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ABSTRACT The kinetics of J-aggregate formation has been studied for two chromophores, tetrakis-4-sulfonatophenylpor-
phine in an acid medium and pseudoisocyanine on a polyvinylsulfonate template. The assembly processes differ both in their
sensitivity to initiation protocols and in the reaction profiles they produce. The porphyrin’s assembly kinetics, for example,
displays an induction period unlike that of the cyanine dye. Two kinetic models are presented. For the porphyrin, an
autocatalytic pathway in which the formation of an aggregation nucleus is rate-determining appears to be applicable; for the
pseudoisocyanine dye, an equation derived for diffusion-limited aggregation of a fractal object satisfactorily fits the data.
These models are shown to be useful for the analysis of kinetic data obtained for several biologically important aggregation
processes.

INTRODUCTION

Recent reports from our laboratories have dealt with the
spontaneous self-association of porphyrins and chlorins to
form molecular assemblies, both with and without added
polymeric templates (Pasternack et al., 1994, 1998a; de-
Paula et al., 1995). These studies are intended, in part, to
contribute to a general understanding of noncovalently
based supramolecular organizations, so prevalent in biolog-
ical systems. In the course of these investigations, the use-
fulness of resonance light scattering (RLS) in complement-
ing absorption (extinction) and circular dichroism
measurements for the detection and characterization of ex-
tended, electronically coupled chromophore assemblies has
been demonstrated (Pasternack et al., 1993, 1994, 1998b;
dePaula et al., 1995; Pasternack and Collings, 1995;
Parkash et al., 1998). Among the systems considered thus
far are aggregates of the diacid form of several sulfonato-
phenylporphines (Pasternack et al., 1994) and the cationic
trans-H2Pagg porphyrin (structures are shown in Fig. 1), in
both the absence and presence of DNA or polyglutamate
biopolymers (Pasternack et al., 1993; Pasternack and Gibbs,
1993). In addition to spectroscopic and thermodynamic
studies, we have reported on the kinetics of formation of one
such very large assembly (trans-H2Pagg on a DNA tem-
plate; Pasternack et al., 1998a). In the present paper we
extend our kinetics studies to include assembly formation of
two J-aggregates; one a porphyrin in the absence of a
template and the other a noncyclic chromophore, pseudo-
isocyanine, on polyvinylsulfonate.

J-aggregates, first described by Jelley and Scheibe in
1936 (Jelley, 1936; Scheibe, 1936) for cyanine dyes, are
molecular arrays in which the slip angle, that is, the angle
between the molecular long axis and the line of centers of
stacked molecules, is appreciably less than 90o. The elec-
tronic coupling of the monomers of a J-aggregate result in a
characteristic narrow, red-shifted extinction band. The so-
lution properties of one such dye, 1,19-diethyl-2,29-cyanine
(pseudoisocyanine, PIC1, Fig. 1) chloride have been stud-
ied extensively, and evidence has been provided for aggre-
gates whose size has been estimated to be anywhere from
tens of monomer units to several hundreds or thousands of
units (Sundstrom et al., 1988; Horng and Quitevis, 1993;
Makio et al., 1980; Maiti et al., 1995; Ohno et al., 1993).
The formation of the aggregate can be accomplished by any
of a number of approaches, including high dye concentra-
tion (millimolar range) or, at micromolar concentrations,
raising the electrolyte (sodium chloride) concentration to
5–6 M, or through the addition of certain anionic polymers,
such as polyvinylsulfonate (PVS) (Fig. 1). The pseudoiso-
cyanine J-aggregate displays an intense narrow extinction
band at;567–570, the exact position of which depends
somewhat on solution conditions and the method of aggre-
gate preparation. Unlike many other systems, PIC1 aggre-
gates have a higher quantum yield for fluorescence (f '
0.022 on a PVS template) than its monomer, with little if
any Stokes shift (Horng and Quitevis, 1993). The position
and intensity of the fluorescence have made interpretation
of RLS experiments on the aggregate problematic at best. In
this paper, we describe a strategy for detecting RLS signals
in the presence of fluorescence emission and confirm that
PIC1 forms an extended aggregate in solution when bound
to PVS by demonstrating the existence of an enhanced RLS
signal for this system.

By comparison, RLS measurements on porphyrin assem-
blies have generally been straightforward. The diacid forms
of two 4-sulfonatoporphines, H4TPPS3

2 and H4TPPS4
22, for
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example, show markedly enhanced scattering signals in
both the Soret and Q-band regions (Pasternack et al., 1994).
Studies of the aggregation properties of these two sulfo-
nated derivatives of tetraphenylporphine began over 25
years ago, when Fleischer et al. (1971) and Pasternack et al.
(1972) independently reported the formation of an unusu-
ally narrow band of Soret intensity near 490 nm, suggested
as arising from the aggregation of the diacid form of the
porphyrin. The monomer Soret band of H4TPPS3

2 or
H4TPPS4

22 is observed near 435 nm when the pH is lowered
below the pKa of the porphyrins,;4.8 (Fleischer et al.,
1971; Pasternack et al., 1972). However, as the pH is
lowered still further to;1, a new, “anomalous,” extremely

narrow band at 490 nm is observed, now known to be due
to the formation of a J-aggregate. In the years since these
first reports, a large number of studies on these porphyrin
derivatives have appeared, such as methods to induce the
diacids to aggregate at somewhat higher pH by increasing
the ionic strength and/or including a surfactant (Maiti et al.,
1995, 1998). A variety of physical measurements have been
performed on these porphyrin J-aggregates, including our
studies on enhanced Rayleigh scattering at 490 nm and the
determination of their size from RLS and static light scat-
tering experiments (Pasternack et al., 1994; Maiti et al.,
1995, 1998; Ohno et al., 1993; Collings et al., 1999; Akins
et al., 1994; Ribo et al., 1994; Rubires et al., 1999). These
aggregates prove to be very large, involving tens to hun-
dreds of thousands of monomer units (Pasternack et al.,
1994; Collings et al., 1999). In the present paper we report
on the kinetics of assembly formation of H4TPPS4

22 and
compare the results to those obtained for PIC1 in the
presence of PVS. The features of the kinetic behaviors
observed for these J-aggregate-forming chromophores are
shown to parallel the characteristics obtained by others for
biologically relevant aggregation processes.

MATERIALS AND METHODS

Porphyrin system

The porphyrin (tetrakis-4-sulfonatophenyl)porphine (Fig. 1) was purchased
from MidCentury Chemical as the sodium salt. Stock porphyrin solutions
were passed through 0.2-mm Nalgene filters within a few hours before use.
Porphyrin concentrations were determined in 0.1 mM phosphate buffer (pH
6.8), usinge 5 5.333 105 M21 cm21 at the Soret maximum at 413 nm for
the free-base form (Fleischer et al., 1971). The porphyrin solutions for
kinetic analyses were prepared such that the final HCl concentration was
always 0.3 M (pH;0.5). Mixing of the free-base form of the porphyrin
with the acid was carried out by two distinct protocols. In method I, a small
volume of a concentrated porphyrin stock was added to an acid medium
(HCl) with the use of a micropipette. In method II, the porphyrin stock was
first diluted with water and then added to an equal volume of an HCl
solution. A series of kinetic experiments were conducted over a porphyrin
concentration range of 3–7mM, using method II with constant stirring.
Extinction versus time scans were obtained at both 435 nm (Soret band of
the diacid monomer) and 490 nm (Soret band of the J-aggregate). The
temperature was maintained at 25°C.

Pseudoisocyanine/polyvinylsulfonate system

Pseudoisocyanine (PIC1) was purchased from Sigma as the iodide salt,
dissolved in methanol, and converted to the chloride form by ion exchange
chromatography. The chloride stock solution was then passed through a
0.2-mm filter and found to be stable for up to 2 weeks if kept in the dark.
Concentrations of the dye stock were determined using ane520of 6.03 104

M21 cm21 (Norden, 1977). Solutions prepared from stock for kinetic runs
contained between 1% and 3% methanol. Care must be taken to avoid too
much methanol in working solutions, as alcohol inhibits aggregation of the
dye.

PVS as the sodium salt was purchased from Aldrich (25% by weight in
water), purified by a published procedure (Horng and Quitevis, 1993), and
stored in a desiccator. Concentrations were determined by mass, using
130.1g/mol for the repeat unit. Stock solutions of PVS were not filtered.

FIGURE 1 Structures of the reactants. (a) Pseudoisocyanine (PIC1). (b)
Polyvinylsulfonate (PVS). (c) The diacid form of tetrakis-4-sulfonatophe-
nylporphine (H4TPPS4

22). And, for comparison, (d) the free-base form of
trans-bis(N-methylpyridinium-4-yl)diphenylporphine (trans-H2Pagg).
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PIC1 solutions for kinetic studies of the aggregation process were
prepared via the two protocols described earlier for the porphyrin system.
In method I, a small volume of a concentrated PIC1 stock was added to
either a PVS or a NaCl solution (the aggregating media) with a micropi-
pette. In method II, the PIC1 stock was diluted with water and then added
to an equal volume of a PVS solution (solubility considerations preclude
using this method for NaCl-induced aggregation). Extinction versus time
scans were obtained at the aggregate maximum, which varied from;566
to 568 nm, depending on the concentration of the aggregate and other
solution conditions. Color changes at the monomer peaks were relatively
small and were not monitored for kinetic analysis. The temperature was
maintained at 25°C. A few of the kinetic experiments were conducted with
continuous stirring, but most were left unstirred after the initial mixing
procedure. The kinetic data for the PIC1/PVS system showed small vari-
ations from run to run, so the analyses for three separate experiments were
averaged for each solution condition. The most reproducible data were
obtained with method II and a 1:1 ratio of dye and polymer, without
stirring. The concentration range studied was from 10 to 20mM dye and
polymer.

General information

All other chemicals were purchased from Fisher Scientific and were used
without further purification. Millipore-purified water was passed through a
0.2-mm Nalgene filter before use in the preparation of solutions. The
porphyrin and PIC1 stock solutions, prepared in glass vials, were stored in
the dark and used within 2 weeks. Reaction solutions were generally
prepared and measured in methacrylate cuvettes, assuming volumes to be
additive.

Extinction spectra and kinetic data were obtained with a Jasco V-550
UV/vis spectrophotometer. Stopped-flow kinetic data were obtained with a
Durrum model D-110 instrument. Fluorescence and resonance light scat-
tering experiments were performed with a Fluorolog III spectrofluorimeter
with signal intensities reported as sample/reference. In some cases, espe-
cially those requiring the measurement of scattering intensity as a function
of angle from the exciting beam, a Coherent Innova 70 mixed gas laser
(argon and krypton), equipped with a Brookhaven Instrument Corporation
BI-200SM goniometer and PMT detector, was employed. All fluorescence
and RLS detection wavelengths refer to the central wavelength of the
10-nm bandpass filters utilized. Data extracted from literature figures were
obtained by scanning on an Apple ColorOneScanner using Scantastic soft-
ware. Data points from the PICT files were obtained using a GraphicConverter
program. Kinetic data were analyzed using Kaleidagraph software.

It should be emphasized that “absorption” measurements of the aggre-
gates in these systems show appreciable scattering (both on- and off-
resonance) and therefore are more appropriately referred to as extinction
measurements. For another aggregating porphyrin system,trans-H2Pagg,
the aggregate of which also provides an enhanced RLS spectrum, the
intensity of RLS and extinction signals have been shown to increase
linearly with increasing concentration of chromophore monomers in the
aggregated form (Pasternack et al., 1998b). We have applied this result to
the systems being studied here. As confirmation, we find that the kinetic
parameters obtained from the analysis of kinetic data for the H4TPPS4

22

system at the monomer peak (435 nm), where there is minimal scattering
in the extinction data, are nearly identical to those obtained at the aggregate
peak near 490 nm.

RESULTS

Aggregation of H4TPPS4
22 in the presence of

0.3 M HCl

Shown in Fig. 2 are the extinction and RLS spectra, respec-
tively, for solutions of 1.9mM H4TPPS4

22 at pH 3 and 0.5.

At pH 3, the diacid porphyrin is monomeric and has its
Soret absorption maximum at 435 nm. The RLS spectrum
of the diacid monomer (best seen in theinsetof Fig. 2 B)
contains no peak maxima, but rather a small decrease from
the background Rayleigh scattering near 435 nm due to
absorption effects. When the pH of the H4TPPS4

22 solution
is lowered to pH 0.5, some of the diacid monomers assem-
ble to form J-aggregates, and a new extinction band at 490 nm
appears. For this same porphyrin solution at pH 0.5, the RLS
spectrum has an intense peak with its maximum at 490 nm, the
position in the extinction spectrum for the J-aggregate. No
RLS peak at 435 nm—the position of the absorbance band for
the porphyrin diacid monomer—is present, only a small trough
in the signal due to absorption effects. A small RLS peak is
observed slightly to the blue of the 435-nm feature, which may
be due to an H-aggregate (slip angle5 90o) previously re-
ported for this porphyrin (Maiti et al., 1998).

Presented in Fig. 3 are three kinetic profiles for the
conversion of the diacid monomeric form of the H4TPPS4

22

porphyrin to a J-aggregate. Aggregate formation was initi-

FIGURE 2 (A) Extinction spectra of H4TPPS4
22 solutions at pH 3 (curve

a) and pH 0.5 (curve b). The monomer Soret band of the diacid form of the
porphyrin is at 435 nm; the J-aggregate produces a band of Soret intensity
at 490 nm. (B) Resonance light scattering spectra of the solutions ofA. The
aggregate produces a markedly enhanced RLS signal at 490 nm, a small
trough at 435 nm, and a smaller enhanced RLS signal near 420 nm,
whereas the monomer (inset) shows only a trough at 435 nm.
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ated via the addition of HCl to a near-neutral porphyrin
solution. The kinetics of the aggregation process were mon-
itored at the 490-nm product peak by extinction spectros-
copy. The final solution conditions for each kinetic profile
are 4.5mM porphyrin and 0.3 M HCl. The striking differ-
ences among the profiles lay in the specifics of the exper-
imental protocol used for mixing reagents (see Materials
and Methods) (Fig. 3, curvesa andb; compare mixing via
methods I and II). Mixing method I (Fig. 3a) involves the
addition of a highly concentrated porphyrin solution (;0.1
mM) to the HCl medium. This protocol leads to kinetics that
are too rapid to follow by ordinary methods; over 85% of
the initial extinction change is missed in the;10 s required
to mix reagents in the cuvette and place the sample in the
housing of the spectrophotometer. However, using a proto-
col (method II) in which the concentration of the porphyrin
solution added to the aggregation medium is considerably
lower (micromolar range) leads to aggregation kinetics that
are significantly slower, although the final concentration of
porphyrin after mixing is the same for the two experiments.
The extinction at the start of the reaction, when followed at
the product peak, is zero within experimental error, and
therefore the total extinction change could be monitored.
However, an additional complication arises; the time-de-
pendent extinction curve for method II is not smooth, but
rather displays somewhat chaotic rises and falls superim-
posed on the reaction profile. We interpret these effects as
being due to the formation of rather fragile aggregation
networks, i.e., higher order assemblies involving interac-
tions of aggregates. In static and dynamic light scattering
experiments, we have observed that the apparent size of the

aggregates grows slowly over extended time periods, but if
the solution is agitated (stirred or inverted) the size returns
to a smaller value (Collings et al., 1999). We were able to
eliminate these higher order structures in the kinetic runs by
gentle stirring of the solution over the course of the reaction
(Fig. 3c). It was observed that stirring also has the effect of
shortening the “incubation” period and generally speeding
up the aggregation. For all of the kinetic data analyzed and
described, method II was used for sample preparation, and
the solutions were continuously stirred during the course of
the reaction. Over the concentration range studied, 3–7mM,
this protocol provided reproducible kinetic profiles. All of
the kinetic profiles showed three general regions, as dis-
played in Fig. 3c: an initial “delay or lag” period, followed
by rapid formation of;80–85% of the aggregate, and,
finally, a slow approach to the equilibrium position.

Aggregation of PIC1 on the
PVS polymer template

Shown in Fig. 4A are the extinction spectra of 10mM PIC1

dye with and without the addition of an equal concentration

FIGURE 3 Reaction profiles for the aggregation of three H4TPPS4
22

solutions differing only in the protocol of mixing. See Materials and
Methods for details. (a) Mixing method I. (b) Mixing method II, no
stirring. (c) Mixing method II with stirring.

FIGURE 4 (A) Extinction spectra of 10mM PIC1 (a) without and (b) in
the presence of an equal concentration of PVS. (B) Curve a: Signal
obtained for a PIC1/PVS solution from an “RLS-type” experiment (syn-
chronous scanning with both monochromators preset to an identical wave-
length).Curve b: Signal obtained for the same solution with an emission
scan protocol with excitation at 454 nm.
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of PVS polymer. In the absence of PVS, the dye is mono-
meric and displays a broad absorption envelope between
450 and 550 nm (Fig. 4A, spectrum a). No RLS peaks are
observed for solutions of PIC1 monomers in water over a
scanning range of 400–700 nm; only small dips appear in
the background Rayleigh scattering due to absorption. Upon
the addition of PVS, the monomer absorption envelope
decreases in intensity, with the appearance of a narrow band
at ;568 nm (see Fig. 4A, curve b). In the presence of the
PVS template, the “RLS-type experiment” (synchronous
scanning of the two monochromators preset to an identical
wavelength) displays a narrow peak at;568 nm (see Fig. 4
B), the same wavelength at which the new peak due to the
J-aggregate appears in the extinction spectrum. However, it
should be pointed out that the basis for the feature detected
in the RLS-type experiment is not as straightforward here as
for porphyrin systems because of fluorescence contribu-
tions. The exact position of the J-aggregate peak maximum
varies slightly, depending on the concentration of J-aggre-
gate, the ratio of dye to polymer, and solution conditions
(Horng and Quitevis, 1993). The addition of 10 mM NaCl to
solutions of PIC1 and PVS causes the J-aggregate peak at
568 nm to disappear in extinction and RLS-type experi-
ments. This observation indicates the reversibility of the
aggregation process and the extreme sensitivity of the equi-
librium to ionic strength.

Fluorescence emission spectral experiments for solutions
of 60 mM PIC1 monomers in water and in dimethyl sul-
foxide were obtained. Using an excitation wavelength of
495 nm, we find that the emission spectra in the two solvent
systems show an extremely weak and broad fluorescence
peak from;540 nm to 600 nm. The results of emission and
RLS-type experiments for a solution at 10 mM PIC1 and 90
mM PVS, which contains both monomers and J-aggregates,
are shown in Fig. 4B. When an excitation wavelength of
454 nm is employed, a narrow fluorescence peak, at least
two orders of magnitude more intense than the fluorescence
peak for solutions containing only monomer, is observed
(Fig. 4 B, spectrum b). The peak maximum is at 568 nm,
again at the same wavelength as the extinction peak ob-
served for the J-aggregate. The characteristics of this spec-
trum—the large fluorescence intensity, the narrowness, and
the position of peak maximum—as compared to the solution
with only monomer, indicate that the fluorescence is due
primarily to the J-aggregate, not to the monomers also
present in the solution. An excitation spectrum of this same
solution, with detection at 568 nm, was examined. Two
excitation peaks, at;495 nm and;530 nm, are observed.
If the intensity at a detection wavelength of 568 nm were
due exclusively to enhanced RLS, features at shorter wave-
lengths would not appear. To summarize these findings: 1)
unlike the general pattern observed for most porphyrin
aggregates, J-aggregates of PIC1 fluoresce with a greater
quantum efficiency than the monomer units; and 2) there

appears to be little or no Stokes shift of the fluorescence
peak of the PIC1 J-aggregate.

Because the fluorescence peak of the J-aggregates of
PIC1 displays virtually no Stokes shift, the question re-
mains: How much of the “RLS spectrum” of the J-aggre-
gates is due to fluorescence and how much, if any, is due to
true RLS enhancement? To address this question, advantage
is taken of the difference in the angular dependence of RLS
and fluorescence signals. The fluorescence signal intensity
in solution is expected to be independent of the angle of
detection, whereas scattering signals have a distinct angular
dependence reflecting the size and structure of the aggregate
(Collings et al., 1999). Experiments to measure scattering
intensity as a function of angle were therefore undertaken,
using the laser apparatus described previously. As a refer-
ence point, the emission from a solution of ZnTMpyP—a
metalloporphyrin that does not aggregate under the concen-
tration conditions used here (Pasternack et al., 1973)—was
studied. The metalloporphyrin was excited at 454 nm (near
its Soret wavelength absorption maximum), and its fluores-
cence was monitored at 650 nm (near its fluorescence
maximum), and no dependence of fluorescence intensity on
detection angle was observed (Fig. 5a). On the other hand,
when the scattering as a function of angle at an excitation
and detection wavelength of 650 nm (where there are no
absorption bands) was measured for a solution containing
PIC1 as a mixture of monomers and J-aggregate (10mM
PIC1 and PVS), the “normal” or nonresonance scattering
intensity varied with detection angle (see Fig. 5b). For a
solution containing PIC1 aggregates and monomers, excit-
ing at 454 nm and detecting at 570 nm, a wavelength
combination that is dominated by fluorescence, produces

FIGURE 5 Angular dependence of scattering/fluorescence signals. (a)
Fluorescence of ZnTMpyP. (b) Off-resonance scattering by PIC1 aggre-
gates. (c) Fluorescence of PIC1 aggregates. (d) Combination of fluores-
cence and resonance scattering by PIC1 aggregates. Each profile has been
normalized to an average maximum value of unity.
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signals whose intensity is constant as a function of angle
(see Fig. 5c). But, as seen in Fig. 5d for a solution
containing PIC1 aggregates and monomers, using an exci-
tation and detection wavelength of 570 nm—the wavelength
of the extinction and fluorescence maxima—produces sig-
nals whose intensity varies with angle of detection super-
imposed upon a constant background. This indicates that a
significant RLS enhancement exists for these aggregates in
addition to the fluorescence signal. As a rough estimate, the
RLS signal is comparable to the fluorescence intensity.

As shown in Fig. 6, kinetic profiles produced by adding
equimolar amounts of PVS polymer to the PIC1 dye and
monitored at the extinction peak for the J-aggregate do not
have the initial delay or lag period observed for the
H4TPPS4

22 system (compare to Fig. 3). At the higher con-
centration end of the range considered, a substantial portion
of the extinction change is missed via hand-mixing of
solutions. The stopped-flow technique was applied, in
which the mixing is complete within 5 ms; all of the
extinction change is now observed. Still, there is no indica-
tion of a lag or incubation period. Furthermore, the PIC1/
PVS system is not nearly as sensitive to mixing protocol as
is the H4TPPS4

22 system. For PIC1, the two mixing meth-
ods described earlier give similar results, i.e., when equal
volumes of PVS and PIC1 are mixed by turbulent flow (by
rapid injection into a beaker using syringes), the results are
almost identical to those obtained by simple pouring to-
gether of the two solutions. The formation of transient
species (see Fig. 3b) during the course of the kinetic
process, as seen for H4TPPS4

22, was not observed for the
PIC1 aggregation, and continuous stirring during kinetic
runs did not have a discernible effect on the kinetic pattern.

A variety of [PVS]/[PIC1] values were investigated, but the
most nearly reproducible results were obtained for the 1:1
ratio. Therefore, as described earlier, all kinetic runs for the
PIC1/PVS system employed simple hand mixing of solu-
tions without turbulent flow (except for those using the
stopped-flow technique), the solutions were not stirred dur-
ing the course of the aggregation process, a [PVS]/[PIC1]
5 1 was maintained, and at least three runs at a given set of
conditions were averaged. Kinetic data were obtained in a
concentration range of 10–20mM, limited by the extreme
sensitivity of the extent of aggregation and of the reaction
rate to concentration. At concentrations lower than 10mM,
there is very little aggregation and thus there are small
changes in extinction; at concentrations greater than 20mM
the kinetics become quite rapid and values for the extinction
become large and are subject to significant error.

ANALYSIS AND DISCUSSION OF KINETIC DATA

Aggregation of PIC1 on the PVS
polymer template

Because kinetic data for the PIC1/PVS and porphyrin/HCl
systems could not be successfully fit by standard method-
ologies (e.g., first-order, second-order, or coupled first-
order), our analysis takes a less conventional approach. It
has been shown that for self-similar systems, rate constants
are time dependent, and the mean aggregate size,s(t), scales
as a power law dependence on time,s(t) ' tn (Leyvraz,
1986). In the case of a diffusion-limited aggregation (DLA)
process, it has been shown (Leyvraz, 1986) that for nongel-
ling systems in which larger clusters grow primarily by
reaction with smaller clusters, a monodispersed system is
rapidly generated. Under such conditions the free monomer
concentration decreases exponentially as a power of time
(sometimes referred to as a “stretched exponential” depen-
dence). Taking into account the reversibility of the reaction,
the following equation results:

~@M# 2 @M#`! 5 ~@M#0 2 @M#`!exp~2~kt!n! (1)

where [M] is the free monomer concentration at timet, [M] 0

is the initial total concentration of monomer units, and [M]`

is the concentration of free monomer units at equilibrium. A
monodispersed, nongelling system such as the one being
considered here requires thatn , 1 (Leyvraz, 1986).

For the PIC1/PVS system, the small changes in extinc-
tion in the monomer region limit monitoring of the reaction
to the region of the spectrum near the aggregate peak (;565
nm). If the concentration of aggregate is defined in terms of
the concentration of aggregated (monomeric chromophore)
units and no aggregates are present att 5 0, then, for a
two-state system,

@M#0 5 @M# 1 @Agg# (2)

@Agg# 5 ~@M#0 2 @M#`!$1 2 exp~2~kt!n!% (3)

FIGURE 6 Kinetic profile obtained for the aggregation of PIC1. Both
the data (small circles) and fit (continuous line) to Eq. 5 are shown. The
inset emphasizes the early portion of the kinetic profile to demonstrate the
absence of any systematic deviation in the region most sensitive to the
model.
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Because the kinetics are followed with an absorbance spec-
trometer, it is extinction that is measured at the aggregate
peak. Therefore,

Extt 5 «M@M#t 1 «Agg@Agg#t (4)

and

Ext 5 Ext0 1 $~Ext̀ 2 Ext0!@1 2 exp~2~kt!n!#% (5)

Kinetic data were obtained for five sets of conditions at
[PIC1] 5 [PVS] over the concentration range of 10–20
mM. Shown in Fig. 6 is the best fit of the data obtained at
15 mM of reactants, using Eq. 5. The quality of fit is quite
good, with anR2 value of 0.9997. The inset in Fig. 6
presents the data and calculated curve for the first part of the
kinetic profile, demonstrating the quality of fit in this re-
gion. Shown in Table 1 below is a summary of the param-
eters obtained for the five sets of conditions using this
model. The agreement of the parameters for repeated trials
is within 625% of the average values. For the two highest
concentration solutions, 17.5 and 20mM, kinetic data were
obtained using hand-mixing and stopped-flow techniques
because, for these solutions, the reactions are sufficiently
fast that a major part of the extinction change is lost in the
hand-mixing technique. Values fork andn given in the table
for these conditions represent a weighted average of
stopped-flow and hand-mixing protocols. Reasonably good
agreement was obtained for the two kinetic methods. For
example, at 17.5mM, hand-mixing gave average values of
k 5 0.081 s21 and n 5 0.33, whereas the stopped-flow
method gave average values ofk 5 0.11 s21 andn 5 0.39.
The rate constant,k, shows a very sensitive dependence on
the initial concentration of reactants; a plot of lnk against
the initial concentration of reactants is linear, leading to an
empirical equation of the formk ' 6.3 3 1026 exp(5.53
105 [PIC1]0). The value ofn, on the other hand, is not
nearly as sensitive to concentration. A plot ofn versus
concentration is linear, with the value ofn decreasing with
increasing concentration. When extrapolated to zero concen-
tration,n . 0.9, suggesting that the reaction reverts to a simple
first-order process at the lower limit of concentration.

Aggregation of H4TPPS4
22 in the presence of

0.3 M HCl

As described previously and clearly demonstrated by a
comparison of Figs. 6 and 7, the overall kinetic profile for

H4TPPS4
22 aggregation is quite different from that for the

aggregation of PIC1. Most prominent is the delay or lag
period observed for the porphyrin system. When the data for
the aggregation of H4TPPS4

22 in the presence of 0.3 M HCl
are analyzed using Eq. 5, the quality of the fit is poor.
Instead, a kinetic model was employed that we had previ-
ously suggested (Pasternack et al., 1998a) for the autocata-
lyzed formation of organized assemblies of DNA-bound
porphyrins. The model is derived for a process in which the
porphyrin assembly catalyzes the rate-limiting step in the
aggregation process. In a sense, this mechanism can be
considered as a form of surface catalysis, with the rate
constant dependent on the extent of the surface. However, in
the present case, the “surface” (i.e., the porphyrin assembly)
grows with time. Thus the experimental rate constant is
itself time-dependent. The expression derived earlier for
this model is

~@M# 2 @M#`!/~@M#o 2 @M#`!

5 ~1 1 ~m2 1!$k0t 1 ~n 1 1!21~kct!
n11%!21/~m21! (6)

The four kinetic parameters that appear in Eq. 6 areko, the
rate constant for the uncatalyzed growth;kc, the rate con-
stant for the catalytic pathway;n, a parameter that describes

TABLE 1 Values for rate constant and n, from Eq. 5, for the
aggregation of PIC1 as induced by PVS polymer

[PIC1] 5 [PVS] (mM) k (s21) 3 103 n

10 0.97 0.64
12.5 3.1 0.45
15 8.6 0.46
17.5 100 0.37
20 360 0.30

FIGURE 7 Kinetic profile obtained for the aggregation of H4TPPS4
22.

Both the data (small circles) and fit (continuous line) to Eq. 6 are shown.
The inset emphasizes the early portion of the kinetic profile to demonstrate
the absence of any systematic deviation in the region most sensitive to the
model. The residuals, shown at the bottom of the figure, further confirm the
high quality of the fit of the data by the present model.
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the growth of the chromophore assembly as a power func-
tion of time (as proposed by Leyvraz, 1986); andm, which
is related to the size of the “critical nucleus,” the formation
of which is the rate-determining step in the process. The
derivation of Eq. 6 requires thatm not be equal to 1
(Pasternack et al., 1998a). (It is interesting to note that for
the special case wherem 5 1, the derivation leads to a
stretched exponential form.) [M]0 is the total porphyrin
concentration (expressed in monomer units). We set ([M]2
[M] `)/([M] o 2 [M] `) 5 (Ext 2 Ext̀ )/(Ext0 2 Ext̀ ) as
earlier, where Ext is the extinction of the solution at the
selected wavelength. Fig. 7 shows the fit of the kinetic data
to this autocatalytic model for the aggregation of H4TPPS4

22

(at a porphyrin concentration of 4.5mM) and the residuals
calculated for this fit. The inset in this figure examines the
data early in the run to emphasize the success of the model
in fitting this portion of the kinetic profile. It should be
borne in mind that a single set of parameters is used
throughout; i.e., no arbitrary parsing of the kinetic profile
into different “phases” is performed.

Shown in Table 2 is a summary of the kinetic parameters
obtained from an analysis of the kinetic data using Eq. 6, for
a concentration range of H4TPPS4

22 of ;3–7 mM. Where
multiple runs were attempted, often with different stock
solutions, agreement among the parameters was within
610%. The extinction data were fit with six parameters, the
four kinetic parameters described above, and two extinc-
tions, one for time 0 (Ext0) and the other at the end of
reaction (Ext̀ ). In general, the agreement between the best
fit and the experimentally measured values for Ext0 and
Ext̀ was excellent. Where comparisons were made, the
model works equally well for data collected at 435 nm and
at 490 nm, but some differences should be noted. Whereas
an uncatalyzed pathway contribution is required to fit the
data at 435 nm, this term proved insignificant at 490 nm for
several of the runs, reducing the model to a three-kinetic-
parameter fit. The values obtained forkc with and without
the inclusion of theko term are virtually identical at 490 nm.
Apparently, the data at 435 nm, because of monomer ab-
sorption, expose the formation of the critical nucleus via
both pathways, but the data at 490 nm for the J-aggregate

are so dominated by the extended aggregate that large
uncertainties exist for the uncatalyzed path. Where esti-
mates can be made at 490 nm fork0, they center on;5 3
1025 s21, which is similar to the value obtained at 435 nm.
In general, the pattern observed for the kinetic parameters is
1) kc .. ko; 2) m, the size of the critical nucleus is;5 or 6,
with little dependence on starting conditions; and 3)n is ;8
or so, again with little dependence on conditions. The rate
constantkc shows a linear dependence on initial porphyrin
concentration, similar to the dependence seen for thetrans-
H2Pagg/DNA system (Pasternack et al., 1998a).

The values of these kinetic parameters help to account for
the rather remarkable sensitivity of the H4TPPS4

22 aggrega-
tion kinetics to the method of preparing solutions. Even
when the final concentration conditions are identical, the
protocol in which a small volume of a concentrated solution
is added to acid leads to appreciably faster kinetics than
when the porphyrin is diluted before being acidified. Spe-
cies are apparently formed in the mixing process which
have a significant effect on the kinetics, resulting in hyper-
sensitivity to protocol. We believe that prenuclear species
are produced very rapidly as the concentrated porphyrin
stock first encounters the aggregating acid medium. These
so-called aggregation seeds form and begin the process of
aggregation before the solutions can be adequately mixed;
that them value is;6 implies a very sensitive dependence
of the concentration of prenuclear aggregates on total por-
phyrin concentration, and, as we have already described,kc,
the catalytic rate constant, depends on initial conditions as
well. Once a significant concentration of critical nuclei is
formed, according to this model, aggregation occurs very
rapidly. The result, as seen in Fig. 3, is that the first half-life
of a reaction is estimated at;1000 s for one protocol is less
than 10 s for the other.

General comments and applications to
other systems

For the two systems considered here, H4TPPS4
22 and PIC1,

we have observed quite contrasting kinetic profiles, al-
though both chromophores form J-aggregates showing en-
hanced resonance light scattering signals. Whereas for the
latter system, the aggregation is induced by the addition of
a polymeric template, this is not likely to be the basis for the
difference. It should be recalled that the aggregation of
trans-H2Pagg on DNA (Pasternack et al., 1998a) has a
kinetic profile similar to that for H4TPPS4

22. The crucial
difference appears to center on whether a rate-determining
nucleus formation step is required for aggregation, and
whether the aggregate serves as a catalyst for further nu-
cleus formation. For the PIC1/PVS system, the kinetics can
be interpreted as a “simple” assembly of a self-similar
fractal object without any need to consider intermediate
structures as “bottleneck” steps or catalysis. For H4TPPS4

22,
these considerations are very much involved in the deriva-

TABLE 2 Kinetic parameters, from Eq. 6, for the aggregation
of the diacid form of the porphyrin

[H4TPPS4
22]

(mM)
Wavelength

(nm) k0 (s21) kc (s21) m n

2.71 491.5 — 3.33 1024 5.6 10
3.61 491 — 7.53 1024 5.0 7.4
3.61 435 4.73 1025 8.93 1024 6.1 9.3
4.51 491 4.33 1026 1.33 1023 5.3 7.9
5.42 491 3.43 1025 2.23 1023 5.9 7.6
5.42 435 2.03 1024 2.13 1023 6.5 7.8
6.32 490.5 4.23 1025 2.93 1023 5.3 7.4
7.22 491.5 7.93 1025 3.53 1023 5.3 8.1

pH 0.5, temperature5 25°C.
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tion of the equation used to fit the data. In addition to
differences observed in the kinetic profiles, it is important to
note the difference in sensitivity of the two systems to the
experimental protocol. The detailed analysis of PIC1 ag-
gregation reflects the difficulty in reproducing initial exper-
imental conditions exactly and the small but measurable
response of the system to these variations. However, the
PIC1 system is relatively insensitive to gross changes in
protocol. Not so for the H4TPPS4

22 system, the half-life of
which changes by two or more orders of magnitude, de-
pending on whether concentrated or dilute solutions are
mixed to initiate the aggregation process, although the final
concentrations are the same. This difference for H4TPPS4

22,
we believe, is closely associated with the requirement for
nucleus formation for aggregation to occur. Under the tran-
sient conditions of stirring freshly mixed solutions, the rate
and extent of nucleus formation do not reflect the equilib-
rium conditions and have a profound influence on the rate of
the aggregation process. If high concentrations of these
“aggregation seeds” are produced during the mixing proto-
col, the aggregation process is enormously enhanced.

It has not escaped our notice that similar processes and
sensitivities have been described for biological aggregation
processes, such as the recent kinetic data produced by
Renault and co-workers for the aggregation of actin
(Renault et al., 1999). Actin is a major constituent of muscle
cells and has a vital role in numerous cellular functions,
such as cell motility, cytokinesis, and phagocytosis. In vivo,
monomeric actin, also called G-actin, can reversibly poly-
merize into microfilaments called F-actin. Previous studies
of actin polymerization had been performed in buffering
conditions, such that bulk polymerization in the solution
generally preceded the surface adsorption of polymers. We
have already reported on the applicability of Eq. 6 to these
assembly processes (Pasternack et al., 1998a). Surface-in-
duced polymerization from a nonpolymerizing monomer
solution was investigated by Renault et. al. This work
considered process(es) by which a positively charged lipid
monolayer deposited at the air/buffer interface could serve
as a template for the polymerization of monomeric actin
into single filaments. Under these unique reaction condi-
tions a nucleation period was not observed, unlike in the
previously obtained profiles.

Data collected by Renault et al. were scanned; they are
presented in Fig. 8A. The authors’ analysis was summa-
rized as follows: “the ellipsometric response can be fit with
an exponential behavior superimposed on a linear increase
that dominated at long times.” In other words, two separate
phases were used to fit the data; the initial rapid aggregation
process was described with a simple exponential function,
and a linear function was used to fit the leveling-off portion.
Some deviations between the data and the fit are apparent
(Renault et al., 1999), particularly at the very early stages of
the aggregation and the interface region where the linear
equation and exponential function meet. We have attempted

to fit the data of Renault et al. with Eq. 5 for a DLA of a
fractal object because of the absence of an incubation pe-
riod. The result is shown in the figure. Although systematic
deviations are apparent at long times, the model is quite
successful in fitting the vast majority of the aggregation
data, and especially the early portions (seeinset), where the
previous model was less successful. As another example of
a biologically relevant aggregation, we consider the kinetics
of formation of amyloid fibrils investigated by Jarrett and
Lansbury (1992). Fibrils, resulting from the aggregation of
b-amyloid proteins, are characteristic of the Alzheimer-
diseased brain. Jarrett and Lansbury determined that a
chemically discriminating nucleation event is necessary for
the aggregation of these amyloid proteins. One of the kinetic
profiles presented in their paper is reproduced via a scan-
ning routine (described in Materials and Methods) in Fig. 8
B. Aggregation was determined as a measure of turbidity of
the solution and was initiated by stirring a buffered solution
of peptide. The smooth curve shown in the figure was
obtained using Eq. 6. The authors then took the product of
the kinetic runs, sonicated them to fragment the fibrils

FIGURE 8 (A) Refit of actin aggregation data extracted from Renault et
al. (1999), using Eq. 5. (B) Fit of data provided by Jarrett and Lansbury
(1992) for the formation of amyloid fibrils, using Eq. 6. (C) Fit to Eq. 5 of
data from Jarrett and Lansbury (1992) for the reaggregation of sonicated
amyloid fibrils.
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(ostensibly down to a size characteristic of nucleation sites),
and monitored the reformation of fibrils. One of the result-
ing kinetic profiles is illustrated in Fig. 8C. Note the general
similarity in shape to the aggregation profiles of PIC1 on a
PVS template, and the lack of an induction period previ-
ously observed for this system (Fig. 8B). The analysis of the
Jarrett-Lansbury data using Eq. (5) is shown in the Figure
where it can be seen to be quite successful. Clearly the
several cases shown in Fig. 8 do not represent a sensitive
test for the kinetic models presented here; considerable
experimental difficulties limit the precision of the data for
these systems. Rather, these analyses are shown to demon-
strate the ability of the present models to fit the data for
which mechanistic arguments have been made, which are
similar to the ones presented here (Jarrett and Lansbury,
1993). To probe still further the parallels between biological
aggregations and the those described in the present paper,
we attempted a “seeding” experiment with H4TPPS4

22 to see
if it had an impact similar to that observed forb-amyloid.
We began two identically mixed aggregation kinetic runs,
but “spiked” one with less than 5% (by concentration) of a
concentrated H4TPPS4

22 solution. The impact (see Fig. 9)
was remarkable. An incubation period was not observed in
the spiked case (Fig. 9,curve a), the aggregation kinetics are
markedly enhanced, and more porphyrin was converted to
aggregate at equilibrium, as compared to the unperturbed
kinetic run in curveb of Fig. 9. We suggest, therefore, that
the kinetic models presented here for relatively simple well-
characterized systems provide potentially useful approaches
to more complex biologically relevant assembly processes.

This work was supported by the National Science Foundation (grant
CHE-9530707) and the Howard Hughes Medical Institute.
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