Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Jul;79(1):202–214. doi: 10.1016/S0006-3495(00)76284-9

Distinct ion channel classes are expressed on the outer nuclear envelope of T- and B-lymphocyte cell lines.

A Franco-Obregón 1, H W Wang 1, D E Clapham 1
PMCID: PMC1300926  PMID: 10866948

Abstract

The outer nuclear membrane, endoplasmic reticulum, and mitochondrial membrane ion channels are poorly understood, although they are important in the control of compartmental calcium levels, cell division, and apoptosis. Few direct recordings of these ion channels have been made because of the difficulty of accessing these intracellular membranes. Using patch-clamp techniques on isolated nuclei, we measured distinct ion channel classes on the outer nuclear envelope of T-cell (human Jurkat) and BFL5 cell (murine promyelocyte) lines. We first imaged the nuclear envelopes of both Jurkat and FL5 cells with atomic force microscopy to determine the density of pore proteins. The nuclear pore complex was intact at roughly similar densities in both cell types. In patch-clamp recordings of Jurkat nuclear membranes, Cl channels (105 +/- 5 pS) predominated and inactivated with negative pipette potentials. Nucleotides transiently inhibited the anion channel. In contrast, FL5 nuclear channels were cation selective (52 +/- 2 pS), were inactivated with positive membrane potentials, and were insensitive to GTPgammaS applied to the bath. We hypothesize that T- and B-cell nuclear membrane channels are distinct, and that this is perhaps related to their unique roles in the immune system.

Full Text

The Full Text of this article is available as a PDF (337.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arispe N., De Mazancourt P., Rojas E. Direct control of a large conductance K(+)-selective channel by G-proteins in adrenal chromaffin granule membranes. J Membr Biol. 1995 Sep;147(2):109–119. doi: 10.1007/BF00233540. [DOI] [PubMed] [Google Scholar]
  2. Assandri R., Mazzanti M. Ionic permeability on isolated mouse liver nuclei: influence of ATP and Ca2+. J Membr Biol. 1997 Jun 1;157(3):301–309. doi: 10.1007/s002329900237. [DOI] [PubMed] [Google Scholar]
  3. Brandt S., Jentsch T. J. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett. 1995 Dec 11;377(1):15–20. doi: 10.1016/0014-5793(95)01298-2. [DOI] [PubMed] [Google Scholar]
  4. Bustamante J. O. Nuclear ion channels in cardiac myocytes. Pflugers Arch. 1992 Aug;421(5):473–485. doi: 10.1007/BF00370259. [DOI] [PubMed] [Google Scholar]
  5. Buyse G., Trouet D., Voets T., Missiaen L., Droogmans G., Nilius B., Eggermont J. Evidence for the intracellular location of chloride channel (ClC)-type proteins: co-localization of ClC-6a and ClC-6c with the sarco/endoplasmic-reticulum Ca2+ pump SERCA2b. Biochem J. 1998 Mar 1;330(Pt 2):1015–1021. doi: 10.1042/bj3301015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buyse G., Voets T., Tytgat J., De Greef C., Droogmans G., Nilius B., Eggermont J. Expression of human pICln and ClC-6 in Xenopus oocytes induces an identical endogenous chloride conductance. J Biol Chem. 1997 Feb 7;272(6):3615–3621. doi: 10.1074/jbc.272.6.3615. [DOI] [PubMed] [Google Scholar]
  7. Carew M. A., Thorn P. Identification of ClC-2-like chloride currents in pig pancreatic acinar cells. Pflugers Arch. 1996 Nov-Dec;433(1-2):84–90. doi: 10.1007/s004240050252. [DOI] [PubMed] [Google Scholar]
  8. Clark A. G., Murray D., Ashley R. H. Single-channel properties of a rat brain endoplasmic reticulum anion channel. Biophys J. 1997 Jul;73(1):168–178. doi: 10.1016/S0006-3495(97)78057-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Danker T., Mazzanti M., Tonini R., Rakowska A., Oberleithner H. Using atomic force microscopy to investigate patch-clamped nuclear membrane. Cell Biol Int. 1997 Nov;21(11):747–757. doi: 10.1006/cbir.1997.0219. [DOI] [PubMed] [Google Scholar]
