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ABSTRACT Myosin subfragment 1 (S1) with SH1 (Cys707) and SH2 (Cys697) groups cross-linked by p-phenylenedimaleimide
(pPDM-S1) is thought to be an analog of the weakly bound states of myosin bound to actin. The structural properties of
pPDM-S1 were compared in this study to those of S1zADPzBeFx and S1zADPzAlF4

2, i.e., the established structural analogs of
the myosin weakly bound states. To distinguish between the conformational effects of SH1-SH2 cross-linking and those due
to their monofunctional modification, we used S1 with the SH1 and SH2 groups labeled with N-phenylmaleimide (NPM-S1)
as a control in our experiments. The state of the nucleotide pocket was probed using a hydrophobic fluorescent dye,
3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonylamido]phenylboronic acid (PPBA). Differential scanning calorimetry (DSC)
was used to study the thermal stability of S1. By both methods the conformational state of pPDM-S1 was different from that
of unmodified S1 in the S1zADPzBeFx and S1zADPzAlF4

2 complexes and closer to that of nucleotide-free S1. Moreover, BeFx

and AlF4
2 binding failed to induce conformational changes in pPDM-S1 similar to those observed in unmodified S1.

Surprisingly, when pPDM cross-linking was performed on S1zADPzBeFx complex, ADPzBeFx protected to some extent the
nucleotide pocket of S1 from the effects of pPDM modification. NPM-S1 behaved similarly to pPDM-S1 in our experiments.
Overall, this work presents new evidence that the conformational state of pPDM-S1 is different from that of the weakly bound
state analogs, S1zADPzBeFx and S1zADPzAlF4

2. The similar structural effects of pPDM cross-linking of SH1 and SH2 groups
and their monofunctional labeling with NPM are ascribed to the inhibitory effects of these modifications on the flexibility/
mobility of the SH1-SH2 helix.

INTRODUCTION

Muscle contraction and actomyosin-based cell motility oc-
cur through the cyclic interactions of myosin and actin,
coupled to myosin-catalyzed ATP hydrolysis. The actomy-
osin ATPase cycle can be described in simplified terms by
Scheme 1 (Ma and Taylor, 1994), where AM is actomyosin
and M is myosin.

AM 1 ATP7 AM z ATP7 AM z ADP z Pi7 AM z ADP 1 Pi7 AM 1 ADP
8 8

M z ATP7M z ADP z Pi
(1)

During the cycle, the actomyosin complex undergoes a
transition between the weakly bound (AMzATP,
AM zADPzPi) and the strongly bound (AMzADP, AM) states.
This transition is accompanied by conformational changes
in the myosin head, which are believed to play a key role in
the actomyosin force generation process. The solution of the
atomic structure of myosin subfragment 1 (S1) (Rayment et
al., 1993) brought an opportunity to map such conforma-
tional changes at an atomic-level resolution. However, the
weakly bound states of myosin are short-lived intermediates
of the ATPase cycle. Thus, stable structural analogs of these
states are required for crystallographic studies. Several such
analogs have been reported to date. The most studied class

of the stable analogs of weakly bound states of myosin is its
complexes with ADP and phosphate analogs, such as van-
adate (Vi), aluminum fluoride (AlF4

2), and beryllium fluo-
ride (BeFx). It has been shown that S1zADPzVi binds weakly
to actin and functionally and structurally resembles the
S1zADPzPi intermediate complex (Wells and Bagshaw,
1984; Goodno and Taylor, 1982; Smith and Eisenberg,
1990; Bobkov and Levitsky, 1995). Similar conclusions
were reached for S1zADPzAlF4

2 and S1zADPzBeFx com-
plexes (Werber et al., 1992; Maruta et al., 1993; Phan et al.,
1993; Bobkov and Levitsky, 1995). However, despite the
overall similarity between the S1zADPzphosphate analog
complexes, certain structural differences were observed be-
tween S1zADPzBeFx on the one hand and S1zADPzVi or
S1zADPzAlF4

2 on the other (Fisher et al., 1995; Smith and
Rayment, 1996; Ponomarev et al., 1995; Maruta, 1994).
Based on these observations and the kinetic study of chem-
ical reactivities of SH1 (Cys707) and SH2 (Cys697) groups
on myosin it was suggested that the S1zADPzBeFx complex
is closer to the prehydrolyzed, S1zATP state, while
S1zADPzVi and S1zADPzAlF4

2 resemble the posthydrolyzed,
S1zADPzPi state (Fisher et al., 1995; Phan et al., 1997).

