,

n* 5 2
H

r
5 0,

m* 5 2
H

q
5

1

2 O
i51

3

ui~m, q!Bim 2
d3

T

q
n,

where

ui~m, q! 5 eûi 1
mTBiq

2Ki
, (11)

B1 5 3
0 0 0 1
0 0 1 0
0 21 0 0

21 0 0 0
4,

B2 5 3
0 0 21 0
0 0 0 1
1 0 0 0
0 21 0 0

4, B3 5 3
0 1 0 0

21 0 0 0
0 0 0 1
0 0 21 0

4,
H 5 O

i51

3 F~mTBiq!2

8Ki
1

ûi~m
TBiq!

2 G 1 nTd3~q!,

and the variablesn [ R3 and m [ R4 are the conjugate
variables tor andq. The ring boundary conditions from Eq.
3 take the form

r ~0! 5 ^0, 0, 0&, r ~1! 5 ^0, 0, 0&,

q1~0! 5 q2~0! 5 q3~0! 5 0, (12)

q~1! 5 ^0, 0,2sin~a/2!, 2cos~a/2!&, m4~0! 5 0.

3.4. Equilibrium computations

Here we describe our procedure for solving the ring equi-
librium equations from Section 3.3, using the software
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package AUTO (Doedel et al., 1991), and for locating
nicked and cyclized minima from among these ring
equilibria.

The boundary value problem (BVP) defined by Eqs. 10
and 12 has two parameters: the twist anglea is the main
physical parameter of interest, and the parametere in Eq. 11
is the symmetry-breaking parameter discussed in Sections
2.4 and 2.5. This BVP was solved via parameter continua-
tion, using the software package AUTO. We choose a
closed-form solutionz0(s) [ (r0(s), q0(s), n0(s), m0(s)) on
the stable trivial branch of the perfect (e 5 0) problem (see
Fig. 3), say at linkDLk* (with corresponding anglea*n). We
then derive an approximate solutionz0(s) 1 ez1(s) to the
BVP for e 5 0.01, using the perturbation expansion de-
scribed by Manning and Maddocks (1999). This function
z0(s) 1 ez1(s) serves as the initial approximate solution for
the numerical parameter continuation computations carried
out in AUTO.

Using AUTO, we first compute solutions to the BVP
through continuation ine from 0.01 to 1, holdingan 5 a*n
fixed. Then, holdinge 5 1 fixed, we switch to continuation
in an to compute a branch in the imperfect diagram. In this
first step ofa-continuation,an is required to increase, but as
the branch progresses it may change direction. Computation
is stopped when 1) the branch closes up on itself, 2) a point
of instability index 4 is reached, or 3) the number of
computed points reaches a user-defined maximum. If either
2) or 3) occurs, the procedure returns to the start of the
a-continuation branch, but recommences withan decreas-
ing, with the same stopping conditions (1–3). In this way,
we can be confident of finding all stable BVP solutions
lying on the same component as thean 5 a*n, e 5 1
solution.

In ;90% of all of the molecules considered, the above
procedure appears to compute all stable BVP solutions.
However, there are exceptional intrinsic shapes for which
stable solutions exist on two or more distinct components in
the imperfect diagram, and the above procedure will only
compute one of these components. To remedy this diffi-
culty, we repeat the above procedure for several values of
DLk*. In each case, at the end of thee-continuation, we
check if the solution already exists on a previously com-
puted branch of the imperfect diagram, and if not, we
compute a new branch usinga-continuation and append it
to the previous one. By the nature of parameter continuation
computations, one is never guaranteed to have found all
BVP solutions, but by this multiple-starting-point proce-
dure, we maximize our chances of locating all stable solu-
tions of the BVP problem.

For each solution on the imperfect diagram, various in-
tegrals of interest such as writhe, twist, and energy are
computed numerically. In addition, the instability index is
determined by solving a 54-dimensional initial value prob-
lem of ODEs (cf. Manning et al., 1998).

Finally, the particular solutions in the imperfect diagram
that correspond to nicked and cyclized minima are located
numerically. Cyclized minima (whereLk is an integer) are
easily detected by searching the stable branches in the
diagram for points wherea 5 an 1 V(1) crosses a multiple
of 2p. Nicked minima (which correspond to local minima of
E along a stable branch of the diagram) are slightly harder
to locate because a section of the diagram whereE is nearly
flat (inflection points or local maxima) may be mistaken for
a local minimum because of small numerical errors (e.g., in
the fourth or fifth decimal place) due to the tolerances set in
the AUTO computation. To avoid such problem points, we
look for quintuplets of adjacent solutions so that all five
solutions are stable, the changes in energy along this quin-
tuplet are down-down-up-up, and the twist momentm3(1)
(computed from the unknownsz) crosses zero between the
first and fifth points (see Section 2.1).

For a given sequence, the computation of the intrinsic
shape and the associated integralsI1, I2 requires less than a
minute on a single SparcII CPU. The time required to
compute a bifurcation diagram varies with the complexity
of the diagram. In roughly half of the cases, the stable
solutions lie on a simple closed loop that can be computed
in ;5–10 minutes. For more complicated diagrams, espe-
cially when stopping condition 2) or 3) is invoked, runs can
take as long as 30–45 min. This CPU time is not strongly
dependent on the number of basepairs, as opposed to the
Monte Carlo simulations described below. Once the bifur-
cation diagram has been computed, it takes a few seconds to
extract the nicked and cyclized minima.