  10. Divecha N., Banfić H., Irvine R. F. Inositides and the nucleus and inositides in the nucleus. Cell. 1993 Aug 13;74(3):405–407. doi: 10.1016/0092-8674(93)80041-c. [DOI] [PubMed] [Google Scholar]
  11. Dolmetsch R. E., Lewis R. S., Goodnow C. C., Healy J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997 Apr 24;386(6627):855–858. doi: 10.1038/386855a0. [DOI] [PubMed] [Google Scholar]
  12. Draguhn A., Börner G., Beckmann R., Buchner K., Heinemann U., Hucho F. Large-conductance cation channels in the envelope of nuclei from rat cerebral cortex. J Membr Biol. 1997 Jul 15;158(2):159–166. doi: 10.1007/s002329900253. [DOI] [PubMed] [Google Scholar]
  13. Duncan R. R., Westwood P. K., Boyd A., Ashley R. H. Rat brain p64H1, expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J Biol Chem. 1997 Sep 19;272(38):23880–23886. doi: 10.1074/jbc.272.38.23880. [DOI] [PubMed] [Google Scholar]
  14. Edwards J. C., Tulk B., Schlesinger P. H. Functional expression of p64, an intracellular chloride channel protein. J Membr Biol. 1998 May 15;163(2):119–127. doi: 10.1007/s002329900376. [DOI] [PubMed] [Google Scholar]
  15. Eggermont J., Buyse G., Voets T., Tytgat J., De Smedt H., Droogmans G., Nilius B. Alternative splicing of ClC-6 (a member of the CIC chloride-channel family) transcripts generates three truncated isoforms one of which, ClC-6c, is kidney-specific. Biochem J. 1997 Jul 1;325(Pt 1):269–276. doi: 10.1042/bj3250269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eliassi A., Garneau L., Roy G., Sauvé R. Characterization of a chloride-selective channel from rough endoplasmic reticulum membranes of rat hepatocytes: evidence for a block by phosphate. J Membr Biol. 1997 Oct 1;159(3):219–229. doi: 10.1007/s002329900285. [DOI] [PubMed] [Google Scholar]
  17. Friedrich T., Breiderhoff T., Jentsch T. J. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem. 1999 Jan 8;274(2):896–902. doi: 10.1074/jbc.274.2.896. [DOI] [PubMed] [Google Scholar]
  18. Gaxiola R. A., Yuan D. S., Klausner R. D., Fink G. R. The yeast CLC chloride channel functions in cation homeostasis. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):4046–4050. doi: 10.1073/pnas.95.7.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gerasimenko O. V., Gerasimenko J. V., Tepikin A. V., Petersen O. H. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell. 1995 Feb 10;80(3):439–444. doi: 10.1016/0092-8674(95)90494-8. [DOI] [PubMed] [Google Scholar]
  20. Gilchrist J. S., Pierce G. N. Identification and purification of a calcium-binding protein in hepatic nuclear membranes. J Biol Chem. 1993 Feb 25;268(6):4291–4299. [PubMed] [Google Scholar]
  21. Greene J. R., Brown N. H., DiDomenico B. J., Kaplan J., Eide D. J. The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol Gen Genet. 1993 Dec;241(5-6):542–553. doi: 10.1007/BF00279896. [DOI] [PubMed] [Google Scholar]
  22. Guihard G., Proteau S., Rousseau E. Does the nuclear envelope contain two types of ligand-gated Ca2+ release channels? FEBS Lett. 1997 Sep 1;414(1):89–94. doi: 10.1016/s0014-5793(97)00949-6. [DOI] [PubMed] [Google Scholar]
  23. Görlich D. Transport into and out of the cell nucleus. EMBO J. 1998 May 15;17(10):2721–2727. doi: 10.1093/emboj/17.10.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Günther W., Lüchow A., Cluzeaud F., Vandewalle A., Jentsch T. J. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8075–8080. doi: 10.1073/pnas.95.14.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. He H., Lam M., McCormick T. S., Distelhorst C. W. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol. 1997 Sep 22;138(6):1219–1228. doi: 10.1083/jcb.138.6.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hennager D. J., Welsh M. J., DeLisle S. Changes in either cytosolic or nucleoplasmic inositol 1,4,5-trisphosphate levels can control nuclear Ca2+ concentration. J Biol Chem. 1995 Mar 10;270(10):4959–4962. doi: 10.1074/jbc.270.10.4959. [DOI] [PubMed] [Google Scholar]
  27. Humbert J. P., Matter N., Artault J. C., Köppler P., Malviya A. N. Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem. 1996 Jan 5;271(1):478–485. doi: 10.1074/jbc.271.1.478. [DOI] [PubMed] [Google Scholar]
  28. Landry D., Sullivan S., Nicolaides M., Redhead C., Edelman A., Field M., al-Awqati Q., Edwards J. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J Biol Chem. 1993 Jul 15;268(20):14948–14955. [PubMed] [Google Scholar]
  29. Lanini L., Bachs O., Carafoli E. The calcium pump of the liver nuclear membrane is identical to that of endoplasmic reticulum. J Biol Chem. 1992 Jun 5;267(16):11548–11552. [PubMed] [Google Scholar]
  30. Lipp P., Thomas D., Berridge M. J., Bootman M. D. Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J. 1997 Dec 1;16(23):7166–7173. doi: 10.1093/emboj/16.23.7166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lloyd S. E., Pearce S. H., Fisher S. E., Steinmeyer K., Schwappach B., Scheinman S. J., Harding B., Bolino A., Devoto M., Goodyer P. A common molecular basis for three inherited kidney stone diseases. Nature. 1996 Feb 1;379(6564):445–449. doi: 10.1038/379445a0. [DOI] [PubMed] [Google Scholar]
  32. Maruyama Y., Shimada H., Taniguchi J. Ca(2+)-activated K(+)-channels in the nuclear envelope isolated from single pancreatic acinar cells. Pflugers Arch. 1995 May;430(1):148–150. doi: 10.1007/BF00373851. [DOI] [PubMed] [Google Scholar]
  33. Matzke A. J., Weiger T. M., Matzke M. A. Detection of a large cation-selective channel in nuclear envelopes of avian erythrocytes. FEBS Lett. 1990 Oct 1;271(1-2):161–164. doi: 10.1016/0014-5793(90)80397-2. [DOI] [PubMed] [Google Scholar]
  34. Mazzanti M., DeFelice L. J., Cohn J., Malter H. Ion channels in the nuclear envelope. Nature. 1990 Feb 22;343(6260):764–767. doi: 10.1038/343764a0. [DOI] [PubMed] [Google Scholar]
  35. Mazzanti M., Innocenti B., Rigatelli M. ATP-dependent ionic permeability on nuclear envelope in in situ nuclei of Xenopus oocytes. FASEB J. 1994 Feb;8(2):231–236. doi: 10.1096/fasebj.8.2.7509760. [DOI] [PubMed] [Google Scholar]
  36. Mazzanti Michele. Ion Permeability of the Nuclear Envelope. News Physiol Sci. 1998 Feb;13(NaN):44–50. doi: 10.1152/physiologyonline.1998.13.1.44. [DOI] [PubMed] [Google Scholar]
  37. Miller C., White M. M. Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A. 1984 May;81(9):2772–2775. doi: 10.1073/pnas.81.9.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Morier N., Sauvé R. Analysis of a novel double-barreled anion channel from rat liver rough endoplasmic reticulum. Biophys J. 1994 Aug;67(2):590–602. doi: 10.1016/S0006-3495(94)80519-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nguyen T., Chin W. C., Verdugo P. Role of Ca2+/K+ ion exchange in intracellular storage and release of Ca2+. Nature. 1998 Oct 29;395(6705):908–912. doi: 10.1038/27686. [DOI] [PubMed] [Google Scholar]
  40. Perez-Terzic C., Jaconi M., Clapham D. E. Nuclear calcium and the regulation of the nuclear pore complex. Bioessays. 1997 Sep;19(9):787–792. doi: 10.1002/bies.950190908. [DOI] [PubMed] [Google Scholar]
  41. Petersen O. H., Gerasimenko O. V., Gerasimenko J. V., Mogami H., Tepikin A. V. The calcium store in the nuclear envelope. Cell Calcium. 1998 Feb-Mar;23(2-3):87–90. doi: 10.1016/s0143-4160(98)90106-3. [DOI] [PubMed] [Google Scholar]
  42. Pollock N. S., Kargacin M. E., Kargacin G. J. Chloride channel blockers inhibit Ca2+ uptake by the smooth muscle sarcoplasmic reticulum. Biophys J. 1998 Oct;75(4):1759–1766. doi: 10.1016/S0006-3495(98)77617-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rousseau E., Michaud C., Lefebvre D., Proteau S., Decrouy A. Reconstitution of ionic channels from inner and outer membranes of mammalian cardiac nuclei. Biophys J. 1996 Feb;70(2):703–714. doi: 10.1016/S0006-3495(96)79610-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schendel S. L., Montal M., Reed J. C. Bcl-2 family proteins as ion-channels. Cell Death Differ. 1998 May;5(5):372–380. doi: 10.1038/sj.cdd.4400365. [DOI] [PubMed] [Google Scholar]
  45. Stehno-Bittel L., Lückhoff A., Clapham D. E. Calcium release from the nucleus by InsP3 receptor channels. Neuron. 1995 Jan;14(1):163–167. doi: 10.1016/0896-6273(95)90250-3. [DOI] [PubMed] [Google Scholar]
  46. Stehno-Bittel L., Perez-Terzic C., Clapham D. E. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science. 1995 Dec 15;270(5243):1835–1838. doi: 10.1126/science.270.5243.1835. [DOI] [PubMed] [Google Scholar]
  47. Stehno-Bittel L., Perez-Terzic C., Luckhoff A., Clapham D. E. Nuclear ion channels and regulation of the nuclear pore. Soc Gen Physiol Ser. 1996;51:195–207. [PubMed] [Google Scholar]
  48. Subramanian K., Meyer T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell. 1997 Jun 13;89(6):963–971. doi: 10.1016/s0092-8674(00)80281-0. [DOI] [PubMed] [Google Scholar]
  49. Tabares L., Mazzanti M., Clapham D. E. Chloride channels in the nuclear membrane. J Membr Biol. 1991 Jul;123(1):49–54. doi: 10.1007/BF01993962. [DOI] [PubMed] [Google Scholar]
  50. Tonini R., Grohovaz F., Laporta C. A., Mazzanti M. Gating mechanism of the nuclear pore complex channel in isolated neonatal and adult mouse liver nuclei. FASEB J. 1999 Aug;13(11):1395–1403. doi: 10.1096/fasebj.13.11.1395. [DOI] [PubMed] [Google Scholar]
  51. Uehara A., Yasukochi M., Imanaga I. Calcium modulation of single SR potassium channel currents in heart muscle. J Mol Cell Cardiol. 1994 Feb;26(2):195–202. doi: 10.1006/jmcc.1994.1022. [DOI] [PubMed] [Google Scholar]
  52. Valenzuela S. M., Martin D. K., Por S. B., Robbins J. M., Warton K., Bootcov M. R., Schofield P. R., Campbell T. J., Breit S. N. Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem. 1997 May 9;272(19):12575–12582. doi: 10.1074/jbc.272.19.12575. [DOI] [PubMed] [Google Scholar]
  53. Wang H., Clapham D. E. Conformational changes of the in situ nuclear pore complex. Biophys J. 1999 Jul;77(1):241–247. doi: 10.1016/S0006-3495(99)76885-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Weis K. Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sci. 1998 May;23(5):185–189. doi: 10.1016/s0968-0004(98)01204-3. [DOI] [PubMed] [Google Scholar]
  55. Wrong O. M., Norden A. G., Feest T. G. Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM. 1994 Aug;87(8):473–493. [PubMed] [Google Scholar]
  56. al-Awqati Q. Chloride channels of intracellular organelles. Curr Opin Cell Biol. 1995 Aug;7(4):504–508. doi: 10.1016/0955-0674(95)80006-9. [DOI] [PubMed] [Google Scholar]
  57. von Weikersthal S. F., Barrand M. A., Hladky S. B. Functional and molecular characterization of a volume-sensitive chloride current in rat brain endothelial cells. J Physiol. 1999 Apr 1;516(Pt 1):75–84. doi: 10.1111/j.1469-7793.1999.075aa.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES