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ABSTRACT We tested the hypothesis that part of the lumenal amino acid segment between the two most C-terminal
membrane segments of the skeletal muscle ryanodine receptor (RyR1) is important for channel activity and conductance.
Eleven mutants were generated and expressed in HEK293 cells focusing on amino acid residue I4897 homologous to the
selectivity filter of K1 channels and six other residues in the M3-M4 lumenal loop. Mutations of amino acids not absolutely
conserved in RyRs and IP3Rs (D4903A and D4907A) showed cellular Ca21 release in response to caffeine, Ca21-dependent
[3H]ryanodine binding, and single-channel K1 and Ca21 conductances not significantly different from wild-type RyR1.
Mutants with an I4897 to A, L, or V or D4917 to A substitution showed a decreased single-channel conductance, loss of
high-affinity [3H]ryanodine binding and regulation by Ca21, and an altered caffeine-induced Ca21 release in intact cells.
Mutant channels with amino acid residue substitutions that are identical in the RyR and IP3R families (D4899A, D4899R, and
R4913E) exhibited a decreased K1 conductance and showed a loss of high-affinity [3H]ryanodine binding and loss of
single-channel pharmacology but maintained their response to caffeine in a cellular assay. Two mutations (G4894A and
D4899N) were able to maintain pharmacological regulation both in intact cells and in vitro but had lower single-channel K1

and Ca21 conductances than the wild-type channel. The results support the hypothesis that amino acid residues in the
lumenal loop region between the two most C-terminal membrane segments constitute a part of the ion-conducting pore of
RyR1.

INTRODUCTION

Ryanodine receptors (RyRs) control diverse cellular func-
tions by releasing Ca21 from intracellular stores in the
sarco/endoplasmic reticulum. RyRs are composed of four
560-kDa RyR subunits and four 12-kDa FK506 binding
proteins (FKBPs) (Coronado et al., 1994; Meissner, 1994;
Sutko and Airey, 1996; Franzini-Armstrong and Protasi,
1997). They are cation-selective channels that have an un-
usually high conductance for both mono- and divalent cat-
ions and are regulated by various endogenous and exoge-
nous effectors. Cryoelectron microscopy and 3-D image
analysis reveal a large, loosely packed 293 29 3 12 nm
cytosolic foot region and a smaller transmembrane domain
(Serysheva et al., 1995; Wagenknecht et al., 1996).

Each of the large RyR polypeptides comprises;5000
amino acids with four (Takeshima et al., 1989) to as many
as 12 (Zorzato et al., 1990) membrane-spanning segments in
the C-terminal region, which have been predicted to form
the Ca21 channel pore region of skeletal muscle RyR
(RyR1). The four membrane-spanning segment model is
supported by single-channel recordings with tryptic frag-
ments (Callaway et al., 1994) and deletion mutants (Bhat et
al., 1997a,b). The remaining amino acids of RyRs form the
large catalytic cytoplasmic foot structure. Studies using

site-directed antibodies suggest that the N- and C-termini of
RyR1 are cytoplasmically localized (Marty et al., 1994;
Grunwald and Meissner, 1995) and show evidence that two
sarcoplasmic reticulum (SR) lumenal segments are local-
ized between putative transmembrane segments M1 and M2
and between M3 and M4 (Grunwald and Meissner, 1995),
as proposed by Takeshima et al. (1989).

The lumenal loop region between the two most C-termi-
nal membrane segments of RyRs (M3 and M4) has se-
quence similarities to segments of the related inositol 1,4,5-
trisphosphate receptors (IP3Rs) and at least two otherwise
unrelated classes of ion channels, the voltage-gated cation
channels and the ligand-gated glutamate receptors (Grun-
wald, 1996). Recent x-ray analysis confirmed that the re-
gion between the two membrane-spanning segments of a
K1 channel fromStreptomyces lividansextends into the
membrane to form part of the ion conductance pathway
(Doyle et al., 1998). An important finding was that a con-
served VGYG motif comprised the ion selectivity filter of
the K1 channel. A sequence that is related to the K1

channel VGYG motif is a highly conserved GGIG motif in
the M3-M4 lumenal loop of RyRs (Fig. 1).

In this study we tested the hypothesis that the lumenal
loop between M3 and M4 of RyR1 plays an important role
in channel function. We generated 11 single-site mutants,
focusing on one amino acid residue shown to be part of the
selectivity filter of K1 channels (Tyr in K1 channel, Ile4897

in RyRs, and Ile or Val in IP3Rs), and a second residue
(Asp4899) that is highly conserved among the RyR and IP3R
families. The results suggest that the M3-M4 loop is impor-
tant in determining channel function, particularly with re-
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gard to channel conductance, and hence contributes to the
ryanodine receptor pore structure. A preliminary report of
this work has been presented in abstract form (Gao et al.,
1999).

EXPERIMENTAL PROCEDURES

Materials

HEK293 cells were obtained from the Tissue Culture Facility of
Lineberger Cancer Center at University of North Carolina. [3H]Ryanodine
was obtained from Dupont NEN, unlabeled ryanodine from Calbiochem
(La Jolla, CA), and phospholipids from Avanti Polar Lipids (Birmingham,
AL). All other chemicals were of analytical grade. Expression vector
pCMV5 was generously provided by Dr. David Russel (University of
Texas Southwestern Medical Center, Dallas, TX).

