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ABSTRACT We have performed dielectric relaxation measurements via a time domain reflectometry (TDR) method to study
dynamic behaviors of the segmental flexibility of immunoglobulin G (IgG) in aqueous solution without antigen binding. In
general, an intermediate relaxation process due to bound water is observed around 100 MHz at 25°C for common proteins
between two relaxation processes due to overall rotation and reorientation of free water. However, the intermediate process
observed around 6 MHz for IgG was due to both bound water and hinge-bending motion. The apparent activation energy of
33 kJ/mol was larger than 27 kJ/mol for only bound water, and the relaxation strength was about five times as large as
expected for bound water. The shape of the relaxation curve was very broad and asymmetric. These characteristic differences
arising from the hinge-bending motion of IgG disappeared for fragments decomposed from IgG hydrolyzed by papain, since
the hinge-bending motion did not exist in this case. We have separated the relaxation processes due to hinge-bending motion
and bound water for IgG and obtained the Fab-Fab angle of IgG as about 130° by Kirkwood’s correlation parameter and the
activation energy of 34 kJ/mol for hinge-bending motion.

INTRODUCTION

The three-dimensional structure of globular protein fluctu-
ates incessantly and the fluctuation is closely related to the
function of the protein. This fluctuation is observed by x-ray
diffraction analysis (Frauenfelder et al., 1979; Artymiuk et
al., 1979), Mössbauer measurements (Keller and Debrun-
ner, 1980; Parak et al., 1981), NMR measurements (Nichol-
son et al., 1992), and computer simulations (Karplus and
McCammon, 1986; Karplus and Petsko, 1990). Some spe-
cies of enzymes such as serine protease with a ditch be-
tween two globular domains fluctuate to open and to close
the domains. This intramolecular motion is called “hinge-
bending deformation” (Karplus and McCammon, 1986).
The hinge-bending deformation is investigated by x-ray
diffraction (Dobson, 1990; Bernstein et al., 1997), NMR
measurements (Li and Montelione, 1995), electron para-
magnetic resonance (EPR) spectroscopy (McHaourab et al.,
1997), fluorescence spectroscopy (Miki and Kouyama,
1994), computer simulation (Arnold and Ornstein, 1997).
However, dynamical behavior of the hinge-bending defor-
mation has not been clarified enough.

The immunoglobulin G (IgG) molecule consists of three
globular domains of two Fab segments and one Fc segment,
which are mutually connected by two flexible polypeptide
chains called hinge held together by a disulfide bond (Sil-
verton et al., 1977; Metzger, 1974; Arata et al., 1980), as

shown in Fig. 1A. Papain hydrolyzes IgG molecules on the
hinge, and cysteine or mercaptoethanol reduces the disul-
fide bond of IgG molecules (Utsumi, 1969). IgG molecules
are separated into the two Fab and one Fc fragments by this
treatment, as shown in Fig. 1B. On the other hand, Feinstein
and Rowe (1965), and Valentine and Green (1967) per-
formed electron microscopy studies, and they suggested that
the angle between Fab segments of IgG molecules vary
widely. Their suggestion is supported by many studies such
as NMR (Arata et al., 1980), EPR spectroscopy (Ka¨ivärä-
inen and Nezlin, 1976), electron microscopy (Roux et al.,
1997), and theoretical studies (McCammon and Karplus,
1977). Especially, Hanson et al. (1981) performed a dynam-
ical study using nanosecond fluorescence spectroscopy, and
reported that wagging or cone-like wobbling motions of the
Fab fragments are possible on the hinge region. Though
such a dynamical study is important to understand the
biological function, accurate analysis of fluorescence data is
difficult and the estimation is necessarily crude.

Dielectric measurement is one of the most useful methods
for dynamical study. Dielectric measurements have been
performed for globular protein in aqueous solutions, and
subsidiary dispersion due to bound water was found at an
intermediate frequency region between two principal dis-
persions due to molecular motions of protein and free water
molecules, respectively (Grant, 1966; Pethig, 1979;
Takashima, 1989). Furthermore hydration studies on pro-
teins were also preformed by microwave dielectric measure-
ments (Bone and Zaba, 1992; Suzuki et al., 1996, 1997). In
our previous work (Miura et al., 1996), hinge-bending de-
formation of trypsin was observed for the first time by
microwave dielectric measurements using time domain re-
flectometry (TDR) method (Cole, 1975a,b; Cole et al.,
1980). The dielectric measurements were performed for the
trypsin aqueous solution in a temperature range between
235 and 25°C over a frequency range of 50 kHz to 4 GHz.
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Above the freezing temperature of27°C for free water,
three relaxation processes due to reorientations of free wa-
ter, reorientations of bound water, and overall rotations are
observed. Because of large relaxation strengths for pro-
cesses due to free water and the overall rotation, we could
not distinguish the hinge-bending motion. Three relaxation
processes are also observed below the freezing temperature.
The high frequency relaxation process observed around 3
GHz at210°C is due to reorientation of unfreezable water
constructing a shell layer around the protein molecule, and
the intermediate frequency process observed around 20
MHz is due to bound water molecules, which attach directly
on the globular protein surface via hydrogen bonding.
Bound water and unfreezable water have also been observed
in other globular proteins (Miura et al., 1995). The low
frequency relaxation process observed around 600 kHz at
210°C is due to the hinge-bending deformation of trypsin.
This relaxation process vanishes, when trypsin inhibitor is
caught in the ditch between two globular domains of the
trypsin. This result suggests that the trypsin inhibitor pro-
hibits not only the biological function of the trypsin but also
its movement of hinge-bending deformation of the trypsin,
since the trypsin inhibitor gets caught in the ditch of the
trypsin as reported for x-ray analysis on the complex of
trypsin with trypsin inhibitor (Sweet et al., 1974). However,
the behavior of the hinge-bending deformation above the
freezing temperature of free water has not yet been clarified.

In this work, we observed directly the hinge-bending
motion of IgG molecules by dielectric measurements using
the TDR method at various temperatures above the freezing
temperature of free water. Since the wide-angle motion of
Fab segments should bring a larger dielectric relaxation
process than the trypsin, the hinge-bending motion is ex-
pected to be observed. We also confirm that the hinge-
bending motion vanished with the hydrolysis on the hinge
region of the IgG molecules by papain. Dielectric measure-
ments for bovine serum albumin (BSA) in aqueous solution

were performed to compare the globular protein consisting
of a single globular domain.

MATERIALS AND METHODS

Samples

Bovine IgG, papain, and BSA were purchased from Sigma Chemical Co.
(St. Louis, MO). Salts contained in IgG aqueous solution were removed by
the use of a PD-10 column provided by Amersham Pharmacia Biotech AB
(Uppsala, Sweden). After removing the salts, we lyophilized it, and pre-
pared solutions with a protein concentration 50 mg/ml and pH 9.0 for TDR
measurements at temperatures between27 and 25°C over a frequency
range 300 kHz to 10 GHz. Aqueous solutions of BSA 50 mg/ml were
prepared for TDR measurements at temperatures between25 and 15°C
over a frequency range of 300 kHz to 10 GHz.

We also prepared Fc and Fab fragment mixtures from IgG. The diges-
tion with papain at pH 7.5 was performed according to the method of
Utsumi (Utsumi, 1969) except that the digestion was carried out for 18 h.
Then alkylation with iodoacetamide provided by Wako Pure Chemical
Industries, Ltd. (Osaka, Japan) was carried out for 2 h at25°C pH 9.0 in the
dark in order to stop the digestion by inactivation of papain and prevent
producing Fab2 fragment with re-bonding disulfide bond. Each IgG mol-
ecule was separated into two Fab fragments and one Fc fragment by this
method. Fragments thus obtained were purified by passing through a 153
300 mm column of Superdex 200 provided by Amersham Pharmacia
Biotech AB (Uppsala, Sweden). We confirmed that the molecular weight
of fragments was about 50,000 and that of the original IgG was about
150,000 by gel electrophoresis. We removed salts contained in the solution
by the PD-10 column and lyophilized the solution. Solutions were prepared
at a total concentration of 50 mg/ml and pH 9.0 of Fab and Fc for TDR
measurements at temperatures between25 and 25°C over a frequency
range of 500 kHz to 5 GHz.

Dielectric measurements by TDR method

Details of the TDR apparatus have already been reported in the previous
papers (Cole, 1975a,b; Cole et al., 1980). By using a dielectric material
with known permittivity«*S as a reference sample, the permittivity of the
unknown sample«*X is given as

«*X~v! 5 «*S~v!
1 1 $~cfS!/@jv~gd!«*S~v!#%rfX
1 1 $@jv~gd!«*S~v!#/~cfS!%rfS

, (1)

where

r 5 ~rS 2 rX!/~rS 1 rX! ,

and

fX 5 ZX cotZX , ZX 5 ~vd/c!«*X~v!1/2 ,

fS 5 ZS cotZS , ZS 5 ~vd/c!«*S~v!1/2 ,

whered is the geometric cell length,gd is the effective cell length,rS and
rX are Fourier transforms of reflected pulses from the reference sample
RS(t) and from the unknown sampleRX(t), respectively,j is the imaginary
unit, v is the angular frequency, andc is the speed of propagation in
vacuum. We chose the aqueous solution of sodium chloride as a reference
sample, and the effective electric cell lengthsgd employed were 0.161,
0.67, 2.84, and 6.1 mm. The time domain dielectric method has also been
applied for biomaterials by other investigators (Feldman and Fedotov,
1988; Bone and Zaba, 1992) as an effective tool.

FIGURE 1 Model of the IgG molecule (A) and Fab and Fc fragments
obtained by papain hydrolysis (B). (A) IgG is made up of two Fab
fragments and one Fc fragment connecting on the hinge, and hinge-bending
motion exists. (B) The hinge-bending motion does not exist in the system
of Fab and Fc fragment mixture.
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RESULTS AND DISCUSSION

Typical results of dielectric absorption curves observed at
25°C for the IgG aqueous solution and that of the mixture of
Fab and Fc fragments obtained by hydrolysis with papain
are shown in Fig. 2. Three relaxation processes were iso-
lated independently for all samples by employing a fitting
procedure, which has been already employed for aqueous
solutions of other globular proteins (Miura et al., 1994). The
permittivity is thus described by

«* ~v! 2 «` 5
D«l

1 1 jvtl
1

D«m

$1 1 ~jvtm!bm%am
1

D«h

1 1 ~jvth!
bh

,

(2)

where«` is the dielectric constant extrapolated tov 5 `,
D« is the relaxation strength,t is the relaxation time,a and
b are parameters describing the distribution of the relax-
ation time, and subscriptsl, m, and h indicate the low,
intermediate, and high frequency relaxation process, respec-
tively.

It is concluded that the high frequency relaxation process
h is due to reorientation of free water molecules, judging
from its relaxation timeth and relaxation strengthD«h

(Miura et al., 1994).
For the low frequency relaxation processl, generally

overall rotation of protein molecules is observed in this
frequency region (Grant, 1966; Pethig, 1979; Takashima,
1989). Fig. 3 shows that logarithm of the relaxation timetl

observed in this work against the molecular weightM lies
on the same straight line with a slope of unity obtained for
the overall rotation of ten globular proteins, adenosine
triphosphate, adenosine diphosphate, and adenosine mono-

phosphate, which were measured previously (Miura et al.,
1994; Mashimo et al., 1992). Therefore the relaxation pro-
cessl observed in this work is also due to overall rotations
of IgG, Fab and Fc fragments, or BSA. Furthermore, this
result also implies that protein-protein interaction, such as
forming dimer, trimer, or aggregates, was negligible. If
protein molecules form dimer or larger aggregates, the plot
must deviate from the line in Fig. 3.

It has been reported that bound water of globular proteins
in aqueous solutions was observed as the intermediate fre-
quency relaxation processm around 100 MHz at 25°C
(Grant, 1966; Pethig, 1979; Takashima, 1989; Miura et al.,
1994). Therefore, the processm observed in this work is
easily considered to be due to bound water. However, only
in the case of IgG, the relaxation timetm was more than ten
times as large as that of bound water observed for common
aqueous solutions of globular proteins (Miura et al., 1994),
helical DNA (Kuwabara et al., 1988), and moist tropocol-
lagen (Shinyashiki et al., 1990). In another case of the Fab
and Fc fragment mixture, thetm was almost the same as that
of common cases of bound water as shown in Fig. 4. The
similar tendency was also shown for the apparent activation
energy. Though the apparent activation energy for the pro-
cessm of the IgG (33 kJ/mol) was considerably larger than
that for bound water (28 kJ/mol) observed for common
proteins, the value of 27 kJ/mol obtained for the Fab and Fc
fragment mixture is almost equal, as shown in Table 1. The
value of 33 kJ/mol for the IgG is similar to that of 32 kJ/mol

FIGURE 2 Dielectric absolute curves. (A) 5 wt % aqueous solution of
IgG at 25°C. (B) 5 wt % aqueous solution of Fab and Fc fragment mixture
at 25°C.

FIGURE 3 Double-logarithmic plots of relaxation timetl against mo-
lecular weightMW at 25°C (1: adenosine monophosphate; 2: adenosine
diphosphate; 3: adenosine triphosphate; 4: cytochrome c; 5: ribonuclease
A; 6: lysozyme; 7: myoglobin; 8: trypsin inhibitor; 9: trypsin; 10: pepsin;
11: ovalbumin; 12: hemoglobin; 13: BSA;F: IgG; andE: Fab and Fc
fragment mixture.) The numbered plots are reported in a previous work
(Miura et al., 1994).
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reported for the hinge-bending motion of the trypsin ob-
served below freezing temperature of free water (Miura et
al., 1996) rather than 27–28 kJ/mol obtained for bound
water. We examined thet-test to establish whether the
apparent activation energy between IgG and papain-di-
gested IgG was significantly different, and the obtained
result (p , 0.13) would indicated a significant difference
between them.

These results suggest that the hinge-bending motion of
the IgG caused the differences in those values oftm and the
apparent activation energy for IgG and other proteins. It
means that the processm observed first for the IgG was an
overlap of two relaxation processes due to reorientation of
bound water and the hinge-bending motion. Since the re-
laxation time due to the hinge-bending motion was larger
than that due to the bound water, thetm also became large.

Fig. 5 shows double-logarithmic plots of the relaxation
strengthD«m vs. molecular weightM, where the protein

concentration is 5 wt % for all aqueous solutions. The plots
lie on the same straight line with the slope,21/3, except for
the plots of trypsin, pepsin, and IgG. IfD«m normalized by
the number of protein molecules per unit volume,N, is
proportional to the surface area of the protein spherical in
shape, we obtain

D«m/N } MD«m } M2/3 , [ D«m } M21/3 . (3)

Therefore, the slope of21/3 in Fig. 5 means that the
amount of bound water is proportional to the surface area of
the protein. The reason why the plots of trypsin and pepsin
deviate from the line is that both have active sites in cracks
and bound water forms a network structure there as reported
by x-ray analysis (Bode and Schwager, 1975). Thus the
trypsin and pepsin should have more bound water than the
common globular proteins and deviations are shown in
Fig. 5. However, IgG does not have such a large crack.
Although the surface area of the IgG with Y-shape is larger
than the sphere, the total surface area of the IgG is not larger
than that of the Fab and Fc fragment mixture. The hinge-
bending motion would produce the large value ofD«m for
IgG.

Fig. 6 shows the temperature dependency of parameter,
am, describing the distribution of relaxation times. Theam

value is small for broad and asymmetric shape of relaxation
curve. The value ofam for IgG which is apparently smaller
than that for trypsin, BSA, Fab and Fc fragments, and other
globular proteins (Miura et al., 1994) supports the sugges-
tion for the overlap of relaxation processes due to bound

FIGURE 4 Plots of the logarithm of relaxation timetm against reciprocal
absolute temperature for 5 wt % aqueous solution of trypsin (‚) (Miura et
al., 1996), BSA (L) reported in a previous work (Miura et al., 1994), BSA
(l) (present work), IgG (F), and Fab and Fc mixture (E).

TABLE 1 Apparent activation energy DH

Protein
C

(wt %)
T

(°C)
DH

(kJ/mol) Reference

Trypsin (bound water) 5 235 to 25 28 Miura et al., 1996
BSA (bound water) 20 250 to 30 28 Miura et al., 1995
Fab and Fc fragments

(bound water)*
5 25 to 25 27 Present work

Trypsin (hinge-bending
motion)

5 235 to 210 32 Miura et al., 1996

IgG (processm)* 5 27 to 25 33 Present work
IgG (processm1)† 5 27 to 25 34 Present work

*Calculated by Eq. 2.
†Calculated by Eq. 4.

FIGURE 5 Double-logarithmic plots of relaxation strengthD«m against
molecular weightMW at 25°C. 1, cytochrome c; 2, ribonuclease A; 3,
lysozyme; 4, myoglobin; 5, trypsin inhibitor; 6, trypsin; 7, pepsin; 8,
ovalbumin; 9, hemoglobin; 10, BSA;F, IgG; E, Fab and Fc fragment
mixture.) The numbered plots are reported in a previous work (Miura et al.,
1994).
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water and hinge-bending motion. We note thatbm did not
exhibit the similar behavior witham.

On the other hand, a dielectric dispersion due to Max-
well-Wagner effect is generally observed for an emulsion,
e.g., oil in water (O/W) system. However, Takashima
(1963) performed dielectric measurements for protein solu-
tions with various ions at the similar protein concentration
with the present work, and suggested that the Maxwell-
Wagner effect is not a major dielectric polarization mech-
anism. This suggestion was also supported by a linear
relationship of relaxation time,tl, for the overall rotation
against the molecular weight as shown in Fig. 3, since there
was no indication of the Maxwell-Wagner effect. Therefore
we considered that the Maxwell-Wagner effect was negli-
gible in the present case. Wei et al. (1994) and Suzuki et al.
(1996) treated Wagner or Hanai equation to study the pro-
tein hydration. In the present work, however, we did not use
their analysis, because they applied the Wagner or Hanai
equation to dielectric spectra above 1 GHz that is too high
for the hinge-bending motion.

From all of our experimental results, we concluded that
the relaxation processm for IgG was caused by overlapping
of relaxation processes due to hinge-bending motion and
reorientation of bound water. When the hinge-bending mo-
tion was vanished with the hydrolysis by papain, the relax-
ation processm for Fab and Fc fragment mixture was only
caused by bound water. Then we tentatively separated the
relaxation processes due to the hinge-bending motion and
the reorientation of bound water for IgG in aqueous solution
by the fitting procedure as shown in Fig. 7. In this analysis,

the permittivity is described by

«* ~v! 2 «` 5
D«l

1 1 jvtl
1

D«m1

~1 1 jvtm1!
am1

1
D«m2

$1 1 ~jvtm2!
bm2%am2

1
D«h

1 1 ~jvth!
bh

,

(4)

where subscriptsm1 and m2 indicate the relaxation pro-
cessesm1andm2,respectively. We consider that the relax-
ation processm1 was due to the hinge-bending motion of
IgG and the relaxation processm2 was due to the reorien-
tation of bound water. Values oftm2, D«m2, am2, andbm2

were chosen to be the same as those for bound water
observed on the Fab and Fc fragment mixture, as shown in
Fig. 8. The apparent activation energy of 34 kJ/mol for the
m1process is reasonable for the hinge-bending motion, and
this value was clearly larger than 27 kJ/mol for bound water
for Fab and Fc fragment mixture (p , 0.03).

The relaxation strengthD«m1 for the hinge-bending mo-
tion was considerably smaller than the relaxation strength
D«l for overall rotation of Fab and Fc fragments as shown in
Table 2. This smaller value arises from antiparallel compo-
nent of dipole moments of Fab segments in IgG molecules.
Thus, Fab-Fab angle for IgG molecule can be calculated
from Kirkwood’s correlation parameterg. Relaxation
strength is generally described as

D« 5
4pNPm

2g

3kBT
F, (5)

where

g 5 1 1 Z^cosg&,

where F is an internal field factor,KB is the Boltzmann
constant,NP is the number of dipoles per unit volume,m is
the dipole moment,Z is the number of nearest neighbors
surrounding the dipole moment, and^cos g& is the mean
value of the cosine angle between the dipole moments,
respectively (Takashima, 1989). In order to compare with

FIGURE 6 Plots of the parameteram for distribution of relaxation time
against temperature for 5 wt % aqueous solution of trypsin (‚) (Miura et
al., 1996), BSA (L) reported in the previous work (Miura et al., 1994),
BSA (l) (present work), IgG (F), and Fab and Fc mixture (E).

FIGURE 7 Dielectric absorption curve for 5 wt % aqueous solution of
IgG at 25°C. Solid lines are calculated from Eq. 4.
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the hinge-bending motion of Fab segments and overall
rotation of Fab and Fc fragments when applying Eq. 5, we
supposed that: 1) dipole moment for Fab segment on IgG is
not changed with hydrolysis by papain; 2) dipole moment of
Fc fragment is the same as that of Fab fragment; 3) the
internal fieldF is the same between the solutions of IgG and
the solutions of Fab and Fc fragment mixture; 4) the relax-
ation processm1 due to hinge-bending motion is only
caused by Fab segments rather than Fc segment. The sup-
position 2 is reasonable, since structure of Fc fragment is
not very different from Fab fragment, i.e., both Fc and Fab
fragments consist of two 25,000-mol wt peptide chains

extended in the same direction. We employNPh/NPo as 2/3
from the supposition 4, whereNPh is the number of dipoles
of Fab segments per unit volume andNPo is that of Fab and
Fc fragments, respectively.NPh and NPo correspond toNP

for hinge-bending motion and overall rotation, respectively.
Similarly, Zh is 1, since Fab segments always exist in pair,
andZo is 0 because of the dilute concentration of 5 wt %
(Ermolina et al., 1998). Thus we employg 5 1 for Fab and
Fc fragment mixture, and the cosine angle of Fab-Fab of
IgG is obtained from Eq. 5 as

^cosg& 5 3D«m1/2D«l 2 1. (6)

The angles calculated from Eq. 6 are presented in Table 2.
These values completely agree with the value of 117–136°
reported for human IgG in the immunoelectron microscopy
studies (Roux et al., 1997). This is the first time to obtain the
Fab-Fab angle from dynamical measurements.
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