3.5. Monte Carlo simulations

To provide a basis for comparison, we used the Metropolis
Monte Carlo procedure described by KV, without modifi-
cation of their source code. See Katritch and Vologodskii
(1997) for details of this procedure. Their program is de-
signed to simulate the thermodynamic equilibrium distribu-
tion for nicked conformations of intrinsically curved DNA,
and as a result we have confined our comparison with
equilibrium computations to the nicked case.

Intrinsic curvature parameters were determined using the
dinucleotide angle sets AS1 and AS2 (see Section 3.2). The
Kuhn statistical length was set to 100 nm, corresponding to
a bending rigidity constantA 5 2.0 3 10219 erg-cm, and
the torsional rigidity constant was set toC 5 1.6 3 10219

erg-cm to allow direct comparison to our equilibrium com-
putations atK3/K1 5 C/A 5 0.8. The DNA effective diam-
eter was set to 2 nm, although self-contact does not appear
to play a significant role in the effects investigated here
(because we are looking at relatively relaxed, nicked con-
formations of short DNA rings). We chose linear segments
of 10 bp each, so that there were 20 total segments for the
200-bp simulations and 90 total segments for the 900-bp
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simulations. The temperature was set to 293.15 K for all
runs.

The segmented chain is subject to three types of moves.
The simulation was sampled every 100th move, the writhe
and twist of the new conformation were calculated, and
from them the linking numberLk was computed using the
definition Lk 5 Tw 1 Wr.

Each simulation involved 503 106 steps, a number
apparently sufficient for the peak positions and areas of
P(Lk) to equilibrate. A single 20-segment (200-bp) simula-
tion on a single Sparc processor requires;200 min, and a
single 90-segment simulation;70 h (in this Monte Carlo
implementation, the CPU time scales as the square of the
number of segments).

We used the Matlab (MathWorks, Natick, MA)
leastsq function to fitP(Lk) with one or more Gaussians,
the centers and areas of which (measured by integration)
were computed for comparison with continuum results, and
the functioncorrcoef to evaluate correlation coefficients
reported in Sections 4.4.2 and 4.4.3.

4. RESULTS

4.1. Bifurcation diagrams exhibiting
multiple minima

The prevailing belief is that only one nicked minimum will
arise for any DNA minicircle. However, as emphasized by
KV, this belief is biased by the fact that most early studies
treated the perfect problem, i.e., the case of an intrinsically
straight rod. In fact, the story is more complicated for rods
with intrinsic curvature.

4.1.1. The origin of multiple minima

For an intrinsically straight rod, the bifurcation diagram for
DNA equilibria is simply the perfect diagram in Fig. 3

shifted horizontally by the constantTŵ (which converts the
natural-frame linkDLk to the DNA-frame linkLk). Recall
from Section 2.3.2 that each point on this diagram repre-
sents an infinite family of symmetry-related equilibria with
the same energy, the same center line, but different regis-
ters. Thus, in the perfect problem, and modulo this register
symmetry, there is indeed exactly one nicked minimum (the
image after horizontal shift of pointB in Fig. 3). Similarly,
there is a single cyclized minimum for each integerLk that

falls between the links of pointsA andC (after shift byTŵ),
and no cyclized minima of other links (in the absence of
self-contact).

However, when we add intrinsic curvature, which breaks
the register symmetry, the resulting imperfect diagram need
not look as simple as the shifted perfect diagram, as shown
in Figs. 7–9. The three molecules used in these figures were
chosen to illustrate most clearly the way in which multiple
minima can manifest themselves in bifurcation diagrams.

Many of the diagrams we computed are more complicated
than these figures, but the general pattern of introduction of
multiple minima via branch kinking is persistent across the
range of computed examples.

In Fig. 7, the diagram retains the qualitative shape of the
loop ABCD from the perfect diagram, although there are
some clear changes introduced by the intrinsic curvature
(e.g., energies are shifted downward, the range of links
covered by the stable solutions is slightly reduced). Indeed,
there is once again a single nicked minimum (marked by a
black triangle) and at most one cyclized minimum at each
integer link (marked bygray circles). Quite naturally, the

FIGURE 7 Qualitatively simple imperfect diagrams for a 200-bp DNA
molecule modeled by angle sets AS1 and AS2. The perfect diagram (in
thinner lines) is superimposed. Stability is indicated as in Fig. 3. Nicked
minima (for the imperfect problem) are denoted by black triangles, and
cyclized minima by gray circles. As in the perfect diagram, for this
molecule there is a single nicked minimum, and at most one cyclized
minimum at each link.
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diagram for the smaller angle set AS2 resembles the perfect
diagram more closely than the diagram for AS1.

On the other hand, in Fig. 8, the intrinsic curvature
induces a kink near the bottom of the diagram, with the
result that for both angle sets AS1 and AS2, there are two
nicked minima. The smaller angle set AS2 straightens out
this kink (pulling it closer to the perfect diagram), so that the
second nicked minimum is on the verge of disappearing.

Similarly, in Fig. 9, we see an induced kink in the
diagram in the neighborhood of link 18, with the result that

for AS1, two link-18 cyclized minima exist. Here the kink
is removed for AS2, but in other cases it can remain.

4.1.2. Experimentally observable multiple minima

To our knowledge, no experimental evidence for multiple
minima (either nicked or cyclized) has been reported. Might
this lack of evidence be due to the fact that the differences
among these multiple minima are too small to be observed
experimentally? For instance, in gel migration experiments,
where the mobility of DNA minicircles has been observed
to correlate strongly with writhe, it seems reasonable to

FIGURE 8 Imperfect diagrams showing a double well near the nicked
minimum of the perfect problem. The intrinsic shape is for a 200-bp DNA
modeled by angle sets AS1 and AS2. The perfect diagram is superimposed,
stability is indicated as in Fig. 3, and nicked and cyclized minima are
labeled as in Fig. 7. For each angle set, the kink introduces a second nicked
minimum for the imperfect problem, although for AS2, the second nicked
minimum is on the verge of disappearing.

FIGURE 9 Imperfect diagrams showing a kink near link 18. The intrin-
sic shape is for a 200-bp DNA modeled by angle sets AS1 and AS2. The
perfect diagram is superimposed, stability is indicated as in Fig. 3, and
nicked and cyclized minima are labeled as in Fig. 7. The kink introduces
a second cyclized minimum of link 18 for AS1, but with AS2 the kink is
straightened and only one link-18 cyclized minimum occurs.
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conjecture that multiple equilibria would generate distinct
bands only if their differences in writhe are sufficiently
large.

Motivated by this question, we pursued a statistical study
of the differences in writhe between multiple equilibria. In
particular, we selected from our 200-bp database all mole-
cules having either two nicked minima or two cyclized
minima of the same link (using the case of angle set AS1).
For each such molecule, we computed the difference in
writhes for its pair(s) of multiple minima. We fitted the
distributions of these differences to a Gaussian and found
the best fits to have (approximately) mean zero, with stan-
dard deviations 5 0.018 for nicked ands 5 0.017 for
cyclized. Presumably these differences in writhe would be
too small for the multiple minima to be distinguished on a
gel.

However, when we repeated this procedure on our 900-bp
database, we found significantly larger writhe differences;
for pairs of nicked minimas 5 0.152, and for pairs of
cyclized minimas 5 0.138. In particular, we found several
examples of pairs of minima in 900-bp molecules with
substantial differences in writhe (see Fig. 10). As a further
assessment of the possible differences in writhe, we remark
that among the five 900-bp molecules in Fig. 16, the writhes
of the 13 nicked minima lie between20.26 and 0.18; in
particular some center lines, especially for the extreme
values ofLk, are quite nonplanar.

It may be interesting to seek to detect such differences in
writhes in gel mobility experiments. However, because of
the long duration of the gel migration experiment (several
minutes), it is not clear that two distinct writhes will be
observed at all; rather, a single band corresponding to an
average mobility might arise. Other experimental tech-
niques could perhaps overcome this limitation: for instance,
electron cryomicroscopy, with its flash-freezing protocol,
may allow one to immobilize configurations close to the
different minima (Dubochet et al., 1992), and therefore such
experimental methods offer the possibility of revealing the
existence of the multiple minima predicted here.

4.1.3. An efficient predictor of multiple minima

Larger intrinsic curvatures create imperfect diagrams fur-
ther from the perfect diagram, which can therefore more
easily exhibit multiple minima. Such curvature enhance-
ment arises, for example, if one assumes larger angle sets
for the same sequence, as exhibited by Figs. 7–9. Alterna-
tively, larger curvatures arise when treating longer DNA for
a fixed angle set, because the nondimensionalized local
curvatures for the (length one) continuum rod are larger.
These effects are illustrated by the statistical study pre-
sented in Section 4.2.

For a given molecular length and angle set, can we
predict which sequences are more likely to exhibit multiple
minima? The only way to know for certain if a given

molecule has multiple minima is to directly compute the set
of equilibria as in Figs. 7–9. However, armed with the
perturbation analysis of Section 2.4, we have a simple
predictor for the existence of multiple minima, namely the
smallness of the integralsuI1(DLk)u anduI2(DLk)u. If multiple
nicked minima are sought, then one should consider intrin-
sic shapes withuI1(DLk)u and uI2(DLk)u small atDLk 5 0,
because the nicked minimum of the perfect problem occurs

FIGURE 10 Two 900-bp molecules, each exhibiting multiple minima
with a significant difference in writhe. The right part of each figure shows
an E versusLk bifurcation diagram, as in Figs. 7–9 (but with largerLk
corresponding to 900 bp). To the left are the physical configurations
corresponding to the two minima (two cyclized minima withLk 5 85 inA,
and two nicked minima inB). The physical configurations are drawn with
their naturally framed ribbons.
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at DLk 5 0. For example,I1(0)2 1 I2(0)2 is smaller in Fig.
8 (top) than in Fig. 7 (top) (0.7 versus 1.7). On the other
hand, by Eq. 8, multiple cyclized minima of linkLk should

arise for sequences with small values ofuI1(Lk 2 Tŵ)u and

uI2(Lk 2 Tŵ)u. For example,I1(18 2 Tŵ)2 1 I2(18 2 Tŵ)2

is smaller in Fig. 9 (top) than in Fig. 7 (top) (0.8 versus 3.3).
Our discussion of the “typical” connection between mul-

tiple minima, length of molecule, angle set, and smallness of
(I1, I2) has thus far been purely anecdotal but is reinforced
by the statistical study described in the next section.

4.2. Statistical study of multiple minima

We generated bifurcation diagrams for 5017 random 200-bp
sequences and 2176 random 900-bp sequences with the
angle set AS1 and analyzed each one as described in Section
3.4. In addition, we then selected the first 1000 of the
200-bp sequences for further computation with the angle set
AS2 (corresponding to smaller intrinsic curvature than
AS1).

4.2.1. Nicked minima

The distribution of numbers of nicked minima for these
three data sets is reported in Fig. 11. This figure demon-
strates that the probability of finding multiple minima is
increased by using larger wedge angles or by lengthening
the DNA. For instance, angle set AS1 produces larger
intrinsic curvatures than AS2, and accordingly, we see in
Fig. 11 that multiple nicked minima occur twice as often
with AS1 as compared to AS2. Similarly, within a fixed
angle set AS1, the increase in DNA length from 200 to 900

bp promotes the likelihood of finding multiple nicked min-
ima by nearly threefold, from 23% to 64%.

Fig. 12 shows the results from a statistical analysis of the
correlation of multiple nicked minima with the size of
(I1(0), I2(0)) among sets of the same length and angle set.
The distribution ofI1(0)2 1 I2(0)2 was first separated into
deciles, so that the first decile contains the 10% of the
molecules with the lowest values ofI1(0)2 1 I2(0)2, the
second decile the 10% with the next lowest values, etc.
Within each decile, the fraction of molecules with multiple
nicked minima was then determined. The absolute ranges of
I1(0)2 1 I2(0)2 vary with the data set. The minimum, max-
imum, and median were (0.0004,26.3,2.25) for 200-AS1,
(0.002,7.8,0.79) for 200-AS2, and (0.007,110,10.8) for 900-
AS1.

This figure demonstrates that the molecules most likely to
exhibit multiple nicked minima are those with the lowest
values of I1(0)2 1 I2(0)2. This correlation is better for
200-bp DNA than for 900-bp DNA. There are at least two
possible explanations for this. As remarked in Section 4.1,
the continuum intrinsic curvatures for 900-bp DNA are
generally larger than those for 200-bp DNA. For such large
perturbations, kinks in the bifurcation diagram emanating
from a wide range ofDLk can create a second nicked
minimum, so that a perturbation expansion atDLk 5 0
cannot capture all behaviors. Indeed, over 60% of all 900-bp
DNA exhibited two or more nicked minima. A second
possible explanation is that the perturbation expansion we
have used addresses transitions from the perfect diagram at
fixed link, and as such is more directly related to predicting
multiple cyclized minima. It is possible that a perturbation
expansion directly tailored to the nicked problem would
give a better correlation than that seen in Fig. 12. This

FIGURE 11 The influence of intrinsic curvature on the likelihood of
multiple nicked minima. Larger effective intrinsic curvature within the
continuum model can be induced either by increasing the size of the wedge
angles (200-AS2 to 200-AS1) or by increasing the DNA length (200-AS1
to 900-AS1). For each of the three angle sets, the percentage of molecules
exhibiting one, two, three, or four nicked minima is shown.

FIGURE 12 Fraction of DNA with multiple nicked minima as a function
of the deciles ofI1(0)2 1 I2(0)2 (see text). These curves support the
hypothesis that smaller values ofI1(0)2 1 I2(0)2 predict multiple nicked
minima.
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conjecture is supported by the results in the next section,
showing that for cyclized minima, the predictorI1

2 1 I2
2 is

highly accurate, even for 900-bp DNA.

4.2.2. Cyclized minima

Fig. 13 shows the correlation between the size ofI1
2 1 I2

2 and
the appearance of multiple cyclized11-topoisomer minima
(link 20 for 200-bp DNA and link 87 for 900-bp DNA). The

corresponding continuum links areDLk 5 20 2 Tŵ and

87 2 Tŵ. The correlations for other links are similar (data
not shown). The absolute ranges ofI1(DLk)2 1 I2(DLk)2

vary with data set: the minimum, maximum, and median
were (0.0003,34.4,2.23) for 200-AS1, (0.0003,8.5,0.83) for
200-AS2, and (0.005,111,10.1) for 900-AS1.

Even for 900-bp DNA, the likelihood of finding multiple
cyclized minima with linkLk is highly coupled to the size of

I1
2 1 I2

2 at DLk 5 Lk 2 Tŵ. For the smallest intrinsic

curvatures (Lk 2 Tŵ in particular angle set AS2 and 200
bp), the correlation is nearly perfect, with all 10 (of 1000)
molecules exhibiting multiple cyclized minima occurring in
the first decile. Indeed, the correlation for 200-AS2 is even
better than that shown in Fig. 13, with four of the 10
multiple cyclized minimum examples occurring in the first
I1
2 1 I2

2 percentile.

4.3. Geometric interpretation of I1, I2

The quantitiesI1 and I2 in Eq. 9 are global averages of the
local intrinsic curvaturesû1 andû2 that arise naturally from
an analysis of symmetry breaking in the continuum equi-
librium equations. As such, these averages provide precise

information regarding the emergence of multiple minima,
but they do not lend themselves to an immediate geometric
intuition. In this section, we present a heuristic discussion of
their relation to simple geometric properties.

Recall first that the continuum intrinsic shape was de-
rived by starting with a sequence ofN director frames (d̂1

(i),
d̂2

(i), d̂3
(i)), the relative orientations of which were determined

from basepair-dependent wedge-angle parameters. The re-
sulting intrinsic shape was then smoothed and the rapid
intrinsic twist removed to give a continuum intrinsic shape
(D̂1(s), D̂2(s), D̂3(s)). We may now think of rediscretizing
this continuum shape to giveN director frames (D̂1

(i), D̂2
(i),

D̂3
(i)), at eachs 5 i/N for i 5 0, . . . , N 2 1. These new

frames trace out a center line similar to that of the original
frames, but without rapid local bending fluctuations and
without rapid intrinsic twist.

Write the rotation between (D̂1
(i), D̂2

(i), D̂3
(i)) and (D̂1

(i11),
D̂2

(i11), D̂3
(i11)) as a product of fundamental rotations by

three Euler angles (u(i), f(i), t(i)) aboutD̂1
(i), D̂2

(i), andD̂3
(i). In

the smoothed shape, these three angles will be small, and
one may easily show thatû1((i 2 1)/N) ' Nu(i) andû2((i 2
1)/N) ' Nf(i). Thus if we discretize the integralsI1(0) and
I2(0) as sums over theN new frames, we find

I1~0! < O
i51

N

f(i), I2~0! < O
i51

N

u(i).

If the intrinsic shape is roughly planar and not too bent,
thenI1(0), I2(0) are approximately equal to the Euler angles
with respect toD̂2

(1), D̂1
(1) of the overall rotation between the

first and last basepairs. We then find that the end-to-end
cosine, i.e., the cosine of the angle between the initial and
final tangent vectors, is approximately equal to cos(I1(0))
cos(I2(0)), or to 1 2 (I1(0)2 1 I2(0)2)/2. Clearly, many
approximations are involved in this analysis, but neverthe-
less, a good correlation exists between 12 (I1(0)2 1
I2(0)2)/2 and the end-to-end cosine over our entire database
of molecules (data not shown here).

This connection is also seen if we look at the intrinsic
shapes of molecules with particularly high or low values of
I1(0)2 1 I2(0)2, as in Fig. 14. The intrinsic shape of the 20
200-bp DNA with the largest values ofI1(0)2 1 I2(0)2 (Fig.
14A) are essentially C-shaped (with relatively small end-
to-end cosines), while the 20 with the smallest values (Fig.
14B) appear to be more or less S-shaped (with end-to-end
cosines near 1). We have seen in Section 4.2 that small
values ofI1(0)2 1 I2(0)2 promote the existence of multiple
nicked minima, so Fig. 14,A and B, reinforces the theme
noted by KV that S-shaped DNA is more likely than C-
shaped DNA to yield multiple nicked minima. The quantity
I1(0)2 1 I2(0)2 provides a more precise categorization of
this geometric classification and allows analysis of cases
falling between the C and S extremes.

When we look at the more irregular 900-bp intrinsic
shapes in Fig. 14,C andD, the S-versus-C distinction is less

FIGURE 13 Fraction of DNA with multiple cyclized11-topoisomer
minima as a function of the deciles ofI1(DLk)2 1 I2(DLk)2 (see text). These
curves strongly support the hypothesis that smaller values ofI1(DLk)2 1
I2(DLk)2 predict multiple cyclized minima.
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apt, but one can still see a clear qualitative difference
between molecules with large (Fig. 14C) and small (Fig.
14 D) values ofI1(0)2 1 I2(0)2. Large values correspond to
highly bent DNA (with negative end-to-end cosines) and
small values to relatively straight DNA.

4.4. Metropolis Monte Carlo

Stable ring equilibria are local minima of the elastic energy
E in Eq. 2. The Metropolis Monte Carlo (MMC) simulations
of KV simulate an equilibrium distribution of a nearly
equivalent energy function, i.e., they sample the configura-
tion space of nicked rings with the probability density

function exp(2E/RT) (suitably normalized). How much in-
formation can a study of the set of energy minima give
about the thermodynamic equilibrium distribution of con-
formations generated by MMC? For instance, how well can
one predict the number, positions, and relative intensities of
peaks in theLk distribution P(Lk) computed by MMC,
based purely on the number, links, and elastic energies of
the static energy nicked minima?

The data presented in Figs. 15 and 16 suggest, at least
qualitatively, a clear connection. In Fig. 15, the rows rep-
resent four different molecules of 200 bp. In the left column,
we plot theE versusLk projection of the bifurcation dia-
gram as in Section 4.1. In the right column, we show the

FIGURE 14 Projections of intrinsic shapes for molecules with the highest and lowest values ofI1(0)2 1 I2(0)2. A andB each show 20 200-bp DNA
(aligned according to their principal inertial moments); the molecules with largeI1(0)2 1 I2(0)2 (A) are C-shaped, while those with smallI1(0)2 1 I2(0)2

(B) are closer to being S-shaped.C andD each contain 20 900-bp DNA (aligned according to the first tangent vector). The molecules with largeI1(0)2 1
I2(0)2 (C) have global bends of at least 180°, while those with smallI1(0)2 1 I2(0)2 (D) are globally straighter.
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MMC P(Lk). To compare these two quantities, we insert in
the center column a plot we refer to as the Boltzmann
transform: at eachLk, we compute the sum ofe2E/RT over
all stable equilibria (i.e., points on the solid curves in the
bifurcation diagram) with that link, and then normalize so
that the entire curve becomes a probability density function.
A similar approach was recently followed by Swigon et al.
(1998). This transform, although it involves only a small
subset of the configuration space sampled by MMC, namely
the local minima at prescribedLk, fits P(Lk) for nicked rings
remarkably well. In Fig. 16, we repeat this analysis for a
subset of five molecules of 900 bp, with similar results.

The quality of the fit for 900 bp is worse than for 200 bp,
which is not surprising, because the Monte Carlo simulation

would be expected to sample a wider range of configura-
tions for the longer, effectively more flexible, molecules.
However, even at 900 bp, the qualitative fit of the Boltz-
mann transform to the Monte Carlo results is good enough
to suggest that our fast equilibrium computations can be
used as an effective guide for the design of molecules that
can then be further studied with Monte Carlo simulations or
actual experiments. For longer DNA molecules, we pre-
sume that entropic contributions would increasingly domi-
nate the influence of the equilibria on the Monte Carlo
distribution.

The molecules in Figs. 15 and 16 were selected from our
database to illustrate the appearance of multiple peaks in
P(Lk) when there are multiple nicked minima. Heuristically,

FIGURE 15 Comparison of bifurcation diagrams and Monte CarloP(Lk) for four 200-bp DNA (angle set AS1). The energy in the bifurcation diagram
is shifted downward byEmin, the energy of the global minimum. For moleculeA, a single nicked minimum yields a single Monte Carlo peak. If there are
two nicked minima, then, depending on the difference in their energies (andLk), the Monte Carlo can either produce no second peak (B), a shoulder or
nascent second peak (C), or a well-separated second peak (D). In the center column, the bifurcation diagram is “Boltzmann-transformed” (see text) to
facilitate comparison with Monte Carlo data.
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the number of nicked minima equals the number of peaks in
P(Lk) unless

1. TheLk values of two nicked minima lie too close to each
other (compared to the width of a typical peak inP(Lk))
for the Monte Carlo computation to be able to resolve
them (see, e.g., the two central equilibria in Fig. 16E).

2. The relative difference in elastic energy between two
nicked minima is so large that the higher energy nicked
minimum has a negligible probability of occurring in the
Monte Carlo runs (see, e.g., Fig. 15B).

Whenever either of these conditions holds, one may see
fewer peaks inP(Lk) than the number of local minima, as
seen in Fig. 15B, although one may also see a peak with an
attached “shoulder,” as in Fig. 15C. Exactly the same

phenomenon arises between the number of minima and
number of peaks in the Boltzmann transform.

The correlation between minima andP(Lk) is better quan-
tified in the statistics presented in Sections 4.4.1–4.4.3.
Because;10 h is required for each MMC simulation, it was
impractical to test the correlation using all 8193 random
sequences for which we have computed equilibria, so we
instead randomly selected small subsets (usually 25–50
molecules) for MMC simulation.

4.4.1. Number of peaks versus number of nicked minima

Single nicked minima.As a control, we selected at ran-
dom 25 200-bp sequences and 25 900-bp sequences for
which the equilibrium approach predicted a single nicked

FIGURE 16 Comparison of bifurcation diagrams and Monte CarloP(Lk) for five 900-bp DNA (angle set AS1). As in Fig. 14, the number of peaks in
P(Lk) is less than or equal to the number of nicked minima. Whereas moleculesB andC show the same number of peaks as nicked minima (two and three,
respectively), the four nicked minima of moleculesD andE only give rise to three separated peaks inP(Lk).
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minimum.P(Lk) for these sequences exhibited a single peak
without exception (as in Figs. 15A and 16A).

Double nicked minima.Applying criteria 1 and 2 from the
previous section, we can screen large numbers of DNA to
identify multiple-minima sequences that are likely to exhibit
two peaks or shoulders inP(Lk). For example, applying
only criterion (1), we selected the 10 molecules from the
data set 200-AS2 exhibiting the largest splits inLk values of
two nicked minima and found that three of theP(Lk) ex-
hibited two separated peaks, while seven gave shoulders.
Hence, with the benefit of this preliminary screening tech-
nique, we were able to find multiple nicked minima at lower
intrinsic curvatures, or equivalently higher static persistence
lengths, than was feasible for KV using only MMC
simulations.

Triple and quadruple nicked minima.Although our data-
base of 200-bp sequences contains 24 cases with three
nicked minima (and one with four nicked minima), we
found none with more than two peaks inP(Lk). However, in
our 900-bp database, we were able to find several examples
that do in fact yield triple-peakedP(Lk) (see Fig. 16,C and
D). The equilibrium computations also located 26 900-bp
molecules (of 2176) with four nicked minima. However, for
the reasons cited above, the number of peaks inP(Lk) for
these molecules is three at most (see, e.g., Fig. 16E).

4.4.2. Lk correlation

Do the Lk values of individual nicked minima match the
peak positions in the correspondingP(Lk)? To investigate
this question, we studied molecules with single nicked min-
ima, as well as molecules with two nicked minima that also
exhibit two peaks inP(Lk). Molecules exhibiting shoulders
were discarded because of the large uncertainty in their peak
positions. In Fig. 17, we compare the values ofLk for the
nicked minima with the centers of the Gaussians fit to the
P(Lk) peaks. The global correlation coefficients are 0.992
(n 5 55) and 0.962 (n 5 47) for 200 bp and 900 bp,
respectively.

While the above correlations are good, there do appear to
be some differences between theLk values of equilibria and
the correspondingP(Lk) peak positions in Monte Carlo,
which merit further investigation. Some of these differences
could be due to various computational errors and differ-
ences in the underlying energy models, as discussed in
Section 4.4.4. In addition, there is no reason for the Monte
Carlo peaks to occur exactly at the equilibria, as Monte
Carlo simulations produce averages over many configurations.

4.4.3. Area/energy correlation for double nicked minima

Consider a molecule with two nicked minima of energies
E1, E2, for which P(Lk) has two peaks (or one peak plus a
prominent shoulder). Based on the Boltzmann probability
densitye2E/RT, we might hope that the ratio of the areasA1,

A2 of the Gaussians fit to theP(Lk) peaks is approximately
equal to exp(2(E2 2 E1)/RT). This conjecture is supported
by Fig. 18. The correlation coefficients are 0.95 (n 5 38)
and 0.89 (n 5 35) for 200 and 900 bp, respectively. The
correlation is weaker for the 900-bp case, perhaps because
excursions from the nicked minima are more frequent and
distant.

4.4.4. Possible sources of error

Continuum computations.Once a sequence and angle set are
chosen, the main source of uncertainty in the continuum
computations is the choice of the smoothing parameters in

FIGURE 17 Correlation betweenLk values of nicked minima versus
peak positions inP(Lk) (as determined by Gaussian fits), for single- and
double-nicked equilibria of either 200 bp (A) or 900 bp (B).
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constructing a continuum center line. We selected 10
200-bp and 10 900-bp sequences, each exhibiting a unique
nicked minimum, and calculated the average SD of the 10
standard deviations in the energy and link of the nicked
minimum as a function of the smoothing window widthw
(see Section 2.2). For 200 bp, asw ranges from 10 to 50 bp,
we find SD5 0.02 forLk and SD5 0.14 forE/K1. For 900
bp, asw ranges from 20 to 80 bp, we find SD5 0.04 forLk
and SD5 0.16 forE/K1. These uncertainties should have no
significant effect on the results presented.

Monte Carlo simulations.Following KV, we analyzed
the effect on the Monte Carlo distributionP(Lk) of the
choice of segment length. We simulated single-peaked
P(Lk) for 10 200-bp molecules with segment lengths of 5,
10, 20, and 25 bp per segment. The standard deviation of the
P(Lk) peak positions (as determined by Gaussian fits) gives
an estimate of60.04 for the 200-bpLk position uncertainty
due to segmentation. This uncertainty is about twice as large
for 900-bpLk fitting and thus should have no significant
effect on the reportedLk correlations.

Differences between continuum and Monte Carlo ener-
gies.Our discretization of the continuum energy from Eq. 2
and the energy function in the KV Monte Carlo code are
close but not identical. KV use a piecewise linear approxi-
mation to the DNA center line and assign a single twist to
each linear segment, whereas the rod model uses a contin-
uous center line and continuous twist function (discretized
in AUTO via a piecewise fifth-order polynomial). For the
segmentation lengths and discretizations chosen here, nei-
ther of these differences appears to be crucial, but a further
study of the connection between Monte Carlo simulations
and equilibria could benefit from an exact matching of the
underlying energy models. One would expect that the fit

between equilibria and key Monte Carlo features would
only be improved if these differences were removed. Fi-
nally, KV account for rod self-contact by assigning an
effective diameterd to the DNA and disallowing interpen-
etration during the simulation. However, this should not
have a significant effect on our comparisons, as we are
comparing nicked minima that are quite far from self-
contact; in fact, KV assert that their results are not affected
significantly by changingd over the range from 0 nm to
8 nm.

5. CONCLUSION

Because experimental (discrete) topoisomer distributions
have not been observed to be bimodal, it has generally been
concluded that a DNA molecule has only one nicked (local)
minimum of its energy. This conclusion was reinforced by
several numerical simulations of the (continuous) link equi-
librium distribution P(Lk) for models of intrinsically
straight DNA. Recently, however, Katritch and Vologodskii
(1997) reported Monte Carlo simulations yielding bimodal
P(Lk) for DNA with sufficiently large intrinsic curvature
and computed multiple nicked minima with a simulated
annealing technique. In this paper, we explain the phenom-
enon of multiple nicked minima. Essentially we reverse the
Katritch and Vologodskii (1997) procedure: we describe
ways first to identify sequences with multiple nicked min-
ima, second to compute these equilibria, and third to predict
whether the DNA will exhibit multiple peakedP(Lk). In
fact, we show that multiple nicked minima can arise even
for arbitrarily small intrinsic curvatures, in particular, well
below the range where the phenomenon was reported by
Katritch and Vologodskii (1997).

5.1. Multiple minima for DNA rings can be
predicted from symmetry breaking

The emergence of multiple minima for small intrinsic cur-
vature is associated with the fact that an intrinsically straight
DNA does not, in fact, have a single nicked minimum, but
rather a circle of minima related by the register symmetry.
When the register symmetry is broken by the addition of
intrinsic curvature, this circle of degenerate minima can
yield multiple isolated minima. Our perturbation analysis of
this symmetry breaking provides a simple and accurate
predictor for the presence of multiple nicked minima. This
predictor refines the heuristic argument given by Katritch
and Vologodskii (1997) that S-shaped DNA are more likely
to yield multiple nicked minima than C-shaped DNA. Es-
sentially the same predictor can be applied to the case of
cyclized DNA rings, so that we can identify DNA sequences
exhibiting multiple cyclized minima of the same link.

FIGURE 18 Correlation between the difference in elastic energy of a
pair of nicked minima and the ratio of areas of the correspondingLk peaks.
The results support the conjecture thatA2/A1 ' exp(2(E2 2 E1)/RT).

134 Furrer et al.

Biophysical Journal 79(1) 116–136



5.2. Computation of equilibria provides good
predictions of equilibrium distributions

Armed with this understanding of multiple nicked minima,
we quantitatively probed the connection between multiple
minima of energy and multiple peaks ofP(Lk). It is certainly
to be expected that at very low temperatures, the gross
features of an equilibrium distribution will be completely
dominated by the set of minima of the underlying energy.
To what extent is this still true for models of 200–900-bp
DNA at room temperature?

Comparing our equilibrium computations with simula-
tions done with the Katritch and Vologodskii (1997) Monte
Carlo code, we find a good correlation between the number
of nicked minima and the number of peaks inP(Lk), par-
ticularly after effects of separations in peak location and
energies are factored in. Moreover, theLk values of the
nicked minima correspond closely to the centers of Gauss-
ian fits to the peaks inP(Lk), and the elastic energies of the
nicked minima are related to the areas of these Gaussians
according to the Boltzmann distribution. In a more specu-
lative vein, we observe that a naive “Boltzmann transform”
of our bifurcation diagram gives a good fit to the main
features ofP(Lk).

Having observed this correlation, we propose that equi-
librium computations can serve as valuable guides before
carrying out more computationally intensive procedures like
Monte Carlo simulation on DNA of these scales. For ex-
ample, we used our equilibrium analysis to screen more than
8000 DNA sequences to identify a small subset likely to
give interestingP(Lk). Then, by running Monte Carlo on
these selected sequences, we discovered phenomena not
observed previously, such as two-peakedP(Lk) for se-
quences of only 200 bp.

We thank Seva Katritch for putting the KV Monte Carlo program at our
disposal.
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Călugăreanu, G. 1961. Sur les classes d’isotopie des nœuds tridimension-
nels et leurs invariants.Czech. Math. J.1:588–625.

De Santis, P., A. Palleschi, M. Savino, and A. Scipioni. 1992. Theoretical
prediction of the gel electrophoretic retardation changers due to point
mutations in a tract of SV40 DNA.Biophys. Chem.42:147–152.

Depew, R. E., and J. C. Wang. 1975. Conformational fluctuations of DNA
helix. Proc. Natl. Acad. Sci. USA.72:4275–4279.

Dichmann, D. J., Y. W. Li, and J. H. Maddocks. 1996. Hamiltonian
formulations and symmetries in rod mechanics.In Mathematical Ap-
proaches to Biomolecular Structure and Dynamics, Vol. 82. IMA Vol-
umes in Mathematics and Its Applications. J. Mesirov, K. Schulten, and
D. Sumners, editors. Springer-Verlag, New York. 71–113.

Doedel, E. J., H. B. Keller, and J. P. Kerne´vez. 1991. Numerical analysis
and control of bifurcation problems, parts I and II.Int. J. Bif. Chaos 3,
4, 493–520, 745–772.

Dubochet, J., M. Adrian, I. Dustin, P. Furrer, and A. Stasiak. 1992.
Cryoelectron microscopy of DNA molecules in solution.Methods En-
zymol.211:507–518.

Fuller, F. B. 1971. The writhing number of a space curve.Proc. Natl. Acad.
Sci. USA.68:815–819.

Gelfand, I. M., and S. V. Fomin. 1963. Calculus of Variations. Prentice-
Hall, Englewood Cliffs, NJ.

Horowitz, D. S., and J. C. Wang. 1984. Torsional rigidity of DNA and
length dependence of the free energy of DNA supercoiling.J. Mol. Biol.
173:75–91.

Kahn, J. D., and D. M. Crothers. 1992. Protein-induced bending and DNA
cyclization.Proc. Natl. Acad. Sci. USA.89:6343–6347.

Kahn, J. D., and D. M. Crothers. 1998. Measurement of the DNA bend
angle induced by the catabolite activator protein using Monte Carlo
simulation of cyclization kinetics.J. Mol. Biol. 276:287–309.

Katritch, V., and A. Vologodskii. 1997. The effect of intrinsic curvature on
conformational properties of circular DNA.Biophys. J.72:1070–1079.

Kehrbaum, S. 1997. Hamiltonian formulations of the equilibrium condi-
tions governing elastic rods: qualitative analysis and effective properties.
Ph.D. thesis. University of Maryland, College Park.

Kehrbaum, S., and J. H. Maddocks. 1997. Elastic rods, rigid bodes,
quaternions and the last quadrature.Philos. Trans. R. Soc. Lond. A.
355:2117–2136.

Klenin, K. V., M. D. Frank-Kamenetskii, and J. Langowski. 1995. Mod-
ulation of intramolecular interactions in superhelical DNA by curved
sequences: a Monte Carlo simulation study.Biophys. J.68:81–88.

Klenin, K., A. Vologodskii, V. Anshelevich, A. Dykhne, and M. D.
Frank-Kamenetskii. 1991. Computer simulation of DNA supercoiling.
J. Mol. Biol. 217:413–419.

LeBret, M. 1979. Catastrophic variation of twist and writhing of circular
DNA with constraint.Biopolymers.18:1709–1725.

Levene, S. 1994. Conformation and energetics of supercoiled DNA: ex-
perimental and theoretical studies.Nucleic Acids Mol. Biol.8:119–132.

Levene, S. D., and D. M. Crothers. 1986. Topological distributions and the
torsional rigidity of DNA: a Monte Carlo study of DNA circles.J. Mol.
Biol. 189:73–83.

Li, Y., and J. H. Maddocks. 1999. On the computation of equilibria of
elastic rods. Part I. Integrals, symmetry and a Hamiltonian formulation.
J. Comp. Phys.(in press).

Manning, R. S., and J. H. Maddocks. 1999. Symmetry breaking and the
twisted elastic ring.Computer Methods Appl. Mech. Eng.370:313–330.

Manning, R. S., J. H. Maddocks, and J. D. Kahn. 1996. A continuum rod
model of sequence-dependent DNA structure.J. Chem. Phys.105:
5626–5646.

Manning, R. S., K. A. Rogers, and J. H. Maddocks. 1998. Isoperimetric
conjugate points with application to the stability of DNA minicircles.
Proc. R. Soc. Lond. A.454:3047–3074.

Moffatt, H. K., and R. L. Ricca. 1992. Helicity and the Ca˘lugăreanu
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