Another frequently used analog of the myosin weakly
bound state was introduced by Reisler et al. (1974b). They
have reported thatp-phenylenedimaleimide (pPDM) cross-
links SH1 and SH2 groups on S1. Later it was shown that
nucleotides are trapped in the active site by pPDM cross-
linking (Wells and Yount, 1979). The resulting S1 species
(pPDM-S1) has an affinity to actin, and its dependence on
the ionic strength, similar to that of S11 ATP (Burke et al.,
1976; Chalovich et al., 1983). Based on these observations
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it was concluded that pPDM-S1 is an analog of the weakly
bound state of myosin (S1zADPzPi).

However, a number of studies have shown that structural
properties of pPDM-S1 are different from those of
S1zADPzPi. X-ray scattering experiments revealed that the
shape of pPDM-S1 is different from that of S1zADPzPi

(Wakabayashi et al., 1992). In addition, pPDM-S1 has a
lower intrinsic fluorescence intensity than S1 in the pres-
ence of ATP (Kirshenbaum et al., 1993). Finally, differen-
tial scanning experiments demonstrated that the conforma-
tion of pPDM-S1 is different from that of S1 in the complex
with ADP and Vi (Levitsky et al., 1992). These observations
indicate that pPDM-S1 may be a functional but not a con-
formational analog of the weakly bound state of S1.

To shed more light on this issue we have compared
structural properties of pPDM-S1 to those of unmodified S1
in the S1zADPzBeFx and S1zADPzAlF4

2 complexes. We
have also studied the effects of BeFx and AlF4

2 binding to
pPDM-S1 on its conformation. To distinguish between the
conformational effects of SH1-SH2 cross-linking and those
due to their monofunctional modification, we have used
NPM-S1 (in which the SH1 and SH2 groups are labeled
with N-phenylmaleimide) as a control in our experiments.
Our results show that the conformational state of pPDM-
cross-linked S1 is different from that of the analogs of the
weakly bound state, S1zADPzBeFx and S1zADPzAlF4

2.

MATERIALS AND METHODS

Reagents

pPDM andN-phenylmaleimide (NPM) were from Aldrich Chemical Co.
(Milwaukee, WI).N-Ethylmaleimide (NEM) was obtained from Sigma (St.
Louis, MO). 3-[4-(3-Phenyl-2-pyrazolin-1-yl)benzene-1-sulfonylamido]-
phenylboronic acid (PPBA) was purchased from Polysciences (War-
rington, PA).

Proteins

Myosin from the back and leg muscles of rabbits was prepared according
to the method of Godfrey and Harrington (1970). S1 from rabbit myosin
was prepared by digestion of myosin filaments witha-chymotrypsin
(Weeds and Pope, 1977). The concentration of S1 was determined spec-
trophotometrically by using an extinction coefficient ofE1%

280 5 7.5
cm21. The concentration of modified S1 was determined by using the
Bradford protein assay (1976).

ATPase activities

The ATPase activities of S1 were measured at 37°C, under steady-state
conditions, using the Fiske and Subbarow (1925) phosphate determination
assay. The Ca21-ATPase and K1-EDTA-ATPase assay solutions con-
tained 30 mM Tris-HCl (pH 7.5), 0.5 M KCl, and either 5.0 mM CaCl2 or
5.0 mM EDTA.

Modifications of S1

S1 modifications were carried out in solutions containing between 20 and
30 mM S1, 30 mM KCl, 1.0 mM MgCl2, 1.0 mM ADP, and 20 mM

piperazine-N,N9-bis(2-ethanesulfonic acid (PIPES) (pH 7.0). The SH1
group on S1 was selectively labeled with a twofold molar excess of NEM
over S1. SH1 and SH2 groups were cross-linked using a twofold molar
excess of pPDM over S1. A fourfold molar excess of NPM over S1 was
used to label both SH1 and SH2 groups on S1. The modification reactions
were carried out over a period of 20–60 min. The extent of S1 labeling was
estimated by measuring its Ca21- and K1-EDTA-ATPase activities (Xie et
al., 1997). In all cases we used S1 that was modified between 90% and
100%. The small variations in the extent of S1 modification had no
apparent effect on our results.

Preparation of S1 complexes with AlF4
2 and BeFx

The complexes of modified and control S1 with phosphate analogs were
formed by incubation of 10–20mM S1 with 1.0 mM ADP and 5.0 mM
NaF 1 0.5 mM BeCl2 or 10 mM NaF 1 0.5 mM AlCl3. In some
experiments these complexes were formed after S1 was modified with
pPDM, NPM, or NEM. In other cases the complexes were formed with
unmodified S1, after which the modifications were carried out on the S1
complexed with either ADPzBeFx or ADPzAlF4

2.

PPBA spectra

Fluorescence spectra of PPBA bound to S1 in the presence of different
nucleotides and phosphate analogs were obtained as previously described
(Bobkov et al., 1997). Briefly, PPBA was added (from a 100mM stock in
N,N-dimethyl formamide) to a final concentration of 1.0mM to S1 (be-
tween 10 and 20mM S1) in solutions containing 20 mM PIPES (pH 7.0),
30 mM KCl, and 3.0 mM MgCl2. The samples also contained one of the
following compounds: 1.0 mM ATP, 1.0 mM ADP, 1.0 mM ADP1 5.0
mM NaF 1 0.5 mM BeCl2, or 1.0 mM ADP1 10 mM NaF1 0.5 mM
AlCl3. The excitation wavelength was set at 360 nm.

Differential scanning calorimetry

Differential scanning calorimetry (DSC) experiments were performed on a
6100 N-DSC II differential scanning calorimeter (Calorimetry Sciences
Corp., Provo, UT) with a cell volume of;0.25 ml. All experiments were
performed at a scanning rate of 1 K/min under 3.0 atm of pressure. Before
measurements, all S1 samples were dialyzed against 30 mM HEPES (pH
7.3) and 1.0 mM MgCl2. The dialysis buffer was used as a reference
solution. The reversibility of the thermal transitions was checked by a
second heating of the sample immediately after cooling, after the first scan.
All thermal transitions were irreversible under the conditions used in this
study. Because thermal denaturation of the protein samples studied by DSC
was irreversible, only simple thermodynamic parameters and terms were
used for the interpretation of results. The thermal stability of the proteins
was described by the temperature of the maximum of thermal transition
(Tm). The calorimetric enthalpy (DHcal) was calculated as the area under
the excess heat capacity function. Because these parameters can be ob-
tained directly from experimental calorimetric traces after subtraction of
the chemical baseline and concentration normalization, they can be used
for the description of the irreversible thermal denaturation of S1.

RESULTS

PPBA probing of the nucleotide pocket in
modified S1

It was shown before that the hydrophobic fluorescent probe
PPBA, which binds noncovalently and stoichiometrically to
S1, is a competitive inhibitor of the S1 ATPase activity, and
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its fluorescent properties are sensitive to the state of the S1
nucleotide pocket (Hiratsuka, 1994). Thus PPBA appeared
to be an attractive tool for monitoring the effects of pPDM
and NPM modifications on the conformation of the nucle-
otide pocket of S1 in the S1znucleotide complexes.

Fig. 1 demonstrates, as shown before (Hiratsuka, 1994;
Bobkov et al., 1997), that ADP binding to S1 causes an
increase in the intensity and a blue shift of the PPBA
emission spectrum (curve 2). The formation of S1 com-
plexes with ADPzBeFx and ADPzAlF4

2 (curves 3and4) and,
to a greater extent, ATP binding to S1 (curve 5) cause
further increases in the intensity of the PPBA spectrum.
Thus PPBA allows for an easy distinction between the states
of S1 that bind weakly (S1zADPzPi; S1zADPzBeFx and
S1zADPzAlF4

2) and strongly (S1zADP, S1 alone) to actin.
Surprisingly, the spectrum of PPBA bound to S1 with

SH1 and SH2 groups cross-linked by pPDM (pPDM-S1)
(Fig. 2, curve 2) was quite different from the spectra ob-
served for the weakly bound states of S1 (Fig. 1,curves
3–5) and even from the spectrum for S1zADP (Fig. 1,curve
2). Because S1 modification by pPDM was always carried
out in the presence of ADP, the pPDM-S1 used here con-
tained ADP trapped at the active site. The spectrum of
PPBA bound to pPDM-S1 resembled most closely the spec-
trum of PPBA bound to the nucleotide-free S1 (Fig. 1,curve
1). The pPDM-S1 complex with PPBA used in this exper-
iment was prepared by using two different orders of PPBA
addition, before and after the cross-linking of S1zADP with
pPDM. Because the resulting emission spectra do not de-
pend on the order of PPBA addition, only one spectrum is
shown for the pPDM-S1zPPBA complex in Fig. 2 (curve

2).This result excludes possible artifacts of PPBA binding
to pPDM-S1. Thus, despite the fact that pPDM-S1 binds
weakly to actin, the conformation of the nucleotide pocket
on pPDM-S1 is different from that of the weakly bound
states of unmodified S1.

We have also tested the ability of pPDM-S1 to form
complexes with ADP and BeFx or AlF4

2. Binding of BeFx to
pPDM-S1 caused a decrease in the intensity and a slight
blue shift of the PPBA spectrum (Fig. 2,curve 30). Binding
of AlF4

2 had a similar effect on the probe spectrum (data not
shown). Thus both phosphate analogs failed to induce struc-
tural changes in the nucleotide pocket of pPDM-S1 similar
to those observed for the unmodified S1 (Fig. 1,curves 3
and4; Fig. 2, curve 3*). Again, the order in which PPBA
was added to S1 did not change the results. Similar PPBA
spectra were obtained when we first formed the
S1zADPzPPBA complex, then cross-linked it with pPDM,
and finally added BeFx/AlF4

2, or, alternatively, first formed
the S1zADP complex and cross-linked it, then added PPBA,
and finally added BeFx/AlF4

2.
However, the results were quite different when we re-

versed the order of cross-linking and S1zphosphate analog
complex formation, i.e., when we first formed the
S1zADPzBeFx complex in the presence of PPBA and then
added pPDM (Fig. 2,curve 3). The resulting PPBA spec-
trum resembled in shape, although not in intensity, the
spectra of unmodified S1 complexes with nucleotides (Fig.
1, curves 2–5; Fig. 2, curve 3*). These results indicate that
the formation of the S1zADPzBeFx complex protects to a
certain extent the nucleotide pocket of S1 from the effects of

FIGURE 1 Fluorescence emission spectra of PPBA bound to nucleotide-
free S1 (1), S1zADP (2), S1zADPzBeFx (3), S1zADPzAlF4

2 (4), and S11
ATP (5). The assay solutions contained 10mM S1, 1.0mM PPBA, 20 mM
PIPES (pH 7.0), 30 mM KCl, and 3.0 mM MgCl2. The samples also
contained one of the following compounds: 1.0 mM ATP, 1.0 mM ADP,
1.0 mM ADP1 5.0 mM NaF1 0.5 mM BeCl2, or 1.0 mM ADP1 10 mM
NaF 1 0.5 mM AlCl3. The excitation wavelength was set at 360 nm.

FIGURE 2 Fluorescence emission spectra of PPBA bound to SH1-SH2
cross-linked S1 (pPDM-S1). (2) S1zADP complex cross-linked with
pPDM. (30) The same complex as in2 after the addition of BeFx. (3)
S1zADPzBeFx complex cross-linked with pPDM. (3*) Curve 3 from Fig. 1
(i.e., fluorescence emission spectrum of PPBA bound to S1zADPzBeFx),
reproduced here for comparison. Experimental conditions are the same as
in Fig. 1.
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pPDM modification. It appears also that it is possible to
obtain SH1-SH2 cross-linked S1 with somewhat different
conformations of the nucleotide pocket, depending on the
nature of the nucleotide bound to S1. We were unable to
carry out similar experiments with S1zADPzAlF, mainly
because of the difficulty of achieving.50% cross-linking
of such a complex. This difficulty is related to the much
lower reactivity of the SH1 group in S1zADPzAlF4

2 than in
the S1zADP and S1zADPzBeFx complexes (Hiratsuka et al.,
1998).

It is known that monofunctional modification of both the
SH1 and SH2 groups drastically affects the functional prop-
erties of myosin (Reisler et al., 1974a; Xie and Schoenberg,
1998; Xie et al., 1999). To distinguish between the effects of
cross-linking and monofunctional modification of SH1 and
SH2 groups, we have examined the properties of S1 with the
SH1 and SH2 groups modified by NPM (NPM-S1). The
PPBA spectra of NPM-S1zADP and NPM-S1zADPzBeFx

complexes (Fig. 3) were very similar to those of the corre-
sponding pPDM-S1 complexes (Fig. 2). As in the case of
pPDM-S1 (Fig. 2,curve 3), when S1zADPzBeFx complex
was formed first and then modified with NPM, the PPBA
spectrum of such S1 revealed that ADPzBeFx protected the
nucleotide pocket in S1 from the effects of NPM modifica-
tion (Fig. 3,curve 3). Overall, the effects of NPM modifi-
cation monitored via PPBA spectra closely resembled the
effects of pPDM modification on S1. Thus a double modi-
fication of the SH1-SH2 helix, rather than the cross-linking
itself, may account for the effects of pPDM modification on
the PPBA spectra of S1znucleotide complexes.

Both NPM-S1 and pPDM-S1 have ATPase activities
close to zero. Judging from the PPBA spectra, the binding
of BeFx and AlF4

2 to such S1s failed to induce the local
conformational changes reported by this probe. The obvious
question was whether such a desensitization of S1 also

occurs after the labeling of SH1 alone, i.e., in the SH1-
modified S1 (which retains some ATPase activity and the
ability to form stable complexes with phosphate analogs).
Fig. 4 shows the PPBA spectra of S1 labeled with NEM at
the SH1 group (NEM-S1). The spectrum of PPBA bound to
NEM-S1zADP (Fig. 4,curve 2) closely resembled those of
pPDM-S1zADP (Fig. 2,curve 2) and NPM-S1zADP (Fig. 3,
curve 2). It was also similar to the spectrum of PPBA bound
to nucleotide free S1 (Fig. 1,curve 1). This indicates that in
analogy to NPM and pPDM modifications, the NEM mod-
ification of SH1 inhibits the ADP-induced conformational
changes in the nucleotide pocket of S1. However, BeFx

(Fig. 4,curve 3) and, to a greater extent, AlF4
2 (Fig. 4,curve

4) induced increases in the intensity and blue shifts of the
spectrum of PPBA bound to NEM-S1zADP. The effects of
AlF4

2 and BeFx binding to NEM-S1 were similar but weaker
than their effects on the unmodified S1 (Fig. 1,curves 3and
4). Thus the ability of phosphate analogs to induce confor-
mational changes in the nucleotide pocket of NEM-S1 was
somewhat altered, but not abolished as in the pPDM-S1 and
NPM-S1.

DSC on modified S1

PPBA spectra shown in Figs. 1 and 2 revealed that the
conformation of the nucleotide pocket in pPDM-cross-
linked S1 is different from that in the S1zATP,
S1zADPzBeFx, and S1zADPzAlF4

2 complexes of unmodified
S1. Moreover, BeFx and AlF4

2 binding failed to induce
conformational changes in pPDM-S1 and NPM-S1 similar
to those observed in unmodified S1. To confirm these
observations, we have employed DSC, which is a highly
effective method for detecting nucleotide-induced confor-
mational changes in myosin (Shriver and Kamath, 1990;

FIGURE 3 Fluorescence emission spectra of PPBA bound to S1 with
SH1 and SH2 groups labeled with NPM (NPM-S1). (2) S1zADP complex
labeled with NPM. (30) The same complex as in2 after the addition of
BeFx. (3) S1zADPzBeFx complex labeled with NPM.

FIGURE 4 Fluorescence emission spectra of PPBA bound to SH1-la-
beled S1 (NEM-S1). (2) NEM-S1zADP. (3) NEM-S1zADPzBeFx. (4) NEM-
S1zADPzAlF4

2. Experimental conditions are the same as in Fig. 1.
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Levitsky et al., 1992; Bobkov and Levitsky, 1995). It has
been shown before that the changes revealed by DSC occur
in the catalytic domain of the myosin head (Levitsky et al.,
1998b) and are sensitive to the nature of the bound nucle-
otide (Bobkov and Levitsky, 1995).

As previously reported (Bobkov et al., 1993; Bobkov and
Levitsky, 1995), the binding of BeFx to the S1zADP com-
plex induced a significant increase in the thermal stability
and a considerable increase in the calorimetric enthalpy of
S1 (Fig. 5A, curve 2, and Table 1). Binding of AlF4

2 to the
S1zADP complex caused a similar effect (Table 1), in agree-
ment with previous observations (Levitsky et al., 1998a). In
contrast to expectations, previous DSC experiments (Lev-
itsky et al., 1992) revealed that the conformation of
pPDM-S1 is quite different from that of S1 complexed with
ADP and phosphate analogs. In agreement with that obser-
vation, in our hands pPDM-S1 had significantly lower ther-
mal stability and calorimetric enthalpy than S1zADPzAlF4

2

and S1zADPzBeFx (Fig. 5 C, curve 1, and Table 1). In
analogy to our results with the PPBA probe, calorimetric
features of pPDM-S1 were closer to those of nucleotide free
S1 than to those of the S1znucleotide complexes (Table 1).

The addition of BeFx or AlF4
2 had a marginal effect on

the thermal denaturation of pPDM-S1, with only a slight
increase in the thermal stability and no effect on the calo-
rimetric enthalpy of pPDM-S1 (Fig. 5C, curve 2, and Table
1). Thus DSC confirmed our results from PPBA experi-
ments that binding of phosphate analogs does not induce
conformational changes in pPDM-S1 similar to those ob-
served in unmodified S1. However, in contrast to the fluo-
rescence data (Fig. 2), the order in which S1 was cross-
linked and combined with BeFx did not affect the DSC
results. The DSC curves were similar irrespective of
whether we first cross-linked S1zADP with pPDM and then
added BeFx or first formed the S1zADPzBeFx and then
cross-linked it with pPDM.

Similar to pPDM, NPM modification strongly inhibited
the conformational changes in S1 detected by DSC upon
formation of S1 complexes with ADP and phosphate ana-
logs (Fig. 5B, curve 2, and Table 1). As for pPDM-S1, the
DSC results were independent of the order of S1zADP
modification with NPM and the addition of BeFx. However,
while pPDM-S1 and NPM-S1 showed virtually identical
PPBA fluorescence responses, DSC revealed some struc-
tural differences between these forms of modified S1. Judg-
ing from the DSC data (Fig. 5 and Table 1), NPM modifi-
cation had a somewhat smaller effect on the conformation
of S1znucleotide complexes. TheTm and DHcal values for
NPM-S1znucleotide complexes (Table 1) were higher (and
closer to those of unmodified S1) than those of pPDM S1.
However, it is important to note that both the cross-linking
with pPDM and the dual modification of SH1 and SH2
groups with NPM inhibited much more strongly the thermal
stabilization of S1 by ADPzAlF4

2 and ADPzBeFx than the

FIGURE 5 DSC scans obtained for unmodified S1 (A), S1 modified
monofunctionally at SH1 and SH2 groups with NPM (B), and S1 with SH1
and SH2 groups cross-linked with pPDM (C). For each panel curves 1 and
2 were obtained in the presence of 1.0 mM ADP and 1.0 mM ADP1 5.0
mM NaF1 0.5 mM BeCl3, respectively. The assay solutions contained 1.7
mg of S1, 30 mM HEPES (pH 7.3), and 2.0 mM MgCl2. The heating rate
was 1 K/min.

TABLE 1 Thermodynamic parameters obtained from DSC
scans for S1 z nucleotide complexes of unmodified S1, pPDM-
S1, and NPM-S1

Tm (°C) DHcal (kcal/mol)

S1 48.8 274
S1zADP 50.9 290
S1zADPzBeFx 57.3 342
S1zADPzA1F4

2 58.5 320

NPM-S1zADP 50.4 250
NPM-S1zADPzBeFx 53.3 304
NPM-S1zADPzA1F4

2 51.9 313

pPDM-S1zADP 48 210
pPDM-S1zADPzBeFx 49.5 200
pPDMzS1zADPzA1F4

2 49.3 190

The absolute error inTm values did not exceed60.2°C; the relative error
in DHcal values did not exceed610%.
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single-site SH1 or SH2 modifications (Golitsina et al., 1996;
Ponomarev et al., unpublished data).

DISCUSSION

According to current views, force generation by myosin
occurs upon the release of ATP hydrolysis products, when
the light chain binding domain (LCBD) swings relative to
the catalytic domain of S1, acting like a lever arm. An
important goal in muscle biochemistry has been to docu-
ment such a movement. The solution of several atomic
structures of S1 (Rayment et al., 1993; Fisher et al., 1995;
Smith and Rayment, 1996; Dominguez et al., 1998;
Houdusse et al., 1999) led to the description of three con-
formational states of S1 with different positions of the lever
arm (Houdusse et al., 1999). However, important questions
remain open. The same conformational state was observed
for the nucleotide-free and nucleotide-bound S1 structures
(Fisher et al., 1995; Gulick et al., 1997). In addition, the
same S1zADPzBeFx complex was crystallized in different
conformational states forDictyostelium(Fisher et al., 1995)
and smooth muscle (Dominguez et al., 1998) myosins.
Moreover, the unique S1 conformation state with the melted
SH1-SH2 helix visualized in the atomic structure of scallop
myosin S1 complexed with ADP is believed to correspond
in fact to the prehydrolysis, S1zATP state (Houdusse et al.,
1999). Clearly, the assignment of different conformational
states seen in myosin atomic structures to intermediate
complexes in the myosin ATPase cycle is rather difficult at
this stage.

pPDM-S1 was considered as a candidate for atomic struc-
ture determination in an attempt to define the conforma-
tional state of myosin in the S1zATP complex (Houdusse et
al., 1999). pPDM-S1 is known to bind weakly to actin and
is believed to be an analog of the myosin weakly bound
states (Burke et al., 1976; Chalovich et al., 1983). The fact
that the SH1-SH2 helix on S1 is stabilized by pPDM cross-
linking in a presumably melted/bent state makes pPDM-S1
especially attractive for structural studies. However, there is
also evidence showing that the conformation of pPDM-S1 is
different from that of S1zADPzPi (Chaussepied et al., 1986;
Wakabayashi et al., 1992; Kirshenbaum et al., 1993) and
S1zADPzVi (Levitsky et al., 1992).

To evaluate the possible use of pPDM-S1 as a structural
analog of the weakly bound (to actin) states of S1, we have
compared the properties of pPDM-S1 and S1zADPzAlF4

2

and S1zADPzBeFx complexes by two methods: the fluores-
cence of the nucleotide pocket probe (PPBA) and the DSC
of S1. It is pertinent to note that PPBA reports on the local
environment of the nucleotide pocket, whereas DSC moni-
tors the thermal stability of S1, which reflects the confor-
mational state of the entire S1 molecule. Both methods
clearly distinguish between the states of S1 that bind
strongly (nucleotide-free S1, S1zADP) and weakly
(S1zADPzBeFx, S1zADPzAlF4

2, and, in case of PPBA exper-

iments, S1zADPzPi) to actin. However, PPBA probing failed
to resolve between the S1zADPzBeFx and S1zADPzAlF4

2

complexes. Thus, either under the conditions of our exper-
iments the conformations of the nucleotide pockets in
S1zADPzBeFx and S1zADPzAlF4

2 are similar, or this method
is not sensitive enough to distinguish between them.

The methods employed in this study not only provided
new evidence that the conformation of pPDM-S1 is differ-
ent from that of S1 in the weakly bound states, but also
helped to localize the structural effects of pPDM cross-
linking on S1. PPBA spectra demonstrated that the state of
the nucleotide pocket of pPDM-S1 is different from that in
S1zADPzBeFx, S1zADPzAlF4

2, and S1zADPzPi complexes
and resembles that of nucleotide-free S1. Our observation
that pPDM cross-linking desensitizes S1 to the effects of
phosphate analogs and ADPzBeFx partially protects the nu-
cleotide pocket of S1 from the effects of cross-linking
indicates that the SH1-SH2 helix in pPDM-S1 is in a state
different from that in the S1zADPzAlF4

2 and S1zADPzBeFx

complexes. It may be deduced that the formation of these
complexes requires flexibility of the helix, which is com-
promised by its cross-linking.

Interestingly, the effects of SH1 and SH2 modification
with NPM and their cross-linking with pPDM on the S1
conformation were very similar. This can be rationalized in
terms of the effects of these modifications on the flexibility
of the SH1-SH2 helix. The SH1 group is located near Gly710

and SH2 is near Gly699 in the SH1-SH2 helix. These con-
served glycines were shown to serve as pivot points that
allow the SH1-SH2 helix to rotate (Dominguez et al., 1998).
Modification of SH1 and SH2 groups with NPM could limit
the helix flexibility and rotation around Gly710 and Gly699

and thus produce an effect similar to that of pPDM cross-
linking. However, the DSC results indicate that the confor-
mational effects of pPDM and NPM modifications on S1,
although similar with respect to some properties of the
nucleotide site, are less similar for S1 thermal stability.

Previously we proposed that the inhibitory effect of a
monofunctional SH1 or SH2 modification on the motor
function of myosin can be explained if it is assumed that
these modifications affect the flexibility of the SH1-SH2
helix at Gly710 and Gly699 positions, respectively, thus un-
coupling the lever arm from the catalytic domain of S1
(Bobkova et al., 1999). Such modifications, however, affect
only marginally the conformational changes induced in S1
by the formation of S1zADPzBeFx and S1zADPzAlF4

2 com-
plexes (Golitsina et al., 1996; Ponomarev et al., unpublished
data). Thus, while SH1 or SH2 modification is sufficient to
completely abolish the motor function of myosin (Bobkova
et al., 1999), dual modification or cross-linking of the SH1-
SH2 helix is required to inhibit the conformational changes
induced in S1 by AlF4

2 or BeFx.
Overall, this work presents new evidence that the confor-

mational state of pPDM-cross-linked S1 is different from
that of the analogs of the weakly bound states, S1zADPzBeFx
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and S1zADPzAlF4
2. Some of the structural properties of

pPDM-S1 observed in our experiments are in fact similar to
those of S1 in the strongly bound states. We may speculate
that the cross-linking of SH1-SH2 helix alters the coupling
between the lever arm, the nucleotide, and actin binding
sites on S1. Thus the weakening of S1 affinity for actin by
pPDM cross-linking may not be accompanied by conforma-
tional changes in S1 that are similar to those observed upon
ATP binding.
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fruitful discussions.
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