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ABSTRACT Batrachotoxin (BTX) alters the gating of voltage-gated Na1 channels and causes these channels to open
persistently, whereas local anesthetics (LAs) block Na1 conductance. The BTX and LA receptors have been mapped to
several common residues in D1-S6 and D4-S6 segments of the Na1 channel a-subunit. We substituted individual residues
with lysine in homologous segment D3-S6 of the rat muscle m1 Na1 channel from F1274 to N1281 to determine whether
additional residues are involved in BTX and LA binding. Two mutant channels, m1-S1276K and m1-L1280K, when expressed
in mammalian cells, become completely resistant to 5 mM BTX during repetitive pulses. The activation and/or fast inactivation
gating of these mutants is substantially different from that of wild type. These mutants also display ;10–20-fold reduction in
bupivacaine affinity toward their inactivated state but show only approximately twofold affinity changes toward their resting
state. These results demonstrate that residues m1-S1276 and m1-L1280 in D3-S6 are critical for both BTX and LA binding
interactions. We propose that LAs interact readily with these residues from D3-S6 along with those from D1-S6 and D4-S6
in close proximity when the Na1 channel is in its inactivated state. Implications of this state-dependent binding model for the
S6 alignment are discussed.

INTRODUCTION

Voltage-gated Na1 channels are responsible for generating
action potentials in excitable membranes (Hille, 1992).
Upon depolarization, the Na1 channel enters an ion-con-
ducting open state that is fast inactivated, generally within a
millisecond. The fast-inactivated channel recovers rapidly
within 10–30 ms upon repolarization. Prolonged depolar-
ization from several seconds to a few minutes elicits addi-
tional slow inactivation of the Na1 channel (Chandler and
Meves, 1970), which recovers with a rather slow time
course over a period of several minutes upon repolarization.

Mammalian voltage-gated Na1 channels consist of one
largea-subunit and one or two smaller auxiliaryb-subunits
(Catterall, 1995; Fozzard and Hanck, 1996). The Na1 chan-
nela-subunit cDNA clone, when expressed in a mammalian
expression system, can form functional Na1 channels with
relatively normal activation and inactivation gating kinetics
(Ukomadu et al., 1992). Thea-subunit channel protein
contains four homologous domains (D1–D4), each with six
putativea-helical transmembrane segments (S1–S6) (Fig. 1
A). The fast inactivation gating of the Na1 channel has been
resolved in some detail. For example, the triplet IFM locus
(isoleucine, phenylalanine, and methionine) in the intracel-
lular linker region between D3 and D4 is thought to be a
part of the “inactivation ball” (West et al., 1992). Two
S4–S5 intracellular regions within D3 and D4, respectively,
may together form the receptor for the IFM locus (McPhee

et al., 1998; Smith and Goldin, 1997). The voltage sensor
has been delimited at the S4 region, where multiple posi-
tively charged residues are present (e.g., Yang et al., 1996).
In contrast, the activation gate and the slow inactivation
process of the Na1 channel are less clear at the molecular
level, although some specific regions have been implicated
in the modulation of these processes (e.g., Balser et al.,
1996; Bennett, 1999; Vilin et al., 1999).

Batrachotoxin (BTX), an alkaloid neurotoxin (Fig. 1B)
that is most abundant in the skin of the South American frog
Phyllobates terribilis(Daly et al., 1980), has been a useful
molecular probe for Na1 channel gating processes (Catter-
all, 1980; Strichartz et al., 1987; Brown, 1988). First, BTX
modifies the Na1 channel activation gating drastically; this
Na1 channel activator shifts the voltage dependence of
activation to a hyperpolarizing direction by 30–50 mV.
Second, both fast and slow inactivation processes of Na1

channels are also inhibited by BTX. As a result, Na1

channels open persistently in the presence of BTX, even at
resting membrane potentials. The whereabouts of the BTX
receptor were first determined by Trainer et al. (1996), who
found, by a photoaffinity-labeling technique, that the D1-S6
segment was covalently linked to BTX. The receptor site for
BTX was later delimited to three residues at the middle of
segment D1-S6 (Wang and Wang, 1998). Recent studies
demonstrated that three additional residues at the middle of
segment D4-S6 are critical in BTX binding (Linford et al.,
1998; Wang and Wang, 1999). How BTX alters the Na1

channel gating via binding interactions remains unclear.
In contrast to the Na1 channel activator BTX, local

anesthetics (LAs) are clinical drugs that block Na1 channels
(Hille, 1992). The structure of a typical LA, bupivacaine, is
shown in Fig. 1B. LAs inhibit Na1 currents tonically when
the membrane is depolarized infrequently. In addition, LAs
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elicit additional use-dependent block of Na1 currents during
repetitive pulses. The detailed mechanism of this use-
dependent phenomenon is uncertain, although the involvement
of channel activation has been suggested (e.g., Wang et al.,
1987; Hanck et al., 1994; Vedantham and Cannon, 1999). The
first mapping of the LA receptor revealed that four residues at
the middle of segment D4-S6 are critical for LA binding
(Ragsdale et al., 1994). In fact, three common residues in
D4-S6 are critical for binding of both BTX and LAs (Linford
et al., 1998; Wang and Wang, 1999) (Fig. 2). Further studies
suggested that two additional residues in the middle of segment
D1-S6 are aligned in close proximity with the tertiary amine
moiety of LAs (Wang et al., 1998; Nau et al., 1999), particu-
larly when the channels are in their inactivated state. Again,
these same residues are critical for binding to both BTX and
LAs (Fig. 2). In addition to residues at D4-S6 and D1-S6, the
P-region (located at the S5-S6 linker; Fig. 1A), which controls
the ion selectivity of Na1 channels, may also be involved in
LA binding (Sunami et al., 1997).

The binding of LAs and BTX with the Na1 channel is
highly state dependent. LAs bind preferentially to the inac-
tivated state of Na1 channels, whereas BTX binds to its

receptor site when the channel is first in its open state (Hille,
1992). LAs also antagonize [3H]BTX binding (Creveling et
al., 1983). However, this antagonistic reaction between
BTX and LA binding to Na1 channels was suggested to be
due to an indirect allosteric interaction of these two ligands
(Postma and Catterall, 1984). This suggestion has been
revised recently; the BTX receptor apparently shares over-
lapping molecular determinants with the LA receptor (Lin-
ford et al., 1998; Wang and Wang, 1999). In this study, we
postulated that an additional S6 segment might participate
in the binding of BTX and LAs. Because Na1 channels
contain four homologous domains, we tested this possibility
by examining the role of segment D3-S6 in BTX and LA
binding during state transitions.

MATERIALS AND METHODS

Site-directed mutagenesis

Point mutations of am1 Na1 channel clone in a pcDNA1/Amp expression
vector were performed as described (Nau et al., 1999), with a Transformer
Site-Directed Mutagenesis Kit (Clontech). A mutagenesis primer and a
restriction primer were used to generate the desired mutant. The potential

FIGURE 1 (A) The transmembrane organization
of the Na1 channela-subunit. The arrows indicate
the putative BTX binding site and the putative LA
binding site at segments D1-S6 and D4-S6. The role
of D3-S6 in BTX and LA binding is unknown, as
labeled by a question mark. P designates the pore
region within the S5-S6 extracellular linker. (B)
Chemical structures of batrachotoxin (538 Da) and
bupivacaine (288 Da). The chiral carbon in bupiva-
caine is marked by an asterisk. The S(2)-bupiva-
caine isomer has been used in clinical trials (Burke et
al., 1999).

FIGURE 2 Amino acid sequences of S6 transmembrane segments in domains D1–D4. Residues critical for BTX binding are in bold letters (Wang and
Wang, 1998, 1999; Linford et al., 1998). Residues critical for LA binding are underlined (Ragsdale et al., 1994; Wang et al., 1998). Notice that a totalof
five common residues within D1S6 and D4S6 are critical for both BTX and LA binding. The LA sensitivity ofm1-I433K was not studied.
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mutants were selected and confirmed by DNA sequencing at the mutated
site, using appropriate primers.

Transient transfection

The culture of Hek293t cells and their transient transfection were per-
formed as described (Cannon and Strittmatter, 1993). Cells were first
grown to 50% confluence in Dulbecco’s minimum essential medium
(GIBCO) containing 10% fetal bovine serum (HyClone), 1% penicillin and
streptomycin solution (Sigma), 3 mM taurine, and 25 mM HEPES
(GIBCO). Transfection of these cells withm1 (10mg) and reporter plasmid
CD8-pih3m (1mg) was accomplished by a calcium phosphate precipitation
method in a Ti25 flask. Cells were replated 15 h after transfection,
maintained at 37°C in a 5% CO2 incubator, and used for experiments after
1–4 days. Transfection-positive cells were identified by immunobeads
(CD8-Dynabeads, Lake Success, NY).

Whole-cell voltage clamp

The whole-cell configuration of a patch-clamp technique (Hamill et al.,
1981) was used to record Na1 currents in cells coated with CD8 immu-
nobeads. Experiments were performed at room temperature (236 2°C).
Glass electrodes contained 100 mM NaF, 30 mM NaCl, 10 mM EGTA, and
10 mM HEPES adjusted to pH 7.2 with CsOH. The electrodes had a tip
resistance of 0.5–1.0 MV; access resistance was generally,2–3 MV. With
series resistance compensation of 60–90%, the voltage error at150 mV
was ,4 mV on average. Series resistance errors of this magnitude are
generally tolerable because quantitative measurements of current kinetics
and drug block are insignificantly affected by such errors (Bean, 1992).
The bath solution contained 65 mM NaCl, 85 mM choline chloride, 2 mM
CaCl2, and 10 mM HEPES adjusted to pH 7.4 with tetramethyl hydroxide.
These ionic conditions resulted in smaller Na1 currents at voltages from
260 to110 mV, which in turn minimalized the series resistance artifact in
the conductance-voltage measurement. A stock solution of bupivacaine
was prepared at 100 mM in aqueous solution and stored at220°C until
needed. BTX was prepared at 0.5 mM in dimethyl sulfoxide and stored at
4°C. Bupivacaine enantiomers were kindly provided by Dr. Rune Sandberg
(Astra Pain Control, Sodertalje, Sweden), and BTX was a generous gift of
Dr. John Daly (National Institutes of Health, Bethesda, MD). To conserve
the use of BTX, we included this toxin in the pipette solution at 5mM final
concentration when needed. This toxin concentration was previously used
to demonstrate the BTX-resistant phenotype in poison-dart frogs (Daly et
al., 1980) and was high enough to modify.90% of available Na1 channels
under appropriate conditions. Whole-cell currents were recorded with
Axopatch 200B, filtered at 5 kHz, and collected by pClamp software (Axon
Instruments, Foster City, CA). After gigaohm seal formation and estab-
lishment of whole-cell voltage clamp, the cells were dialyzed for;20 min
before data were acquired. Most of the capacitance and leakage current was
canceled by the Axopatch 200B circuitry and further subtracted by the P/-4
method. An unpaired Student’st-test was used to evaluate estimated
parameters (mean6 SEM or fitted values6 SE of the fit); p values of
,0.05 were considered statistically significant.

RESULTS AND DISCUSSION

Mutations of m1-S1276K and m1-L1280K in D3S6
render Na1 channels resistant to BTX

Individual residues fromm1-F1274 tom1-N1281 within the
putativea-helical segment D3-S6 were substituted with a
lysine amino acid. This specific region was chosen because
it is equivalent to the D4-S6 region where BTX-resistant
mutants were found (Fig. 2). Introduction of a positively

charged residue will in theory disrupt binding between this
amino acid and the highly hydrophobic ligand BTX, pro-
vided that this residue is in close proximity during ligand
binding. Only two of eight mutant channels with the lysine
substitution expressed sufficient Na1 currents for further
experiments; these werem1-S1276K andm1-L1280K. The
remaining mutants (F1274K, G1275K, F1277K, F1278K,
T1279K, and N1281K) expressed little (,0.5 nA) or no
Na1 current. Cotransfection ofb1 subunit clone with these
mutant clones did not improve their expression level, except
for one, m1-F1274K (usually;0.5 nA at 150 mV). It
appeared that this region is rather sensitive to lysine substi-
tution, in contrast to the homologous D1-S6 region, where 9
of 12 lysine mutants express sufficient Na1 currents (Wang
and Wang, 1998).

With 5 mM BTX included in the pipette solution, repet-
itive pulses readily promoted BTX binding to the open state
of wild-type m1 Na1 channels (Fig. 3A). A large portion of
Na1 currents, up to 80% of the corresponding peak current
amplitude, was maintained at150 mV after 1000 repetitive
pulses. A corresponding large inward “tail” current was
evident upon repolarization as the BTX-modified Na1

channels quickly returned to their resting state. Under iden-
tical conditions, however, BTX at 5mM failed to modify the
currents ofm1-S1276K andm1-L1280K mutant channels
after 1000 pulses (representative traces in Fig. 3,C andD;
n 5 7). Additional pulses of up to 3000 total to these mutant
channels did not add any noninactivating maintained cur-
rents. Clearly, bothm1-S1276K andm1-L1280K Na1 chan-
nels are completely BTX resistant. In contrast, the mutant
m1-F1274K Na1 channels (cotransfected withb1 subunit)
remain BTX sensitive in a manner comparable to that of
wild-type m1 channels (Fig. 3B; n 5 5). As control exper-
iments, we found that cotransfection ofb1 subunit with
m1-L1280K does not alter the BTX-resistant phenotype
(n 5 5 with pulses up to 3000 under identical conditions).
This result suggests thatb1 does not have a significant role
in the BTX-resistant phenotype. Because the right-handed
a-helical structure consists of 3.6 residues per turn, residues
atm1-S1276 andm1-L1280, therefore, will be roughly at the
same face of thea-helical structure, whereas residues at
m1-F1274 will be oriented in the opposite direction. To-
gether with the findings from D1-S6 and D4-S6 mutants
(Wang and Wang, 1998, 1999; Linford et al., 1998), our
results from D3-S6 mutants strongly support the notion that
homologous S6 segments indeed align in close proximity.
In other words, residues atm1-S1276 andm1-L1280, like
several residues in D1-S6 and D4-S6, are probably involved
directly in binding to BTX.

Altered activation and/or inactivation gating in
BTX-resistant mutant channels

To assess whether the mutant channels are altered in their
gating properties, we characterized their activation and in-
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activation kinetics. We found that both mutant channels
remain functional but with substantial changes in their gat-
ing properties. Fig. 4A shows the conductance-voltage re-
lationship of m1, m1-S1276K, andm1-L1280K, whereas
Fig. 4B shows the steady-state inactivation (h` curve) of
these channels. Activation was significantly shifted right-
ward inm1-L1280K by;22 mV (p , 0.05) and leftward in
m1-S1276K by;12 mV (p , 0.05). Steady-state inactiva-
tion was not changed inm1-S1276K and was shifted left-
ward in m1-L1280K by ;12 mV (p , 0.05). We did not
detect a measurable noninactivating component in theh`

curve (Fig. 4 B, .260 mV). Furthermore, the lack of
steady-state current in current traces (Fig. 5A) suggests that
fast inactivation reaches its completion during depolariza-
tion.

Reduced bupivacaine affinity for the inactivated
state of BTX-resistant mutant channels

To test whether bupivacaine blocks BTX-resistant channels
with a reduced affinity, we applied bupivacaine enantiomers
to m1 wild-type,m1-S1276K, andm1-L1280K mutant chan-
nels. We chose bupivacaine because it is widely used in the
clinical setting. Bupivacaine blocksm1 Na1 channels in a
voltage-dependent manner, as shown in Fig. 5A. Details of
bupivacaine block of wild-typem1 Na1 channels have been
described (Nau et al., 1999) for somewhat different ionic
conditions. A conditioning pulse with a duration of 10 s was
applied to allow the drug to interact with the channel and to
reach steady-state binding (Fig. 5,top). This conditioning

pulse was followed by an interpulse duration of 100 ms at
2140 mV to allow the drug-free channels to recover from
their fast inactivation, and then a test pulse was applied to
measure the availability of drug-free channels. The 100-ms
interpulse does not allow drug-boundm1 Na1 channels to
dissociate, because the time constant for recovery from the
inactivated bupivacaine block is measured at 2.3 and 4.4 s,
for 100 mM S(2)- and R(1)-bupivacaine, respectively
(Nau et al., 1999). From2180 to 2140 mV, the block
reaches a constant value of;55% at 100mM R(1)-bupiv-
acaine after normalization with the control peak current
amplitude (Fig. 5,top). There is no stereoselectivity for the
resting state, because the block is nearly the same with 100
mM S(2)-bupivacaine. From280 to 250 mV, the block
reaches a constant value of.90% at 100mM R(1)-bupiv-
acaine, probably through binding with the inactivated state
(Nau et al., 1999). Again, the stereoselectivity remains
minimal for m1 wild-type channels. We estimated the rest-
ing affinity at 2180 mV and the inactivated affinity at250
mV for bupivacaine enantiomers, using the Langmuir iso-
therm, because the Hill coefficient was measured to be close
to unity (Nau et al., 1999); the results of these estimates are
listed in Table 1.

Under identical conditions, the mutant channels ofm1-
S1276K andm1-L1280K show significant differences in
their voltage-dependent block. We noticed thatm1-S1276K
mutant channels exhibit a conspicuous decrease in the con-
trol peak current by the 10-s conditioning pulses from2100
mV to 250 mV (Fig. 5B, middle, empty circles), perhaps
because of an enhanced slow inactivation. It is noteworthy

FIGURE 3 Outward Na1 currents were recorded in
HEK293t cells expressing eitherm1 wild-type (A),
m1-F1274K (B), m1-S1276K (C), or m1-L1280K (D)
channels with 5-mM BTX in the pipette under the
ionic conditions described in Materials and Methods.
Cotransfection ofb1 subunit withm1-F1274K was
necessary to increase the level of expression. Cells
were dialyzed by internal solution for 10–15 min with
infrequent test pulses at150 mV to determine the
peak current amplitude until it reached steady state.
Repetitive pulses (seeinset) were then applied at 2
Hz, and the currents were recorded and superimposed
for comparison. The pulse numbers are labeled; 30 p
represents the 30 pulses applied to monitor Na1 cur-
rents during cell dialysis. A small, varying amount of
the noninactivating current at150 mV present in
some HEK293t cells (e.g., Fig. 1D) was found in
untransfected cells and was unrelated to voltage-gated
Na1 channels (Wang and Wang, 1998). A thin line
drawn across the current traces depicts the current
baseline.
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that the binding of bupivacaine reaches a constant level
between280 and250 mV (Fig. 5B, middle, filled circles
and squares), where a progressive decrease in current by the
10-s conditioning pulse occurs. This current reduction phe-
nomenon is similar to that found in mutants at them1-N434
position after various amino acid substitutions (Nau et al.,
1999), but it likewise does not correlate with the bupiva-
caine potency. Form1-S1276K, there are still two distin-
guishable binding affinities detected with this pulse proto-
col. The resting affinity ofm1-S1276K is reduced by 1.6-
and 2.5-fold for R(1)- and S(2)-bupivacaine, respectively,
compared with the wild type (Fig. 5,middle, and Table 1).
The bupivacaine stereoselectivity ratio of resting block is
increased in this mutant (1.4 versus 1.0 for wild type). In
contrast, the inactivated affinities are reduced profoundly in
m1-S1276K mutant channels, and their bupivacaine stereo-
selectivity is reduced from a ratio of 1.5 to 1.0. The esti-
matedKI values show an;10-fold reduction in the inacti-
vated affinity ofm1-S1276K compared with that of the wild
type (Table 1).

The difference in voltage-dependent block is even more
drastic form1-L1280K than form1-S1276K. There appears
to be no clear evidence of a voltage-dependent block by
bupivacaine enantiomers from2180 to 250 mV (Fig. 5,
bottom). The KI affinity is no longer prevalent, thus dem-
onstrating a reduction in inactivated affinity of;15-fold.

On the other hand, the resting affinity appears to be com-
parable to that ofm1-S1276K, with a reduction of approx-
imately twofold compared with the estimates from the wild
type (Table 1). Experiments using various concentrations of
bupivacaine along with other amino acid substitution (Nau
et al., 1999) will provide more accurate measurements of
bupivacaine affinity as well as the chemical nature of bu-
pivacaine binding with these two residues. Our results
clearly indicate strong interactions between bupivacaine and
the residues atm1-S1276 andm1-L1280 positions, particu-
larly when the channel is in its inactivated state.

A state-dependent S6 model for BTX and LA
binding reactions

It has been well demonstrated that overlapping receptors for
drugs such as the alkylamines, the benz(othi)azepines, and
the dihydropyridines are situated within segments D3-S6
and D4-S6 of L-type Ca21 channels (for a review see
Hockerman et al., 1997). These authors proposed a domain-
interface binding model that readily explains the allosteric
modulation of Ca21 channels by these drugs. In contrast, we
began with an assumption in our study that the receptors for
BTX and LAs may be overlapped, and both may be situated
on more than two homologous S6 segments within the

FIGURE 4 Voltage dependence of activation (A) and steady-state inactivation (B) was characterized inm1 wild type (E), m1-S1276K (f), and
m1-L1280K (l). Cells were dialyzed by internal solution for;20 min. The Na1 current families were first measured at various voltages, and the peak
conductance was estimated,g 5 INa/(E 2 Erev), whereINa is the peak current andErev is the estimated reversal potential, normalized and plotted against
the corresponding voltageE and least-squares fitted (solid lines) with a Boltzmann equation,g/gmax 5 1{1 1 exp(E0.5 2 E)/ka}, whereE0.5 is the voltage
at whichg/gmax 5 0.5, ka is the slope factor, andgmax is the maximum conductance. The fittedE0.5 andka values, along with SEM of the individual fit,
are237.66 3.3 mV and 8.56 1.2 mV for wild type,249.16 3.1 mV and 5.96 0.7 mV for m1-S1276K, and215.96 1.5 mV and 12.46 0.3 mV
for m1-L1280K, respectively (n 5 5 or 6). Theh` curves were determined by a two-pulse protocol; Na1 currents were evoked by a 5-ms test pulse to130
mV after 100-ms conditioning pulses between2160 and215 mV in 5-mV increments. Pulses were delivered at 20-s intervals. Peak currents were measured
at the test pulse, normalized, and plotted against the prepulse conditioning potentials. The data were least-squares-fitted with a Boltzmann equation (solid
lines), y 5 1/{1 1 exp[(Epp 2 h0.5)/kh]}, where h0.5 is the voltage at whichy 5 0.5 andkh is the slope factor. The fittedh0.5 andkh values, along with
SEM of the individual fit, are284.86 2.4 mV and 5.96 0.1 mV for wild type,286.36 1.3 mV and 6.56 0.3 mV for m1-S1276K, and296.76 0.7
mV and 6.26 0.1 mV, respectively (n 5 5 or 6).
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intracellular vestibule. A negative outcome will support the
notion that the receptors for BTX and for LAs are likely
within the domain interface of D1-S6 and D4-S6 (Linford et
al., 1998; Wang and Wang, 1999) with minimal interactions
with other S6 segments. A positive result, however, will
have additional structural implications. Such a result im-
plies that all four homologous S6 segments align in close
proximity at the BTX and LA receptor sites. One possibility
for this close structural alignment is that these S6 segments
may cross ina-helical bundles as an inverted teepee archi-
tecture, leaving an aperture at the bundle crossing, as shown
in a bacterial K1 channel (Doyle et al., 1998; Perozo et al.,
1999). A similar tilted-S6 model including the bundle-
crossing region as a putative activation gate has been pro-
posed for the voltage-gated K1 channel (Holmgren et al.,
1998; del Camino et al., 2000). Using this analogous struc-
tural arrangement along with BTX and bupivacaine enanti-
omers as molecular probes, we account for our experimental
results as follows.

First, BTX binds to its receptor only when the voltage-
gated Na1 channel is first in its open state. This finding is
consistent with the state-dependent S6 binding model that
the BTX receptor site is located on multiple S6 segments in
close proximity, which may be somewhat constricted and/or
are oriented unfavorably for BTX binding in the resting
state. During channel activation, the BTX molecule binds to
the channel in its open conformation and “stabilizes” such a
state. Upon repolarization, BTX will remain bound and
perhaps even “trapped” within the domain interface (D1/D4
and/or D3/D4) as the S6 segments return to their constricted
resting state. The BTX binding energy released from its
interaction with the open state of the Na1 channel likely
contributes to the hyperpolarizing shift of activation by
30–50 mV. This state-dependent S6 binding model ade-

quately explains how BTX, upon binding to its receptor, can
alter the activation gating of the Na1 channel. Because the
residues critical for BTX binding are located near the mid-
dle of S6 segments (Fig. 2), it is conceivable that the BTX
receptor may be situated not far from the bundle-crossing
region, which may in turn function like an activation gate.
Perhaps because of its constricted receptor site, BTX also
does not bind significantly when the Na1 channel is in the
inactivated state (Tanguy and Yeh, 1991).

Second, in the resting state LAs interact weakly with their
receptor, presumably at the D4-S6 segment alone (Ragsdale
et al., 1994), probably because the two adjacent S6 seg-
ments are not in a close position for binding with LAs. In
the inactivated state these S6 segments may move and/or
rotate inward. The small bupivacaine molecule is now able
to interact with additional residues from all three S6 seg-
ments, thus establishing a binding affinity that is more than
10-fold greater (Table 1). As a result, the LA molecule
“stabilizes” these three S6 segments in their inactivated
state. The binding energy released from these additional
contacts provides the stabilization. This chemical stabiliza-
tion concept is in accord with Hille’s modulated receptor
hypothesis (Hille, 1977). When a lysine residue is intro-
duced at the LA receptor site, such chemical stabilization is
reduced significantly because of the presence of a positive
charge (Fig. 5 and Table 1). According to this S6 binding
model, m1-S1276 andm1-L1280 (at D3-S6), along with
m1-N434,m1-L437 (at D1-S6),m1-F1579, andm1-Y1586
(at D4-S6), line the permeation pathway when the channel
is in its inactivated state. How these individual S6 segments
are modulated by the Na1 channel fast inactivation is un-
clear. Nonetheless, our state-dependent S6 binding model
suggests that the inactivation gating is linked to the LA
receptor somewhere along thea-helical structure of at least

FIGURE 5 Steady-state block ofm1 wild-type (top), m1-S1276K (middle), andm1-L1280K (bottom) Na1 channels by bupivacaine enantiomers. (A)
Representative superimposed Na1 current traces were recorded before and after each application of bupivacaine enantiomers at a conditioning voltageEpp

of either2180 mV (left traces) or 270 mV (right traces) for 10 s. The pulse protocol is detailed at the top. (B) Peak Na1 currents were measured before
(large outward current traces in A) and after (smaller outward current traces in A) each drug application, normalized with respect to the peak current
amplitude at2180 mV, and plotted againstEpp. The drug-treated data were renormalized with the control value without the drug (E) to yield the relative
block of peak Na1 currents (n 5 5).

TABLE 1 Relative binding affinities of bupivacaine enantiomers in m1 wild-type, m1-S1276K, and m1-L1280K mutant channels

Channel types

Resting
bupivacaine

affinity KR (mM)
S(2)/R(1)

KR ratio

Inactivated
bupivacaine

affinity KI (mM)
S(2)/R(1)

KI ratio

KR/KI

R(1) S(2) R(1) S(2) R(1) S(2)

m1 wild type 84 83 1.0 4.6 7.0 1.5 18.3 11.9
m1-S1276K (D3–S6) 136 204 1.4 54 53 1.0 2.5 3.8
m1-L1280K (D3–S6) 120 174 1.5 78 110 1.4 1.5 1.6

The resting affinity (KR) was estimated by an equation, relativeINa 5 KR/[KR 1 L], whereL is 100mM and relativeINa is the normalized peak Na1 current
remaining at2180 mV after superfusion of bupivacaine. The inactivated affinity (KI) was estimated by an equation, relativeINa 5 KI/[KI 1 L], whereL
is 100mM and relativeINa is the normalized peak Na1 current remaining at250 mV after drug superfusion. RelativeINa values (mean of five experiments)
were obtained from the results shown in Fig. 5.
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one of four S6 segments. In fact, only 22 residues separate
the IFM locus of the putative inactivation particle (at posi-
tion m1-I1303-M1305 within D3-D4 linker) from them1-
L1280 position (D3-S6). It appears that the LA receptor
itself may not be in direct contact with the inactivation
machinery, because the position of the fast-inactivation gate
is not affected by the LA lidocaine during recovery from the
inactivated state (Vedantham and Cannon, 1999).

CONCLUSION

Our state-dependent S6 binding model with multiple S6
segments participating intimately in BTX and LA binding
interactions provides adequate explanations for the experi-
mental results described here. Although imprecise in mo-
lecular terms, this working model clearly implies that the S6
segments can readily change their relative positions during
state transitions. Particularly appealing is the possibility that
S6 segments may include a bundle-crossing region. It will
be interesting to determine whether such a region exists as
an activation gate in the Na1 channel. Evidently, the BTX
receptor within S6 segments must somehow be able to
modify the activation, fast inactivation, and slow inactiva-
tion gating, inasmuch as the binding of BTX profoundly
alters these gating processes. Likewise, the LA receptor,
when bound to LAs, appears to stabilize the inactivated state
of Na1 channels (Hille, 1977), although such stabilization
may be through an indirect mechanism. The receptor sites
for BTX and LAs are in these dynamic S6 regions, and
consequently their binding interactions with these ligands
are highly state dependent.

We are grateful to Drs. John Daly and Rune Sandberg for providing BTX
and bupivacaine enantiomers, respectively.
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