Site-directed mutagenesis

The full-length rabbit RyR1 cDNA was constructed as described previ-
ously (Gao et al., 1997). Single and multiple base changes were introduced
by pfu polymerase-based chain reaction, using mutagenic oligonucleotides
and the QuickChange site-directed mutagenesis kit (Stratagene, La Jolla,
CA). The C-terminal fragment (ClaI/XbaI, 14443/15276) of RyR1 cDNA
cloned into pBluescript vector served as the template for mutagenesis.
Mutated sequences were confirmed by sequencing, and mutated C-terminal
fragments were reintroduced into theClaI andXbaI sites of the C-terminal
fragment of RyR1. Mutated full-length expression plasmids were prepared
by ligation of three fragments (ClaI/XhoI, XhoI/EcoRI, EcoRI/XbaI con-
taining the mutated sequence) and expression vector pCMV5 (ClaI/XbaI)
as previously described (Gao et al., 1997).

Expression of wild-type and mutant RyRs

RyR1 cDNAs were transiently expressed in HEK293 cells with the Lipo-
fectamine Plus (Gibco BRL, Grand Island, NY) method, according to the
manufacturer’s instructions. Cells were maintained in high glucose Dul-
becco’s minimum essential medium (DMEM-H) containing 10% fetal

bovine serum at 37°C and 5% CO2 and plated the day before transfection.
For each 10-cm tissue culture dish, 6mg DNA was used at a DNA/
lipofectamine ratio of 1:3 to 1:5. Cells were harvested 42–48 h after
transfection.

Intracellular Ca21 release

Cellular Ca21 release in response to caffeine was measured by intracellular
Rhod-2 fluorescence, using a BioRad MRC-600 confocal microscope.
Transfected cells were grown on no. 1.5 glass coverslips coated with rattail
collagen and loaded with 5mM Rhod-2 AM in Hanks’ balanced salt
solution (HBSS) with 2 mM Ca21 and 1.5 mM Mg21 for 30 min at 37°C
after thorough washing in that same buffer. The loaded cells were washed
three times with Ca21/Mg21-supplemented HBSS. Images were recorded
before and after the addition of 10 mM caffeine to the Ca21/Mg21 HBSS
bath. These images were then translated into pseudocolor with Photoshop
v 5.02 (Adobe, San Jose, CA). In addition to visual analysis of caffeine-
induced Ca21 release, the confocal images were quantitatively analyzed
with ScionImage (Scion Corp., Frederick, MD). Mean pixel values after
background subtraction for each cell in a given coverslip were determined
for images recorded before and after the addition of caffeine. The ratio of
the mean pixel values before and after the addition of caffeine was then
determined (mean after/mean before) and plotted in a histogram including
all coverslips obtained for each sample.

Preparation of membrane fractions

Cells were washed twice with 4 ml ice-cold phosphate-buffered saline
containing 1 mM EDTA and protease inhibitors (0.2 mM Pefabloc, 100 nM
aprotinin, 50mM leupeptin, 1mM pepstatin, and 1 mM benzamidine) and
harvested in the same solution by removal from the plates by scraping.
Cells were collected by centrifugation and stored at280°C. To prepare
membrane fractions, cell pellets were resuspended in the above solution
and homogenized with a Tekmar Tissumizer for 5 s at asetting of 13,500
rpm. Cell homogenates were centrifuged for 1 h at 35,000 rpm in a
Beckman Ti50 rotor. Membranes were resuspended in a buffer containing
10 mM imidazole (pH 7.0), 0.1 M KCl, 0.3 M sucrose, 20mM leupeptin,
and 0.2 mM Pefabloc.

FIGURE 1 Alignment of putative
pore sequences of RyRs. Shown are the
putative M3-M4 lumenal loop region
of RyRs, the identical residues between
RyRs, between the RyR and IP3R su-
perfamily, and the sequence of the se-
lectivity filter of the K1 channel from
S. lividans(Doyle et al., 1998). Also
indicated are the residues that were
mutated (for properties of mutants see
Table 1).
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[3H]Ryanodine binding

Unless otherwise indicated, membranes of 1/12 culture dish were incubated
with 2 nM [3H]ryanodine at room temperature in 100ml of a buffer
containing 20 mM imidazole (pH 7.0), 0.25 M KCl, 0.15 M sucrose, 0.2
mM Pefabloc, 10mM leupeptin, and the indicated free Ca21 concentra-
tions. Nonspecific binding was determined using a 1000-fold excess of
unlabeled ryanodine. After 20 h, aliquots of the samples were diluted with
20 volumes of ice-cold water and placed on Whatman GF/B filters prein-
cubated with 2% polyethyleneimine in water. Filters were washed with 33
5 ml ice-cold 0.1 M KCl, 1 mM potassium piperazine-N,N9-bis(2-ethane-
sulfonic acid (KPIPES) (pH 7.0). The radioactivity remaining with the
filters was determined by liquid scintillation counting to obtain bound
[3H]ryanodine.

Isolation and reconstitution of expressed RyRs

RyRs from two to four culture dishes were solubilized for 10 min at room
temperature in 1.5 ml of a buffer containing 5 mg/ml phosphatidylcholine
and 1.45% 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfo-
nate (CHAPS) and isolated as 30S RyR complexes by rate density cen-
trifugation (Gao et al., 1997). To detect the 30S RyR complexes on the
gradients, solubilized rabbit skeletal muscle SR vesicles were labeled with
2 nM [3H]ryanodine and centrifuged on a parallel gradient. For single-
channel measurements, pooled RyR gradient peak fractions were reconsti-
tuted into proteoliposomes by removal of CHAPS by dialysis (Lee et al.,
1994).

Single-channel recordings

Single-channel measurements were made by incorporating expressed RyR
channels in Mueller-Rudin-type lipid bilayers (Tripathy et al., 1995).
Unless otherwise indicated, proteoliposomes containing the expressed
RyRs were added to thecischamber of a bilayer apparatus and fused in the
presence of an osmotic gradient (250 mMcis KCl/20 mM transKCl in 20
mM KHEPES, pH 7.4) with planar lipid bilayers containing a 5:3:2
mixture of bovine brain phosphatidylethanolamine, phosphatidylserine,
and phosphatidylcholine (50 mg of total phospholipid/ml ofn-decane).
After the appearance of channel activity, further fusion of proteoliposomes
was prevented by increasingtrans KCl to 250 mM. Thetrans side of the
bilayer was defined as the ground. Unless indicated otherwise, additions
were made to thecisbilayer chamber because the large cytosolic regulatory
region of native channels faced thecis (cytosolic) chamber in a majority
(.98%) of the recordings (Tripathy et al., 1995). Unless otherwise indi-
cated, electrical signals were filtered at 2 kHz, digitized at 10 kHz, and
analyzed as described (Tripathy et al., 1995). Single-channel recordings of
Ca21 current acquired in symmetrical 250 mM KCl with 4mM cis and 10
mM trans Ca21 were filtered at 300 Hz.

RESULTS

In the present study, we mutated 11 amino acids in RyR1 to
test the hypothesis that the SR lumenal loop linking trans-
membrane segments M3 and M4 (Fig. 1) is important for
channel activity and conductance. One amino acid residue
previously shown to be part of the selectivity filter of K1

channels (Tyr in K1 channel, Ile4897 in RyR1; Fig. 1) was
mutated to three different amino acids, maintaining the
hydrophobic nature of this position but altering the size of
the side chain. A second residue (Asp4899) highly conserved
among the RyR and IP3R families and found in many

voltage-regulated K1 channels was also mutated to three
different amino acids, altering the charge at this position.
Also mutated were other charged residues that are con-
served among the calcium release channel superfamily,
R4913 and D4917. Other negatively charged residues were
mutated that are not completely conserved (D4903) or are
conserved only among the ryanodine receptor family and
not among the IP3 receptor family (D4907).

Cellular fluorescence microscopy was used to measure
Ca21 release in response to caffeine in transfected human
kidney embryo (HEK293) cells. [3H]Ryanodine binding and
single-channel measurements were used as in vitro deter-
minations of mutant channel function, pharmacology, and
conductance.

After the original submission of this manuscript, Zhao et
al. (1999) published the results of several additional muta-
tions in the lumenal loop region linking transmembrane
segments M3 and M4 of the cardiac ryanodine receptor
(RyR2). The most significant mutation they reported was
that of G4824A (RyR2 numbering, analogous to G4894 in
RyR1 numbering), which maintains pharmacological regu-
lation but has a greatly reduced single-channel conductance.
We mutated this site in RyR1 after the publication of their
work and have included results obtained with RyR1 mutant
G4894A in the revised manuscript. Another overlapping
mutation between the two studies, D4899A, gives compa-
rable results.

Intracellular Ca21 release of RyR1 mutants

The presence of a caffeine-sensitive Ca21 release mecha-
nism in intact transfected HEK293 cells was assessed by
monitoring the fluorescence change in Rhod-2 in response
to the addition of 10 mM caffeine. Caffeine in the millimo-
lar concentration range is known to activate RyR1 (Rous-
seau et al., 1988) and has little or no effect on the basal
fluorescence of Ca21-sensitive fluorophores in nontrans-
fected HEK293 cells (Du and MacLennan, 1998). Fig. 2
shows confocal images of Rhod-2 fluorescence in HEK293
cells transfected with cDNA encoding wild-type and mutant
RyR1 proteins before (left panels) and 30 s after (right
panels) the addition of 10 mM caffeine. Shown are repre-
sentative images demonstrating the lack of caffeine-induced
Ca21 release in nontransfected HEK293 cells (Fig. 2A) and
typical caffeine-induced Ca21 release in wt-RyR1-trans-
fected cells (Fig. 2B). Arrows indicate cells showing an
obvious increase in pseudocolor value and hence in cytoso-
lic calcium. Mutations G4894A, D4899A (representative
image shown in Fig. 2C), D4899R, D4899N, D4903A,
D4907A, and R4913E yielded a caffeine-induced Ca21

release similar to that of wt-RyR1. Mutation D4917A
(Fig. 2D) was completely lacking in caffeine-induced Ca21

release in these experiments. The time course of caffeine-
induced Ca21 release for I4897L was delayed relative to
that observed for wt-RyR1, with Ca21 release becoming
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apparent 30 s after caffeine addition to the bath, as opposed
to the near-immediate Ca21 release observed in wt-RyR1-
transfected cells. Mutations I4897A and I4897V had caf-
feine-induced Ca21 release in a small number of cells that
was of very short duration, averaging;20 s from onset of
release to restoration of basal Ca21 levels. These phenom-
ena are not observed in nontransfected or wt-RyR1-trans-
fected cells. The spots of high fluorescence intensity in the
confocal images represent Rhod-2 intercalation into chro-
matin (J. Lemasters, personal communication).

A slightly more quantitative analysis of caffeine response
compared the mean pixel value before and after caffeine
treatment for individual cells. Control cells, transfected with
the vector lacking an insert, showed a slight increase in
mean pixel value after caffeine addition with a mean ratio of
pixel value of 1.036 0.30 (SD) and were distributed in a
roughly Gaussian manner (Fig. 3A). A very low frequency
of individual cells (eight of 276 total) had a ratio greater
than 1.63; therefore, in further analyzing the mutations, this
value was used as a “cutoff” for defining a response to
caffeine. Transfection of plasmid DNA encoding the wild-
type RyR1 (Fig. 3B) and mutations G4894A, D4899A, N or
R, D4904A, D4907A, and R4913E in images acquired 30 s
after caffeine addition to the bath, as well as I4897L in
images 45 s after caffeine addition resulted in the appear-
ance of several individual cells with ratios greater than 1.63
(summarized in Table 1). That this population is not dis-
tributed in a strictly Gaussian manner is not alarming, as
there may be cell-to-cell variations in the level of receptor
expression in the transfected cells, and the increase in flu-
orescence will be related to the proportion of the cell within
the confocal plane. Transfection with cDNA encoding
I4897A or I4897V resulted in the rapid transient appearance
of a small population of cells with ratios greater than 1.63
(two of 226 cells for I4897A and one of 168 cells for
I4897V). Transfection with cDNA encoding the mutation
D4917A (Fig. 3C) failed to result in the appearance of any
individual cells with ratios greater than 1.63 (0 of 142 cells).
The results from coverslips with caffeine-induced Ca21

release indicate that;15–50% of the cells were transfected.

[3H]Ryanodine binding to RyR1 mutants

The expression of functional RyR1 mutant proteins was also
assessed by determining their [3H]ryanodine-binding prop-
erties. The highly specific plant alkaloid is widely used as a
probe of channel activity because of its preferential binding
to open RyR ion channel states (Coronado et al., 1994;
Meissner, 1994; Sutko and Airey, 1996). Membrane frac-

FIGURE 2 Caffeine-induced Ca21 release in HEK293 cells transfected with wild-type and mutant RyR cDNAs. Confocal images were acquired before
(left column) and after (right column) the addition of 10 mM caffeine to the bath. (A) Lack of caffeine response in nontransfected cells. (B) Individual cells
transfected with wt-RyR1 respond to caffeine (arrows), indicating cells with caffeine-induced Ca21 release. (C) Representative image of D4899A, showing
a typical response for a mutant channel that responds to caffeine stimulus. (D) An image acquired for D4917A, indicating a lack of response for those
mutants failing to show caffeine-induced Ca21 release.

FIGURE 3 Semiquantitative analysis of caffeine-induced Ca21 release
in HEK-293 cells. Mean pixel values were determined for each cell in all
coverslips used for each mutant receptor before and after the addition of
caffeine to the bath. The data are expressed as the ratio of fluorescence with
caffeine to fluorescence without. (A) Vector-transfected cells. (B) wt-
RyR1-transfected cells. (C) D4917A-transfected cells.
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tions of HEK293 cells transfected with wt-RyR1 cDNA
showed a biphasic Ca21 dependence of [3H]ryanodine bind-
ing typical of native receptors (Fig. 4). Mutants with an
I4897 to A, L, or V substitution all failed to bind [3H]ry-
anodine. Among the remaining eight mutants, mutations of
amino acids not fully conserved (D4903A) among ryano-
dine and IP3 receptors or identical only among RyRs
(D4907A) showed Ca21-dependent [3H]ryanodine binding

essentially identical to that of wt-RyR1. Scatchard analysis
showed an affinity of [3H]ryanodine binding indistinguish-
able from that of expressed wt-RyR1 (Table 1). Among
single-site mutations of amino acid residues highly con-
served among the RyR and IP3R families, only G4894A and
D4899N showed detectable [3H]ryanodine binding (Fig. 4)
with an approximately twofold increase in [3H]ryanodine
binding affinity relative to that observed for wt-RyR1 (Ta-
ble 1), while D4899A, D4899R, R4913E, and D4917A
resulted in loss of detectable high-affinity [3H]ryanodine
binding. Absence of [3H]ryanodine binding was not due to
lack of expression of the mutant proteins, as immunoblots
indicated similar expression levels for all constructs
(Fig. 5). Cells transfected with the expression vector alone
did not show specific [3H]ryanodine binding.

Single-channel recordings

The presence of an ion conducting activity in the mutant
RyR1s was determined in single-channel measurements

TABLE 1 Properties of RyR1s mutated in putative pore region

Name

Caffeine-induced Ca21

release in cells
(% of cells

ratio . 2 3 SD)

[3H]Ryanodine binding to cell membranes Maximum K1 conductance of
purified RyRs

(pS)

Ca21 current 10 mM
trans Ca 0 mV

(pA)Kd (nM) Ca21 dependence

Vector ctrl 2.9 2 2 2 2
wt-RyR1 22.7 12.56 3.5 (5) 1 7856 6 (14) 22.76 0.3 (5)
G4894A 11.1 6.46 2.4 (3)* as wt-RyR1 216 1 (4)* ;0 (4)*
I4897A 0.9 2 2 3226 44 (7)* 20.26 0.1 (5)*
I4897L 7.3 2 2 4366 50 (5)* 20.56 0.1 (3)*
I4897V 0.6 2 2 4326 24 (6)* 20.26 0.1 (3)*
D4899A 25.7 2 2 6266 20 (7)* 20.56 0.1 (3)*
D4899R 14.2 2 2 3906 44 (10)* 20.16 0.1 (3)*
D4899N 19.3 6.96 1.3 (3)* as wt-RyR1 876 2 (7)* 20.46 0.1 (4)*
D4903A 24.6 9.56 1.2 (3) as wt-RyR1 7966 10 (8) 22.46 0.1 (4)
D4907A 50.0 11.46 1.0 (3) as wt-RyR1 7906 10 (8) 22.46 0.2 (4)
R4913E 13.6 2 2 2976 50 (12)* 20.46 0.1 (7)*
D4917A 0 2 2 4886 63 (12)* 20.16 0.1 (4)*

2, not detected.
*P , 0.05 when compared to wt-RyR1 by unpaired Student’st-test.

FIGURE 4 Ca21 dependence of [3H]ryanodine binding to wild-type and
mutant RyR1s. Specific [3H]ryanodine binding to membranes from cells
transfected with wt-RyR1 (F) and mutations of G4894A (Œ), D4899N (�),
D4903A (f), and D4907A (l) was determined in 250 mM KCl, 20 mM
imidazole (pH 7.0) media containing 2 nM [3H]ryanodine and the indicated
concentrations of free Ca21. Cells transfected with the expression vector
alone or with the other mutant RyRs did not show specific [3H]ryanodine
binding. Data are the mean6 SD of three to five experiments.

FIGURE 5 Western Blot analysis of protein expression. Transfected
cells grown on a 10-cm plate were harvested in 5 ml phosphate-buffered
saline. Ten microliters of this sample was loaded into a single lane of a 5%
acrylamide gel. After overnight transfer to polyvinyl pyrrolidine fluoride
(PVDF), the membrane was blocked in 5% milk with 0.1% Tween-20 and
exposed to a monoclonal antibody raised against RyR1 (mAb RyRD110).
The secondary antibody was horseradish peroxidase-conjugated anti-
mouse.
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with the planar lipid bilayer method. In these studies we
took advantage of the fact that RyRs are Ca21-gated chan-
nels that are impermeant to Cl2 and conduct monovalent
cations more efficiently than Ca21 (Coronado et al., 1994;
Meissner, 1994; Sutko and Airey, 1996). The use of K1

instead of Ca21 as the current carrier therefore afforded a
higher resolution of single-channel events.

Fig. 6 shows representative current traces of single wild-
type and mutant RyR1 ion channels with K1 as the current
carrier. Proteoliposomes containing the purified 30S chan-
nel complexes were fused with planar lipid bilayers, and
single channels were recorded in symmetrical 250 mM KCl
that contained micromolar activatingcis (cytosolic) Ca21

concentrations. In the upper trace of Fig. 6, a single partially
activated wt-RyR1 was recorded in the presence of 20mM
free cytosolic Ca21 at a holding potential of240 mV. In
symmetrical 250 mM KCl, wt-RyR1 channels had a mean
conductance of 7856 6 pS (6 SE, n 5 14), which was
essentially identical to that of native skeletal muscle RyR1
(Tripathy et al., 1995). Reduction of cytosolic Ca21 to ;70
nM and the increase to 10 mM by adding EGTA and Ca21,
respectively, to thecischamber decreased channel activities
to near zero. Thus the purified wt-RyR1 exhibited a K1

conductance and Ca21 dependence indistinguishable from
that of native receptors (Tripathy et al., 1995).

Channels with I4897 mutated to A, L, or V exhibited an
altered K1 conductance and displayed several intermediate
conductance states (Fig. 6,traces 3–5, and Table 1). The
two mutants with an amino acid substitution not absolutely
conserved in RyRs and IP3Rs (D4903A) or only identical
among RyRs (D4907A) had a K1 conductance and dis-
played a gating behavior essentially identical to that of
wt-RyR1 (Fig. 6,traces 9and10, and Table 1). Mutation of
the conserved G4894 to A (Fig. 6,trace 2) and D4899 to N
(Fig. 6, trace 8) resulted in greatly reduced single-channel
conductances (Table 1). The two channels did show several
incompletely resolved openings due to filtering at 300 Hz;
these do not represent subconductance states. The remain-
ing mutants exhibited an altered K1 conductance and gating
behavior markedly different from those of wt-RyR1 (Fig. 6,
traces 6–7and11–12). These mutants showed segments in
which the channel fluctuated between subconductance
states and failed to close completely for long periods. Mu-
tations of I4897 (A, L, and V), D4899 (A and R), R4913E
(shown in Fig. 7A), and D4917A were open in the presence
of mM EGTA in the cis chamber (nMcis Ca21), and
single-channel open channel probabilities (Po’s) were not
significantly affected by changes incis Ca21 for these
mutations. Likewise, none of these mutations were modified
by cis ryanodine at concentrations up to 100mM.

Figs. 8–10 show three of the four mutations that retain
pharmacological regulation: the unconserved D4903A and
the highly conserved G4894A and D4899N, respectively.
The results for D4903A are identical to those of D4907A as
well as wt-RyR1, and therefore these are not shown. Panel
A in Figs. 8–10 indicates that all three channels show
regulation bycis Ca21 in a manner similar to that of native
RyR1 and to that seen in [3H]ryanodine binding (Fig. 4),
with very low Po in nM cis Ca21, increasing to a peak at
;100mM cisCa21 before decreasing back to lowPo in mM
Ca21. However, the absolutePo values varied greatly with
maximumPo (at 100mM Ca21), ranging between 0.10 and
0.94 for these mutants withPo, max5 0.386 0.23 (n 5 3)
for G4894A,Po, max5 0.526 0.1 (n 5 6) for D4899N, and
Po, max 5 0.26 (n 5 2) for D4903A. By comparison, at 4
mM cytosolic Ca21, Po values for G4894A (0.196 0.07,
n 5 5), D4899N (0.22,n 5 2), and D4903A (0.106 0.03,
n 5 10) are lower than thePo, max at 100mM Ca21. Panel

FIGURE 6 Single-channel recordings of wild-type and mutant RyR1s in
symmetrical 250 mM KCl solution. Single-channel currents, shown as
downward deflections from closed levels (c, solid line) to a maximum
conductance level (o, stippled line), were recorded in 250 mM KCl, 10 mM
KHEPES (pH 7.4) media containing 4–20mM free Ca21. Traces were
acquired at240 mV and filtered at 2 kHz, with the exceptions of G4894A
and D4899N, which were acquired at270 mV and filtered at 300 Hz. The
scale bars are 100 ms and 10 pA for all channels except G4894A and
D4899N, which are 200 ms and 2.5 pA and 200 ms and 5 pA, respectively.
Maximum K1 conductance values are given in Table 1.
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B in Figs. 8–10 shows the results of adding 10mM ryano-
dine to activated channels. Ryanodine locked both D4903A
(Fig. 8) and D4899N (Fig. 10) in a 50% conductance state,
while G4894A (Fig. 9) was locked into a;85% conduc-
tance state bycis ryanodine.

The ability of the mutants to conduct Ca21 was deter-
mined by measuring single-channel currents at zero mV in
symmetrical 250 mM KCl solutions containing 10 mM

trans (SR lumenal) Ca21 as the current carrier. Fig. 11A
shows traces of single-channel currents measured at 0 mV
in 4 mM cis and either 4mM (top) or 10 mM (bottom) trans
Ca21 for wt-RyR1 and mutant I4897L. An increase intrans
Ca21 resulted in a clearly discernible Ca21 current of

FIGURE 7 Single-channel recordings for mutant R4913E. Single-chan-
nel currents were recorded at235 mV in symmetrical 250 mM KCl and
are shown as downward inflections from a closed state (c–). (A) Effect of
varied Ca21 in the cis (cytosolic) chamber and the addition of 10mM
ryanodine. (B) Current-voltage relationship of the expressed channel in 250
mM symmetrical KCl (F) and with the subsequent addition of 10 mM
trans Ca21 (E).

FIGURE 8 Single-channel recordings for mutant D4903A. Single-chan-
nel currents were recorded at235 mV in symmetrical 250 mM KCl and
are shown as downward inflections from a closed state (c–). (A) Effect of
varied Ca21 in the cis (cytosolic) chamber. (B) Single-channel recordings
with 4 mM symmetrical Ca21; the addition of 10mM ryanodine locks the
channel in a;50% conductance state. (C) Single-channel currents re-
corded at 0 mV in 250 mM KCl with 10 mMtrans Ca21 and 4mM cis
Ca21. (D) Current-voltage relationship of the expressed channel in 250
mM symmetrical KCl (F) and with the subsequent addition of 10 mM
trans Ca21 (E).
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22.7 6 0.3 pA for wt-RyR1 (Table 1). I4897L showed a
greatly reduced Ca21 current of20.5 6 0.1 pA after the
addition of 10 mMtrans Ca21. D4903A (Fig. 8,C andD)

and D4907A showed a calcium current similar to that of
wild type (22.46 0.1 pA for D4903A and22.46 0.2 pA
for D4907A; Table 1). G4894A did not show a measurable

FIGURE 9 Single-channel recordings for mutant G4894A. Single-chan-
nel currents were recorded at290 mV in symmetrical 250 mM KCl and
are shown as downward inflections from a closed state (c–). (A) The effect
of varied Ca21 in the cis (cytosolic) chamber. (B) Single-channel record-
ings with 4mM symmetrical Ca21; the addition of 10mM ryanodine locks
the channel in a;85% conductance state. (C) Single-channel currents
recorded at 0 mV in 250 mM KCl with 10 mMtrans Ca21 and 4mM cis
Ca21. (D) Current-voltage relationship of the expressed channel in 250
mM symmetrical KCl (F) and with the subsequent addition of 10 mM
trans Ca21 (E).

FIGURE 10 Single-channel recordings for mutant D4899N. Single-
channel currents were recorded at250 mV in symmetrical 250 mM KCl
and are shown as downward inflections from a closed state (c–). (A) Effect
of varied Ca21 in the cis (cytosolic) chamber. (B) Single-channel record-
ings with 4mM symmetrical Ca21; the addition of 10mM ryanodine locks
the channel in a;50% conductance state. (C) Single-channel currents
recorded at 0 mV in 250 mM KCl with 10 mMtrans Ca21 and 4mM cis
Ca21. (D) Current-voltage relationship of the expressed channel in 250
mM symmetrical KCl (F) and with the subsequent addition of 10 mM
trans Ca21 (E).
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Ca21 current under these conditions, presumably because of
very low conductance (Fig. 9C). D4899N, another mutant
channel with a low K1 conductance, showed a greatly
reduced Ca21 current of20.46 0.1 pA at 0 mV (Fig. 10C
and Table 1). Mutations of I4899 (A, L, and V), D4899 (A
and R), R4913E, and D4917A all showed greatly reduced
Ca21 currents after the addition of 10 mMtrans Ca21 at 0
mV relative to wt-RyR1 (Table 1) and hadI-V relationships
similar to that shown for I4897L in Fig. 11B.

The voltage dependence of wt-RyR1 and five represen-
tative mutations are compared in Fig. 11B for wt-RyR1 and
I4897L and in Figs. 7–10 (panel D) for R4913E, D4903A,
G4894A, and D4899N, respectively.I-V curves were re-
corded under two conditions in the presence of 250 mM
symmetrical KCl 1) with 4mM symmetrical Ca21 (filled
circles) and 2) with 4mM cisand 10 mMtransCa21 (empty
circles). The potassium currents measured in symmetrical
Ca21 were linear and showed ohmic voltage dependence,
similar to that of the wild-type RyR1, with the exception of
D4899N (Fig. 10D), which showed nonohmic voltage
dependence at positive potentials; the conductance reported
for the D4899N mutation in Table 1 was obtained, there-
fore, at negative potentials only. The addition of 10 mM
trans Ca21 reduced the current and induced a rightward
shift of the reversal potential of;10 mV for wt-RyR1
(Fig. 11B), D4903 (Fig. 8D), and D4899N (Fig. 10D). The
addition of 10 mMtrans Ca21 reduced the K1 current of
G4894A at negative and positive holding potentials. Be-
cause of the very low conductance, this mutant failed to

induce a detectable rightward shift in reversal potential.
R4913E (Fig. 7B) or I4897L (Fig. 11B) did not exhibit a
significant shift in reversal potential or the magnitude of K1

currents after the addition of 10 mMtrans Ca21. Results
similar to those for R4913E and I4897L were observed for
the remaining mutations I4897A and V, D4899A or R, and
D4917A.

DISCUSSION

The results of this study suggest that the putative lumenal
loop linking transmembrane domains M3 and M4 of RyR
plays a crucial role in determining at least three of the most
characteristic properties of the ryanodine receptor: Ca21

activation, ryanodine binding, and ion conductance. More-
over, our results indicate that these three functions are not
explicitly linked. One model (Balshaw et al., 1999) that can
explain all of these results is illustrated in Fig. 12. The
model suggests that a portion of the lumenal loop linking
M3 to M4 in the RyR reenters the membrane, forming a
P-segment analogous to those observed for many voltage-
gated ion channels. The mutations did not appear to inter-
fere with RyR tetramer formation, as all showed a sedimen-
tation behavior comparable to that of wt-RyR1 during
purification.

The most direct test of the model of Fig. 12 involved
residue I4897, where three conservative mutations to A, L,
and V yield channels with an altered ion conductance. The

FIGURE 11 Single-channel re-
cordings for wt-RyR1 and I4897L
with K1 and Ca21 as charge carriers.
(A) Single-channel currents were
measured in symmetrical 250 mM
KCl and 4 mM Ca21 in 20 mM
KHEPES (pH 7.4) at 0 mV (top
trace) for wt-RyR1 (left) and I4897L
(right) and after the addition of 10
mM trans Ca21 (bottom trace). (B)
I-V relationships for wt-RyR1 (left)
and I4897L (right) before (F) and
after (E) the addition of 10 mMtrans
Ca21.
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crystal structure of theS. lividansK1 channel indicates that,
within the pore-forming loop, there is an ion selectivity
filter formed by a conserved GYG motif (Doyle et al.,
1998). This motif is mimicked in the less ion selective RyRs
with the sequence GIG and in the IP3Rs, in which the I is
replaced by a V. Mutations of I in the GIG motif and
flanking residues would therefore be expected to alter the
channel conductance, as is the case. The mutant conduc-
tances do not correspond to one-half of that of wild type
and, therefore, likely do not represent a subconductance
often observed for native channels. Mutation of Ile4987

yields channels that lack Ca21 dependence, fail to bind
ryanodine, and have atypical Ca21 release in response to
caffeine in a cell-based assay, in addition to altered ion
conductance. One possibility we cannot rule out, therefore,
is that global conformational changes account for the altered
ion conductance and function of the I4897 mutants.

Mutations of amino acid residues that are identical in all
types of RyRs and IP3Rs sequenced to date show significant
alterations in channel activity as compared to wt-RyR1. A
conserved residue flanking the GIG motif of the RyRs is
D4899. Replacement of the negatively charged aspartate
with a hydrophobic alanine or positively charged arginine
results in channels that are capable of releasing Ca21 in
response to caffeine in a cell-based assay, but which display
an altered K1 conductance and fail to bind ryanodine,
suggesting that these three properties may not be implicitly
linked. Alternatively, the mutant channels could be main-
tained in a “native” conformation in cells but undergo
conformational changes during isolation that result in an
altered K1 conductance and pharmacology. A third muta-
tion at this position to Asp, maintaining a polar side chain
while losing the negative charge, yields a channel with
properties very similar to those of the wild-type channel but
with decreased conductances and an atypical gating behav-
ior. G4894, also flanking the GIG motif, has recently been
reported to affect the K1 conductance of RyR2 while main-
taining pharmacological regulation by Ca21, caffeine, and

ryanodine (Zhao et al., 1999). Mutation of this residue to
Ala in RyR1 also results in a channel, which maintains
pharmacological regulation but shows a greatly decreased
K1 conductance (Fig. 9). G4894A in RyR1 fails to show a
detectable Ca21 current at 0 mV, although the K1 conduc-
tance is reduced after the addition of an asymmetrical Ca21

gradient, suggesting that the lack of current and relatively
low percentage of cells responding to caffeine may be due
to a very low Ca21 conductance rather than a total lack of
permeation by Ca21 ions.

The recent report by Lynch et al. (1999) of a mutation
resulting in malignant hyperthermia and central core disease
also suggests that the lumenal domain of the ryanodine
receptor plays a role in determining the Ca21 sensitivity of
the skeletal muscle RyR. It was found that a Mexican
pedigree possesses a single mutation of I4898T (same res-
idue as I4897 in rabbit RyR1), which sensitizes the RyR to
Ca21 activation, resulting in a channel that is partially
activated at physiological cytosolic Ca21 concentrations
and is, therefore, “leaky.” Our results, in contrast, suggest
that the Thr mutation at this position is unique, as mutations
to Ala, Val, and Leu all eliminate or greatly decrease the
sensitivity to activating Ca21.

Mutation of a conserved Arg at position 4913 to a Glu
resulted in a channel that was capable of releasing Ca21 in
response to caffeine in intact cells, but which failed to bind
ryanodine. This mutation displayed greatly reduced K1 and
Ca21 conductances, despite the replacement of a positively
charged residue with a negatively charged residue. One
explanation for this is that the change in charge destabilized
the channel structure, thereby effecting global conforma-
tional changes during receptor isolation that are associated
with receptor conductance and regulation.

Mutation of the absolutely conserved Asp at position
4917 to Ala resulted in a channel with a greatly decreased
Ca21 current, a lack of ryanodine binding, as well as caf-
feine-induced Ca21 release. This residue is the final pre-
dicted amino acid of the lumenal loop before the beginning
of the M4 transmembrane domain loop (Takeshima et al.,
1989) and may play a role in directing the Ca21 into the
conduction pathway. Alternatively, the loss of the hydro-
philic character at this position may result in global confor-
mational changes that are associated with a loss of receptor
regulation in intact cells.

In contrast to the mutations of conserved residues, two
mutants involving amino acid residues not highly conserved
among the RyR and IP3R families show no significant
changes in channel conductance and function. Mutation of
D4903 (to A), which not is conserved inC. elegans(Ser) or
lobster (Ala) RyRs and is a basic amino acid in most IP3

receptor subtypes, had no apparent effect on RyR activity.
Similarly, mutation of D4907 (to A), which is well con-
served as either an Asp or Glu in all RyR or IP3R subtypes
except inPan ArgusIP3R, in which it is a Lys, was without
apparent effect on RyR activity.

FIGURE 12 Proposed C-terminal arrangement for RyR, showing four
transmembrane segments and a lumenal loop between M3 and M4. G4894
and D4917 indicate, respectively, the most N-terminal and C-terminal
amino acids mutated in this study.
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Our mutations can therefore be grouped into four cate-
gories. The first of these are the two mutations (D4903A
and D4907A) with no apparent defect, maintaining full
single-channel conductance, as well as caffeine-induced
calcium release, ryanodine binding, and single-channel
pharmacology. The second category contains two residues
(G4894A and D4899N) likely to be specifically reducing
channel conductance, as indicated by the maintenance of
pharmacological regulation. The third category includes
those that appear to be functional ryanodine receptors, as
evinced by caffeine-induced caffeine release, but which
have an altered single-channel conductance and fail to show
pharmacological regulation in vitro (D4899A and D4899R
and R4913E). These channels may be structurally unstable
outside of the intact cellular environment or require some
cofactor, which is present in the cells but is lost upon
isolation, to stabilize them in a pharmacologically active
state. The final category contains mutations (I4897 A, L,
and V, and D4917A) that have altered pharmacological
regulation in both cellular and in vitro assays but maintain
a low potassium conductance. These mutations are likely to
have a major impact on the structure of the channel or on the
conformational changes linking ligand binding to functional
response. The mutations at I4897 may only weakly interact
with a hydrophobic cleft normally occupied by the branched
side chain of the Ile residue, placing the backbone carbonyls
into the pore, where they contribute to the ion conduction
pathway. D4917, being the final residue at the lumenal end
of transmembrane domain 4, may be directly involved in
stabilizing the transmembrane arrangement of the channel.

The use of confocal microscopy for analysis of caffeine-
induced Ca21 release, while providing a means of identify-
ing individual cells responding to the drug, has several
limitations. Foremost among these is that the images are
limited to a plane through the cells of;1 mm; therefore
cells that are not in that focal plane will have a lower
fluorescence, and the fluorescence intensity may respond
differently to the drug. This technique also has a limited
temporal resolution, making kinetic analysis of the caffeine
release difficult to interpret. Nonetheless, it is our opinion
that the technique does allow for a qualitative determination
of caffeine-induced Ca21 release. This is supported by the
fact that several of our mutations (G4894A, D4899,
D4903A, D4907A) maintain apparently normal caffeine-
induced Ca21 release and Ca21 dependence of [3H]ryano-
dine binding and single-channel activities, while others,
with significant apparent defects in in vitro assays, display
an altered Ca21 release. As pointed out above, the apparent
disagreement between the results of cellular Ca21 release
and those of in vitro pharmacology may be due to a decrease
in the stability of the expressed channel proteins and hence
to a disparity between data for experiments performed in
intact cells and with isolated channels.

The Ca21 activation (Chen et al., 1993, 1998; Bhat et al.,
1997b) and Ca21 inactivation sites (Nakai et al., 1999; Du

and MacLennan, 1998), as well as the high-affinity [3H]ry-
anodine binding site (Callaway et al., 1994; Witcher et al.,
1994), have been localized to the C-terminal one-fourth of
RyR1. However, protein conformational changes mediated
by the N-terminal portion have been shown to affect RyR1
function. Unlike the full-length RyR1, a truncated RyR1
(D1–3660) failed to close at high [Ca21], suggesting that the
N-terminal foot structure has a role in Ca21 regulation (Bhat
et al., 1997b). Consistent with this finding, single amino
acid mutations in the N-terminal and central regions of
RyR1 link to a rare muscle disorder known as malignant
hyperthermia, which is characterized by elevated Ca21 re-
lease from SR (Phillips et al., 1996). In support of a long-
range control of [3H]ryanodine binding is that replacement
of RyR1 regions with corresponding RyR2 regions not
involving the C-terminal one-fourth of the receptor results
in the loss or reduction of [3H]ryanodine binding (Nakai et
al., 1999). Therefore, it is likely that interactions between
both the N- and C-terminal portions of the ryanodine recep-
tor are crucial for all aspects of channel Ca21 dependence.
The present study suggests that the M3-M4 lumenal loop
affects these interactions, directly or indirectly, as amino
acid substitutions in this region cause the loss of Ca21

activation and high-affinity ryanodine binding, in addition
to an altered ion conductance.

In conclusion, our results suggest that single amino acid
residue changes in the lumenal M3-M4 loop affect local
events (channel conductance) as well as more global events
(Ca21 dependence and ryanodine binding). The data that are
most consistent with our hypothesis that the M3-M4 lume-
nal loop contributes to the structure of the pore come from
the changes we observe in ion conductance. The fact that
mutation of several conserved residues in close proximity to
each other has such profound effects on ion conductance,
while mutations of less conserved residues in the same
region result in no detectable defect, lends credence to our
conclusion. Nonetheless, further studies are necessary that
are beyond the scope of this work. These include the pos-
sibility of scanning cysteine mutagenesis, as has been ap-
plied to examination of the pore structure of voltage-gated
and ligand-gated ion channels (Dart et al., 1998; Yamagishi
et al., 1997), as well as a more detailed investigation of
channel permeation, selectivity, and gating.
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