Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Sep;79(3):1621–1628. doi: 10.1016/S0006-3495(00)76412-5

Effects of high pressure on solvent isotope effects of yeast alcohol dehydrogenase.

D B Northrop 1, Y K Cho 1
PMCID: PMC1301054  PMID: 10969022

Abstract

The effect of pressure on the capture of a substrate alcohol by yeast alcohol dehydrogenase is biphasic. Solvent isotope effects accompany both phases and are expressed differently at different pressures. These differences allow the extraction of an inverse intrinsic kinetic solvent isotope effect of 1.1 (i.e., (D(2(O)))V/K = 0.9) accompanying hydride transfer and an inverse equilibrium solvent isotope effect of 2.6 (i.e., (D(2(O)))K(s) = 0.4) accompanying the binding of nucleotide, NAD(+). The value of the kinetic effect is consistent with a reactant-state E-NAD(+)-Zn-OH(2) having a fractionation factor of phi approximately 0.5 for the zinc-bound water in conjunction with a transition-state proton exiting a low-barrier hydrogen bond with a fractionation factor between 0.6 and 0.9. The value of the equilibrium effect is consistent with restrictions of torsional motions of multiple hydrogens of the enzyme protein during the conformational change that accompanies the binding of NAD(+). The absence of significant commitments to catalysis accompanying the kinetic solvent isotope effect means that this portion of the proton transfer occurs in the same reactive step as hydride transfer in a concerted chemical mechanism. The success of this analysis suggests that future measurements of solvent isotope effects as a function of pressure, in the presence of moderate commitments to catalysis, may yield precise estimates of intrinsic solvent isotope effects that are not fully expressed on capture at atmospheric pressure.

Full Text

The Full Text of this article is available as a PDF (84.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adediran S. A., Deraniyagala S. A., Xu Y., Pratt R. F. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis. Biochemistry. 1996 Mar 19;35(11):3604–3613. doi: 10.1021/bi952107i. [DOI] [PubMed] [Google Scholar]
  2. Born T. L., Zheng R., Blanchard J. S. Hydrolysis of N-succinyl-L,L-diaminopimelic acid by the Haemophilus influenzae dapE-encoded desuccinylase: metal activation, solvent isotope effects, and kinetic mechanism. Biochemistry. 1998 Jul 21;37(29):10478–10487. doi: 10.1021/bi9806807. [DOI] [PubMed] [Google Scholar]
  3. Brouwer A. C., Kirsch J. F. Investigation of diffusion-limited rates of chymotrypsin reactions by viscosity variation. Biochemistry. 1982 Mar 16;21(6):1302–1307. doi: 10.1021/bi00535a030. [DOI] [PubMed] [Google Scholar]
  4. Bruice T. W., Santi D. V. Secondary alpha-hydrogen isotope effects on the interaction of 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate with thymidylate synthetase. Biochemistry. 1982 Dec 21;21(26):6703–6709. doi: 10.1021/bi00269a014. [DOI] [PubMed] [Google Scholar]
  5. Cha Y., Murray C. J., Klinman J. P. Hydrogen tunneling in enzyme reactions. Science. 1989 Mar 10;243(4896):1325–1330. doi: 10.1126/science.2646716. [DOI] [PubMed] [Google Scholar]
  6. Cho Y. K., Northrop D. B. Effects of pressure on the kinetics of capture by yeast alcohol dehydrogenase. Biochemistry. 1999 Jun 8;38(23):7470–7475. doi: 10.1021/bi990625d. [DOI] [PubMed] [Google Scholar]
  7. Cho Y. K., Rebholz K. L., Northrop D. B. Solvent isotope effects on the onset of inhibition of porcine pepsin by pepstatin. Biochemistry. 1994 Aug 16;33(32):9637–9642. doi: 10.1021/bi00198a032. [DOI] [PubMed] [Google Scholar]
  8. Cleland W. W., Frey P. A., Gerlt J. A. The low barrier hydrogen bond in enzymatic catalysis. J Biol Chem. 1998 Oct 2;273(40):25529–25532. doi: 10.1074/jbc.273.40.25529. [DOI] [PubMed] [Google Scholar]
  9. Cleland W. W. Measurement of isotope effects by the equilibrium perturbation technique. Methods Enzymol. 1980;64:104–125. doi: 10.1016/s0076-6879(80)64007-5. [DOI] [PubMed] [Google Scholar]
  10. Cook P. F., Cleland W. W. Mechanistic deductions from isotope effects in multireactant enzyme mechanisms. Biochemistry. 1981 Mar 31;20(7):1790–1796. doi: 10.1021/bi00510a013. [DOI] [PubMed] [Google Scholar]
  11. Cook P. F., Cleland W. W. pH variation of isotope effects in enzyme-catalyzed reactions. 1. Isotope- and pH-dependent steps the same. Biochemistry. 1981 Mar 31;20(7):1797–1805. doi: 10.1021/bi00510a014. [DOI] [PubMed] [Google Scholar]
  12. Cook P. F., Cleland W. W. pH variation of isotope effects in enzyme-catalyzed reactions. 2. Isotope-dependent step not pH dependent. Kinetic mechanism of alcohol dehydrogenase. Biochemistry. 1981 Mar 31;20(7):1805–1816. doi: 10.1021/bi00510a015. [DOI] [PubMed] [Google Scholar]
  13. Dallet S., Legoy M. D. Hydrostatic pressure induces conformational and catalytic changes on two alcohol dehydrogenases but no oligomeric dissociation. Biochim Biophys Acta. 1996 May 2;1294(1):15–24. doi: 10.1016/0167-4838(95)00250-2. [DOI] [PubMed] [Google Scholar]
  14. Duggleby R. G. Estimation of the initial velocity of enzyme-catalysed reactions by non-linear regression analysis of progress curves. Biochem J. 1985 May 15;228(1):55–60. doi: 10.1042/bj2280055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Duggleby R. G. Regression analysis of nonlinear Arrhenius plots: an empirical model and a computer program. Comput Biol Med. 1984;14(4):447–455. doi: 10.1016/0010-4825(84)90045-3. [DOI] [PubMed] [Google Scholar]
  16. Eklund H., Plapp B. V., Samama J. P., Brändén C. I. Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J Biol Chem. 1982 Dec 10;257(23):14349–14358. [PubMed] [Google Scholar]
  17. Heremans K. High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng. 1982;11:1–21. doi: 10.1146/annurev.bb.11.060182.000245. [DOI] [PubMed] [Google Scholar]
  18. Klinman J. P. Acid-base catalysis in the yeast alcohol dehydrogenase reaction. J Biol Chem. 1975 Apr 10;250(7):2569–2573. [PubMed] [Google Scholar]
  19. Kurz L. C., Moix L., Riley M. C., Frieden C. The rate of formation of transition-state analogues in the active site of adenosine deaminase is encounter-controlled: implications for the mechanism. Biochemistry. 1992 Jan 14;31(1):39–48. doi: 10.1021/bi00116a008. [DOI] [PubMed] [Google Scholar]
  20. Kvassman J., Pettersson G. Effect of pH on the process of ternary-complex interconversion in the liver-alcohol-dehydrogenase reaction. Eur J Biochem. 1978 Jun 15;87(2):417–427. doi: 10.1111/j.1432-1033.1978.tb12391.x. [DOI] [PubMed] [Google Scholar]
  21. Kvassman J., Pettersson G. Unified mechanism for proton-transfer reactions affecting the catalytic activity of liver alcohol dehydrogenase. Eur J Biochem. 1980 Feb;103(3):565–575. doi: 10.1111/j.1432-1033.1980.tb05981.x. [DOI] [PubMed] [Google Scholar]
  22. LaReau R. D., Wan W., Anderson V. E. Isotope effects on binding of NAD+ to lactate dehydrogenase. Biochemistry. 1989 Apr 18;28(8):3619–3624. doi: 10.1021/bi00434a070. [DOI] [PubMed] [Google Scholar]
  23. Merkler D. J., Schramm V. L. Catalytic mechanism of yeast adenosine 5'-monophosphate deaminase. Zinc content, substrate specificity, pH studies, and solvent isotope effects. Biochemistry. 1993 Jun 8;32(22):5792–5799. doi: 10.1021/bi00073a011. [DOI] [PubMed] [Google Scholar]
  24. Morris R. G., Saliman G., Dunn M. F. Evidence that hydride transfer precedes proton transfer in the liver alcohol dehydrogenase catalyzed reduction of trans-4-(N,N-dimethylamino)cinnamaldehyde. Biochemistry. 1980 Feb 19;19(4):725–731. doi: 10.1021/bi00545a018. [DOI] [PubMed] [Google Scholar]
  25. Northrop D. B., Cho Y. K. Effect of pressure on deuterium isotope effects of yeast alcohol dehydrogenase: evidence for mechanical models of catalysis. Biochemistry. 2000 Mar 7;39(9):2406–2412. doi: 10.1021/bi992537z. [DOI] [PubMed] [Google Scholar]
  26. Pettersson G. Liver alcohol dehydrogenase. CRC Crit Rev Biochem. 1987;21(4):349–389. [PubMed] [Google Scholar]
  27. Pollard-Knight D., Cornish-Bowden A. Solvent isotope effects on the glucokinase reaction. Negative co-operativity and a large inverse isotope effect in 2H2O. Eur J Biochem. 1984 May 15;141(1):157–163. doi: 10.1111/j.1432-1033.1984.tb08170.x. [DOI] [PubMed] [Google Scholar]
  28. Ramaswamy S., Eklund H., Plapp B. V. Structures of horse liver alcohol dehydrogenase complexed with NAD+ and substituted benzyl alcohols. Biochemistry. 1994 May 3;33(17):5230–5237. doi: 10.1021/bi00183a028. [DOI] [PubMed] [Google Scholar]
  29. Ramaswamy S., Park D. H., Plapp B. V. Substitutions in a flexible loop of horse liver alcohol dehydrogenase hinder the conformational change and unmask hydrogen transfer. Biochemistry. 1999 Oct 19;38(42):13951–13959. doi: 10.1021/bi991731i. [DOI] [PubMed] [Google Scholar]
  30. Rand R. P., Fuller N. L., Butko P., Francis G., Nicholls P. Measured change in protein solvation with substrate binding and turnover. Biochemistry. 1993 Jun 15;32(23):5925–5929. doi: 10.1021/bi00074a001. [DOI] [PubMed] [Google Scholar]
  31. Rebholz K. L., Northrop D. B. Kinetics of iso mechanisms. Methods Enzymol. 1995;249:211–240. doi: 10.1016/0076-6879(95)49037-x. [DOI] [PubMed] [Google Scholar]
  32. Rendina A. R., Hermes J. D., Cleland W. W. Use of multiple isotope effects to study the mechanism of 6-phosphogluconate dehydrogenase. Biochemistry. 1984 Dec 4;23(25):6257–6262. doi: 10.1021/bi00320a056. [DOI] [PubMed] [Google Scholar]
  33. Robinson C. R., Sligar S. G. Hydrostatic and osmotic pressure as tools to study macromolecular recognition. Methods Enzymol. 1995;259:395–427. doi: 10.1016/0076-6879(95)59054-4. [DOI] [PubMed] [Google Scholar]
  34. Scharschmidt M., Fisher M. A., Cleland W. W. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 1. Liver alcohol dehydrogenase with benzyl alcohol and yeast aldehyde dehydrogenase with benzaldehyde. Biochemistry. 1984 Nov 6;23(23):5471–5478. doi: 10.1021/bi00318a015. [DOI] [PubMed] [Google Scholar]
  35. Sekhar V. C., Plapp B. V. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase. Biochemistry. 1990 May 8;29(18):4289–4295. doi: 10.1021/bi00470a005. [DOI] [PubMed] [Google Scholar]
  36. Shore J. D., Gutfreund H., Brooks R. L., Santiago D., Santiago P. Proton equilibria and kinetics in the liver alcohol dehydrogenase reaction mechanism. Biochemistry. 1974 Sep 24;13(20):4185–4191. doi: 10.1021/bi00717a019. [DOI] [PubMed] [Google Scholar]
  37. Stein R. L., Trainor D. A. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: kinetic and solvent isotope effect studies. Biochemistry. 1986 Sep 23;25(19):5414–5419. doi: 10.1021/bi00367a011. [DOI] [PubMed] [Google Scholar]
  38. Taylor K. B. Solvent isotope effects on the reaction catalyzed by alcohol dehydrogenase from equine liver. Biochemistry. 1983 Mar 1;22(5):1040–1045. doi: 10.1021/bi00274a007. [DOI] [PubMed] [Google Scholar]
  39. Venkatasubban K. S., Schowen R. L. The proton inventory technique. CRC Crit Rev Biochem. 1984;17(1):1–44. doi: 10.3109/10409238409110268. [DOI] [PubMed] [Google Scholar]
  40. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  41. Weber G., Tanaka F., Okamoto B. Y., Drickamer H. G. The effect of pressure on the molecular complex of isoalloxazine and adenine. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1264–1266. doi: 10.1073/pnas.71.4.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiss P. M., Cook P. F., Hermes J. D., Cleland W. W. Evidence from nitrogen-15 and solvent deuterium isotope effects on the chemical mechanism of adenosine deaminase. Biochemistry. 1987 Nov 17;26(23):7378–7384. doi: 10.1021/bi00397a027. [DOI] [PubMed] [Google Scholar]
  43. Welsh K. M., Creighton D. J., Klinman J. P. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects. Biochemistry. 1980 May 13;19(10):2005–2016. doi: 10.1021/bi00551a001. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES