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ABSTRACT A unifying theoretical framework for analyzing stochastic data from single-particle tracking (SPT) in viscoelastic
materials is presented. A generalization of the bead-spring model for linear polymers is developed from a molecular point of
view and from the standpoint of phenomenological linear viscoelasticity. The hydrodynamic interaction in the former is
identified as the dashpots in the latter. In elementary terms, the intimate correspondence between time-correlation of the
fluctuation measurements and transient relaxation kinetics after perturbation is discussed, and the central role of the
fluctuation-dissipation relation is emphasized. The work presented here provides a bridge between the microscopic and the
macroscopic views of linear viscoelastic biological materials, and is applicable to membrane protein diffusion, linear DNA
chain dynamics, and mechanics of intracellular cytoskeletal networks.

INTRODUCTION

Recently developed microrheology based on tracking the
movements of individual Brownian particles provides a
novel approach for studying viscoelastic materials and bio-
logical tissues at a subcellular and molecular level (Gittes et
al., 1997; Mason et al., 1997). The methodology belongs to
a class of optical techniques that quantitatively follow the
movement of small noninvasive optical markers with high
spatial resolution (less than nanometers), known as single-
particle tracking (SPT) among many other names (Geerts et
al., 1987; Gelles et al., 1988; Gross and Webb, 1988; Qian
et al., 1991b; Amblard et al., 1996; Peters et al., 1998; Qian
and Elson, 1999; also see a review by Saxton and Jacobson,
1997, on its wide applications to cell membrane dynamics).
Interpreting the quantitative yet stochastic data demands a
theoretical framework. Two parallel approaches, a molecu-
lar and a phenomenological, are possible. In this paper I
develop, on the one hand, a molecular approach based on a
natural extension of the simple discrete polymer theory,
which treats a polymer gel as beads connected by springs in
an aqueous solution with hydrodynamic interactions (Doi
and Edwards, 1986). The phenomenological treatment of
linear viscoelasticity in mechanics, on the other hand, is
based on the concept of memory functions known as creep
and relaxation (Fung, 1965; Ferry, 1980). Combining these
two approaches, I show that the creep function in the
phenomenological theory can be derived in terms of the
molecular model. Consequently, the stochastic movement
of a particle in a viscoelastic material can be analyzed either
as a Brownian motion of one particle in an N-particle
system with spatially correlated white noise (N-dimensional
Langevin equation), or a single particle with a non-white
noise (generalized Langevin equation) where the noises
represent the random collisions between the beads and the

solvent molecules (Brownian forces). Based on this ap-
proach, the present work provides a unifying theory for
SPT, demonstrates a correspondence between the time-
correlation of the novel fluctuation measurements and the
traditional relaxation kinetics after perturbation (Onsager’s
hypothesis of linear irreversibility), establishes an equiva-
lence between the Onsager’s hypothesis and the fluctuation-
dissipation relation, and develops a bridge between the
microscopic and the macroscopic views of linear viscoelas-
ticity. The approach in this work is applicable to SPT in
viscous fluids with and without drift (Qian et al., 1991b),
SPT of single polymer chains (Qian and Elson, 1999), and
SPT in polymer gel networks.

The paper is organized as follows. In the next two sec-
tions we develop our main analyses based on the molecular
approach and the phenomenological approach, respectively.
It will be shown that fluctuation-dissipation relation leads to
Onsager’s hypothesis, and vice versa. The fourth section
deals with SPT measurements in viscoelastic liquids (com-
plex fluids) in which the Brownian motion is nonstationary.
Hence, mean-square displacement rather than the time cor-
relation function has to be introduced. The last section
provides a comprehensive discussion on SPT, its theories,
applications, relations with other work, and its mathematical
foundation.

MOLECULAR VISCOELASTICITY: SPRINGS AND
DASHPOTS

The simplest molecular theory of viscoelasticity assumes
that the microscopic dynamics of a polymer network is
described by a system of spherical Brownian particles in an
aqueous solution, connected by springs and interacting with
each other via hydrodynamic interactions (Doi and Ed-
wards, 1986). Let the elementkij of a matrix K be the
stiffness constant of the spring connecting beadsi andj, and
hij of a matrixH be the hydrodynamic interaction between
beadsi and j. H is known as the mobility matrix. The
Newton’s equation for overdamped motion of a system of
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particles in viscous solution, therefore, is

dX
dt

5 H~2KX 1 SF! (1)

whereX 5 (x1, x2, . . . ,xN)T are the coordinates of beads 1,
2, . . . ,N. F 5 (f1, f2, . . . , fN)T are white noise like random
forces satisfyinĝf i(t)f j(t9)& 5 dijd(t9 2 t). SST is a covari-
ance matrix, to be discussed later, characterizing the spatial
correlation between the random forces. The random forces
represent the incessant random collisions between the beads
and the solvent molecules. A self-contained brief discussion
of random forcing in Brownian dynamics can be found in
Klapper and Qian (1998). For more general discussions see
Fox (1978) and Kubo et al. (1978).

In general symmetric matricesK andH are functions of
X, and Eq. 1 is nonlinear. For linear springs,K is a constant
matrix, and in the case of a single linear polymer molecule,
the K is tridiagonal. Zimm has given a simplified, approx-
imateH which is also independent ofX. This treatment of
H led to the well-known theory for non-free-draining poly-
mer dynamics (Zimm, 1956). In general, the matrices are
full for polymer networks. Linearized Eq. 1 with constantK
and H corresponds to linear viscoelasticity, as we shall
show.

Rewrite Eq. 1 into

H21
dX
dt

5 2KX 1 SF (2)

we see that this is the equation for a set of springs and
dashpots (Fung, 1965; Ferry, 1980). The elementcij of
matrix H21 now is the frictional coefficient of the dashpot
connecting pointsxi andxj. The hydrodynamic interaction in
the molecular theory, therefore, is directly related to the
dashpot in the traditional mechanical models.

The nontrivial issue concerning Eq. 1 is the covariance
matrix SST, which has to be specifically related toH. This
relation, known as the fluctuation-dissipation relation, re-
flects that the Brownian forces and the frictions are two
different manifestations of a single physical entity: the
solvent. The larger the hydrodynamic interaction between
beads i and j, the stronger the correlation between the
random forces acting upon them. Equilibrium thermody-
namics requires the fluctuation-dissipation relation as (Fox,
1978; Klapper and Qian, 1998):

SST 5 2kBTH21, (3)

and furthermore

^xi~t!xj~t9!& 5 1⁄2 ~e2ut92tuHKK21SSTH!ij

5 kBT~e2ut92tuHKK21!ij , (4)

whereX(t) is a 3N-dimensional Gaussian-Markovian (Orn-
stein-Uhlenbeck) process (Wang and Uhlenbeck, 1945; van
Kampen, 1997).

In a real SPT experiment, one usually only measures the
Brownian motion of one of theN beads in the above system
(Qian and Elson, 1999). Without loss of generality, let’s
denote the position of the optical marker asxN; also, drop
the vector notations forx andf in the remainder of the paper
to avoid cluttering. If one applies an external forcefN(t) at
xN, then the solution of Eq. 1 yields the transient response of
xN(t):

xN~t! 5 E
0

t

~e2~t2s!HKH!NNfN~s!ds

5 E
0

t

c~t 2 s!
dfN
dt

~s!ds, (5)

where the second equality is due to integration by parts, and
we have

c~t! 5 c~`! 2 ~e2tHKK21!NN, ~t $ 0!. (6)

c(t) is known as the creep function in linear viscoelasticity
(Fung, 1965). It consists of N exponential decays. 1/c(`) is
the equilibrium spring constant (see below).

We are now in a position to demonstrate an important
relationship in nonequilibrium statistical physics (Callen,
1965; Kubo, 1986). According to Onsager’s hypothesis
(1931), a thermal system’s nonstationary response to an
external perturbation (Eq. 6) is linearly related to the sta-
tionary thermal fluctuations spontaneously produced in the
system in the absence of external perturbation. Note that the
latter is given in Eq. 4 for our polymer network:

^xN~0!xN~t!& 5 kBT~e2tHKK21!NN, ~t $ 0!. (7)

Hence, there is indeed a linear relation between the fluctu-
ation correlation in Eq. 7 and the creep function in Eq. 6.
This relation can be justified in a more general setting with
a microscopic theory for irreversible thermodynamics using
a projection operator (Zwanzig, 1961; Fox, 1978; Kubo et
al., 1978), but the above analysis provides a simple and
elementary illustration in the context of linear viscoelastic-
ity. It is shown that the fluctuation-dissipation relation (Eq.
3) leads to the validation of Onsager’s hypothesis.

MECHANICAL VISCOELASTICITY: CREEP AND
RELAXATION FUNCTIONS

The SPT analysis from the phenomenological linear vis-
coelasticity will now be developed (Fung, 1965; Ferry,
1980). According to this theory, the linear force-displace-
ment relation with memory can be expressed as

F~t! 5 E
0

t

k~t 2 t!
dx

dt
~t!dt (8)
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or its equivalence in the inverse form

x~t! 5 E
0

t

c~t 2 t!
dF

dt
~t!dt (9)

where F is force andx is displacement. Functionk(t) is
called the relaxation function andc(t) is called the creep
function. They are characteristic functions of a linear vis-
coelastic material. It is easy to verify that the Fourier
transforms ofk(t) andc(t) are directly related by:

v2k̃~v!c̃~v! 5 21. (10)

In viscoelasticity, ivk̃(v) is also known as the complex
modulus (Ferry, 1980; Fung, 1965).

For a simple system of one spring and one dashpot in
parallel (The Voigt solid),k(t) 5 jd(t) 1 mh(t), wherem and
j are spring constant and frictional coefficient, respectively,
h(t) is the unit-step function,d(t) is the unit-impulse func-
tion, or Dirac-delta function, anddh(t)/dt 5 d(t). In this
case, Eq. 8 becomes

F~t! 5 j
dx

dt
1 mx. (11)

Balancing the viscoelastic force in Eq. 11 with a Brownian
random forcef(t), we have a Langevin-like linear stochastic
differential equation:

j
dx

dt
5 2mx 1 f~t!. (12)

In general, we have the following linear stochastic equation
for particle movement in viscoelastic material:

E
0

t

k~t 2 t!
dx

dt
~t!dt 5 f~t!, (13)

or equivalently (see Eq. 9):

x~t! 5 E
0

t

c~t 2 t!
df

dt
~t!dt. (14)

As in Eq. 1, the nontrivial issue here is the random forcef(t).
Because of the memory in a viscoelastic material, the sta-
tionary f(t) is no longer a white noise in general, but rather
should satisfy a particular condition in order to ensure
Onsager’s hypothesis (e.g., Eqs. 6 and 7):

^x~t0!x~t0 1 t!& 5 A~c~`! 2 c~utu!!, (15)

whereA 5 [kBT/k`(c(`) 2 c(0))] since^x2& 5 kBT/k`; kB is
the Boltzmann constant and T is the temperature. For any
linear viscoelastic material, the long-time behavior is like a
single springk`; hence the thermal equilibrium distribution

for x(t) is the Boltzmann distribution:

Peq~x! 5 Î k`

2pkBT
e2k`x2/2kBT. (16)

If k` 5 0, then the system is a liquid and thePeqis a uniform
distribution over the size of the entire system.

Fourier-transforming Eq. 13, we have

x̃~v! 5
if̃ ~v!

vk̃~v!
.

The power spectra of the two processesx(t) and f (t) are
related to each other by

Ix~v! 5
I f~v!

v2uk̃~v!u2
. (17)

When the spectrumIf(v) for the random force is given, Eq.
17 yields Ix(v), from which the correlation function
^x(0)x(t)& is obtained by the Wiener-Khintchin theorem.
Fourier-transforming Eq. 15, notingc(t) is defined only for
t . 0, and using Eq. 10, we have

Ix~v! 5 22A Re@c̃~v!# 5 2A
Re@k̃* ~v!#

v2uk̃~v!u2
, ~v Þ 0!.

Comparing this with Eq. 17 we have

I f~v! 5 2A Re@k̃* ~v!#, ~v Þ 0!. (18)

This means the particular condition for the random forcef(t) is

^f~t!f~s!& 5 2A~k~s2 t! 2 k`!, ~s$ t!. (19)

The left-hand side is the fluctuation of Brownian force, and
the right-hand side is the dissipation in relaxation kinetics:
Eq. 19 is the fluctuation-dissipation relation in an alterna-
tive form. Therefore, it is shown that Onsager’s hypothesis
(Eq. 15) leads to the fluctuation-dissipation relation (Eq.
19).

Combining the analyses in the above two sections, we
have reached the pleasing duality that fluctuations in dis-
placementx(t) are linearly related to the creep function;
fluctuations in forcef(t) are linearly related to the relaxation
function; and Onsager’s hypothesis is a sufficient and nec-
essary condition for the fluctuation-dissipation relation.

VISCOELASTIC LIQUIDS AND
MEAN-SQUARE DISPLACEMENT

In a real SPT measurement, it is important to determine
whether the viscoelastic material is a solid or a liquid. For
a viscoelastic liquid (complex fluid), the stochastic dis-
placementx(t) will not reach stationarity until it covers the
entire system. In practical laboratory terms,x(t) is not
stationary. Hence, instead of using correlation function
^x(0)x(t)& one uses mean-square displacement (MSD)^x2(t)&
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for quantitatively characterizing a Brownian movement
(Qian et al., 1991b). For a viscoelastic solid, the MSD will
quickly plateau, similar to that of a diffusion in a harmonic
well. The plateau value represents the long-time equilibrium
elasticity (k`). However, if the material is a liquid, then the
MSD will increases without bound, similar to that of a free
diffusion. Mathematically speaking, ifk` 5 0, then it is a
viscoelastic liquid, and ifk` . 0, then it is a viscoelastic
solid. Of course, making this distinction in the laboratory
depends crucially on the time scale of measurements.

The MSD can be calculated from Eq. 15:

^x2~t!& 5 2^x2& 2 2^x~t!x~0!& 5
2kBT

k`

c~t! 2 c~0!

c~`! 2 c~0!
. (20)

If the material is viscoelastic liquid, thenc(`) 5 1/k`3 `,
and

^x2~t!& 5 2kBT~c~t! 2 c~0!!.

In terms of the Fourier transforms

^x2̃& ~v! 5 2kBTc̃~v! 5 2
2kBT

v2k̃~v!
, ~v Þ 0!. (21)

Now let’s use the Maxwell viscoelastic liquid as an exam-
ple. This model has one spring and one dashpot in series:

c~t! 5 S1

m
1

1

j
tDh~t!.

Therefore,

^x2~t!& 5 2kBTt/j,

as expected. Eq. 21 should be compared with Eq. 4 of
Mason and Weitz (1995). See below for more discussion.

DISCUSSION

SPT: a new approach to cellular and
macromolecular mechanics

Carrying out precise measurements on Brownian particles
with quantitative analyses has become one of the major
approaches in cellular and molecular biophysics. Funda-
mentally different from relaxation kinetics, this approach
measures spontaneous thermal fluctuations without intro-
ducing major external perturbations into the systems being
investigated. Other well-established methods in this family
are dynamic light scattering (DLS), fluorescence correlation
spectroscopy (FCS), and single membrane channel conduc-
tance recording (Sakmann and Neher, 1983). Quantitative
analysis of fluctuation measurements relies on a statistical
treatment of stochastic data in terms of correlation functions
(or power spectra) and mean-square displacement. As illus-
trated in this paper, a correlation function is directly related
to the linear relaxation kinetics usually obtained after a
perturbation (Onsager’s hypothesis).

Using spontaneous thermal fluctuation to study polymer
gel-like viscoelastic material started with DLS (Tanaka et
al., 1973). Later, thermal fluctuation of inert particles em-
bedded in actin gels was studied using DLS (Schmidt et al.,
1989) and FCS (Qian et al., 1992). With the superior spatial
and temporal resolution of SPT with photodiode detection
(Gittes et al., 1997; Mason et al., 1997), the methodology is
now applicable to viscoelastic material at the subcellular
and macromolecular level.

With recent advancement in spatial and temporal resolu-
tion to subnanometer and millisecond, SPT is now applica-
ble to studies of macromolecules (Qian and Elson, 1999)
and intracellular components such as cytoskeletal networks
(Elson, 1988). Such quantitative measurements pave the
way for the development of macromolecular mechanics,
cellular mechanics, and tissue engineering. This method
also complements the exciting development in measuring
molecular and cellular forces by atomic force microscopy
(AFM; Fernandez, 1997; Qian and Shapiro, 1999).

SPT: its applications to biological systems

In the past decade, SPT has been widely used as a quanti-
tative tool in studying membrane protein movement on the
surface of living cells (Saxton and Jacobson, 1997).
Through these studies, a molecular view of the organization
of the cellular membrane skeleton has emerged (Kusumi
and Sako, 1996). The quantitative analyses of these exper-
iments are mainly based on a free diffusion in two dimen-
sions (Qian et al., 1991b). For cell surface receptors under-
going active transport and restricted motion in addition to
Brownian motion, a systematic drift and a spatial limitation
have been introduced. On the spatial scale of microns, the
motion of membrane proteins on the cell surface can be
represented by a particle moving in Maxwell liquid. With
respect to the molecular structures, the dashpot is related to
the dynamics of cytoskeletal filaments, while the spring is
related to the interaction between the membrane proteins
and the cytoskeleton.

One novel application of SPT to probing DNA dynamics
on the level of a single molecule was carried out by Finzi
and Gelles (1995). This application has opened the possi-
bility of studying DNA conformational dynamics without
perturbation. Qian and Elson (1999) have shown that, in the
framework of viscoelasticity, DNA polymer represents a
simple Voigt solid. The significance of this application is
that it advances the SPT methodology further into the mi-
croscopic molecular scale, and provides a new approach for
studying polymer dynamics in aqueous solution. The Voigt
solid, which is equivalent to a dumbbell model with only a
single relaxation timej/m, is the simplest model for DNA
polymers. A more realistic model of DNA is a set of springs
in series and corresponding dashpots in parallel (Qian and
Elson, 1999).
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SPT has also been applied to study the material properties
of F-actin gel (Gittes et al., 1997) and intracellular matrices
(Mason et al., 1997). These biological materials are com-
plex; hence, a new quantitative analysis beyond simple
liquid and solid is needed. The objective of the present work
is to provide a theoretical basis for the experimental ap-
proached based on SPT. It points out the important concep-
tual difference between the fluctuation measurements and
the traditional relaxation measurements, and illustrates the
deep relation between these two types of experimental mea-
surements (Onsager’s hypothesis). It also unifies the stan-
dard treatments based on macroscopic viscoelasticity and
the microscopic Brownian motion.

SPT: its theoretical bases

The current repertoire of models for analyzing stochastic
data from SPT is still limited. It includes diffusion with and
without drift, in a free space or in confinement (Qian et al.,
1991b; Saxton, 1995), and in complex fluids (Mason and
Weitz, 1995), and Brownian motion of optical markers
attached to a simple spring and a single chain polymer (Qian
and Elson, 1999). For studies of viscoelastic material such
as a polymer gel (Gittes et al., 1997; Mason et al., 1997) and
biological systems such as the cytoskeleton (Elson, 1988),
we need to extend the SPT analysis to a more general
formalism applicable to linear viscoelastic solids and liquids
(Fung, 1965; Ferry, 1980). Here, rather than a particular
model, a framework for constructing linear viscoelastic
models that are to be specified in terms of the matricesK
and H have been developed. Several classes of models
deserve further detailed analysis: two- and three-dimen-
sional networks with uniform spring constant, and systems
with random spring constants (for a very recent work, see
Denneman et al., 1999). Theoretical studies of these models
are directly connected to modern statistical mechanics of
membranes and many-body problems in semidilute polymer
solutions.

The phenomenological equations 8 and 9 for linear vis-
coelasticity are special cases of the general linear response
theory (Kubo et al., 1978) in which the Fourier transform of
the creep function,c̃(v), is called complex admittance. If we
rewrite the relaxation functionk(t) as

k~t! 5 j0d~t! 1 k`h~t! 1 k1~t!,

thenk1(t) is bounded att 5 0 and asymptotically approach-
ing 0 at1`:

k1~0! , 1 `, k1~ 1 `! 5 0.

Thej0 represents the short-time viscosity andk` represents
the long-time elasticity. We then have Eq. 13 in the form:

j0

dx

dt
1 k`x~t! 1 E

0

t

k1~t 2 t!
dx

dt
~t!dt 5 f ~t! (22)

which is a more familiar form of generalized Langevin
equation in nonequilibrium statistical mechanics (Fox,
1978; Kubo et al., 1978).

So far we have only discussed the over-damped particle
motion in which we have neglected the effect of inertia. If
this condition is not met, though this is rare in aqueous
solution (Webb et al., 1977), then instead of Eq. 22 one
starts with:

m
d2x

dt2
1 j0

dx

dt
1 k`x 1 E

0

t

k1~t 2 t!
dx

dt
~t!dt 5 f ~t! (23)

wherem is the mass of the moving particle. This second-
order stochastic differential equation (23) can be analyzed
following Kubo (1978). In particular for fluids withk` 5 0,
Eq. 23 can be first solved in terms ofdx/dt 5 v and MSD for
the nonstationaryx(t) can then be obtained from the velocity
correlation function̂ v(t)v(t9)& (Mason and Weitz, 1995).

It is important to point out that the theoretical approach
we present here is not limited only to model stationary
fluctuation measurements. Nonstationary solutions of Eqs. 1
and 23 also form the basis for modeling transient kinetics
and force measurements by AFM (Shapiro and Qian, 1997,
1998; Qian and Shapiro, 1999). More importantly, the dis-
cussion in the present paper provides a basis for correlating
these two complementary types of measurements.

One of the insights generated from the present analysis is
the nature of hysteresis. It is well known that kinetics with
memory functions such as Eq. 8 gives rise to hysteresis. The
present analysis clearly points out that such phenomena are
directly related to the internal dynamics of the molecular
systems, i.e.,x1, x2, . . . , xN21 in Eq. 1. This point has also
been made in connection with titin elasticity (Qian and
Shapiro, 1999; Qian and Bustamante, manuscript in prepa-
ration). Thepresent analysis puts the statement in a much
broader context.

Finally, note that treating macromolecules in terms of
viscoelasticity is, of course, not new. Many biophysicists in
the past have developed such a point of view (see Mizraji et
al., 1987, and extensive references cited). With the possi-
bilities of quantitatively measuring forces and movements
of single molecules in laboratories, these theories will soon
find their increasing roles in macromolecular mechanics.

SPT in complex fluids

Mason and Weitz (1995) have developed a theory for SPT
in complex fluids. Their approach is deceptively similar to
ours, but with several important differences. First, it is
important to realize that the complex modulus ivk̃(v) from
SPT is, in general, a function of the size of the optical
maker, while the complex viscosityh̃(v) is an intrinsic
properties of a viscoelastic material that should be indepen-
dent of it. The key element in the theory of Mason and
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Weitz is to assume the optical marker as a particle in a
continuous fluid follows Stokes law, from which the vis-
cosity of the fluid is obtained:h̃(v) 5 k̃(v)/6pa, wherea is
the radius of the spherical optical marker. The approach is
analogous to obtaining the viscosity of a liquid by measur-
ing the frictional coefficient of a probing particle. In this
approach, the Stokes particle is sufficiently large and its has
no hydrodynamic effect on the fluids. The approach pre-
sented here, however, assumes that the optical marker is a
member of the N-particle system in an aqueous solution,
and the hydrodynamic interaction can be introduced into the
H matrix. With the increasing frictional coefficient between
xN and the rest of the particles, this model should approach
theirs. A similar situation for the SPT of single linear
polymer molecules has been studied. It has been shown that
for a small enough optical marker, its dynamics is indepen-
dent of the marker size (Qian and Elson, 1999). This is easy
to understand because only the slow rate processes domi-
nate the kinetics. Therefore, the present theory can be ap-
plied to a wide range of marker sizes. A second difference
is that the present framework also can be applied equally
well to viscoelastic solids and liquids.

Other work on fluctuations of
viscoelastic materials

A brief discussion of earlier theories on fluctuations of
viscoelastic material is now presented. All models are de-
veloped based on stochastic differential equations in which
the deterministic mechanical equations (Newton’s equation
and its overdamped form for a set of particles, or elastic
equations for continuous material) are augmented by
Brownian forces. Tanaka et al. (1973) treated the viscoelas-
tic gel as a continuous elastic body with simple drag from
the solvent. Barkley and Zimm (1979) treated the bending
of a single DNA molecule as a rigid continuous rod in the
context of fluorescence depolarization. Amblard et al.
(1996) treated an actin network as a system of bendable
rods, and Maggs (1998) has presented a detailed analysis of
dynamic measurements with respect to the size of the op-
tical marker in a system of semidilute polymers. Qian (sub-
mitted for publication) has developed a model for particle
tetered polymers, either flexible or rigid but bendable, based
on continuous approximations of the chain molecules.

SPT and some mathematical
issues on reversibility

Equation 12 defines a stochastic processx(t). It is well
known that when the random forcef(t) is a white noise with
an infinitely short relaxation time thex(t) is Markovian and
Gaussian, known as the Ornstein-Uhlenbeck process (Wang
and Uhlenbeck, 1945). Equation 12 is a special case of Eq.
13, which in general defines a non-Markovian Gaussian

process when the f(t) itself is Gaussian and stationary with
a finite relaxation time (Fox, 1978). A Gaussian process has
all its joint distribution functions (i.e., singlet, doublet, and
s-multiplet,s5 1, 2, 3, . . .)being Gaussian, and one usually
takes this fact as the defining property of a Gaussian pro-
cess. Such a process is fully specified by its expectation and
second moment (van Kampen, 1997), and thus a one-di-
mensional stationary Gaussian process is always time re-
versible with itss-multiplet distribution satisfying (Weiss,
1975; Tong, 1990):

P@x00, x1t1, x2t2, . . . ,xsts#

5 P@xs0, xs21~ts 2 ts21!,

xs22~ts 2 ts22!, . . . ,x0ts#. (24)

The time reversibility is a necessary condition for a stochas-
tic process at thermal equilibrium (Qian et al., 1991a; Qian,
1998). Analysis given in the current paper, however, indi-
cates that the reversibility is not sufficient for the thermal
equilibrium. Rather, an augmented condition, the Onsager’s
hypothesis, has to be introduced. This raises a mathematical
question about the nature of a reversible, non-Markovian
Gaussian process that does not satisfy the hypothesis.

I thank Drs. Scot Kuo, Bruno Zimm, and Bob Zwanzig for many helpful
discussions.
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