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Letters to the Editor

Muscle Cross-Bridge Chemistry and Force

The recent article by Baker et al. (1999) presents a thermagest that localized force production is possible, are not
dynamic formalism that challenges the commonly held asaddressed.
sumption that force production by muscle is localized to The thermodynamic formalism and the experiments re-
individual actin-bound myosin molecules. By assuming thatported by Baker and colleagues are thought-provoking. The
the chemical reaction for the force-producing step is closewthors identify several existing limitations to a full under-
enough to equilibrium to seAG = 0, the sum of the standing of force production by skeletal muscle fibers.
chemical and mechanical potentials of the products can bgowever, there are two elements contributing to their pro-
set equal to the sum of the chemical potentials of theyosal that force generation is not localized to chemical
reactants. To obtain the chemical potentials, Baker et akeactions at individual cross-bridges that are problematic, in
chose the reaction my opinion.
A+ MD.P < AMD + P, 1) The first is that in the models that are being challenged,
the conformational changes that make A.M.D a force-pro-
in which A is actin, M is a myosin cross-bridge, D is ducing complex, whatever they are, do not require cross-
MgADP, and PR is orthophosphate. Force is produced aspridge reorientation. It is true that muscle fiber shortening,
M.D.P; binds A and dissociates;.PThe nature of the me- ith or without work, requires cross-bridge reorientation.
chanical potentialmecn is not constrained in their formal- - gyt force is generated before cross-bridge reorientation or
ism. The standard free energy equation for the near-equinortening, due to internal cross-bridge conformational
librium force-generating step is changes caused by actin binding and phosphate dissocia-
AG° = — RTINAM.D][PJIM.D.PJIA] = fmecn- 2) tioq. F.or.ce causes reerientation, and the ferce generated by
an individual A.M.D will decrease as reorientation occurs.
In contrast, the mechanical potential is constrained in almosg;t in the case of isometric contraction, for the near equi-
all previous molecular level models. The authors note thafinrium conditions of the Baker et al. formalism, reorienta-
those models include the assumption that the internal woriop, js restrained. The reported observation, that increasing
performed by myosin conformational changes when aclifp] requces force but does not change the distribution of
binds is localized to displacements of elastic elements assq5 pridges orientations, is not inconsistent with models
sociated with individual myosin cross-bridges (Huxley, ¢, rently in use, because without shortening cross-bridge

1927; Hill, 1,{97?) " ¢t ducti det reorientation is not expected.
ome critical properties of force production aré deter- o go0qnq problem is that it is difficult to see how the

mined experimentally by measuring cross-bridge orienta, g - ¢ [P] on localized force production by an actin-
tion and force as a function of [P during isometric con-

traction of small bundles of skinned skeletal muscle fibers.bound individual cross-bridge, which is usually assigned to

Force is found to decrease with increasing],[But the AM.D'in the reaction
distribution of cross-bridge orientations remains constant,
within 1% (Baker et al., 1999). The lack of correspondence
between force, cross-bridge orientation, and the chemical
equilibrium in Eq. 1 leads the authors to propose that thoséan be evaluated when that reaction has not been made
twentieth century models of contraction, which have forceexplicitin the formalism. The current working hypothesis in
production localized to chemical reactions associated witfihe field has M.D.Pbinding A to form an A.M.D.PPcom-
individual cross-bridges, should be abandoned. They sugPlex. Next, the dissociation of fom the complex changes
gest that force production is distributed among, not within,the internal structure of the actin-bound myosin in such a
the myosin cross-bridges, and they describe several muscheay that A.M.D is generating force (Johnson and Taylor,
fiber properties in light of that hypothesis. Measurements ofl978; Eisenberg and Hill, 1985; Webb et al., 1986). The
force generated in vitro by isolated individual cross-bridgesorientation of A.M.D.P and A.M.D are the same, and re-
bound to actin (Warrick et al., 1993), which certainly sug-main the same when shortening does not occur. In their
formalism (Eq. 2), the authors use the reaction A

: — o M.D.P, <&+ AM.D + P, (Eq. 1), which has cross-bridge
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In a recent article (Baker et al., 1999), we reported that thelata. Specifically, Highsmith proposes that the independent
distribution of myosin orientational and biochemical statesforce generator model might still be consistent with our

is independent of Anduced changes in the force of fully data, if changes in muscle force were localized to internal
activated isometric muscle, despite observations that thisonformational/biochemical changes of actin-attached my-
distribution does vary with calcium-induced changes in thepsin cross-bridges and if global rotations of myosin cross-
force of partially activated isometric muscle (Ostap et al.pridges only occurred when muscle is allowed to shorten.
1995; Baker et al., 1998; Brust-Mascher et al., 1999). Wejjghsmith does not specify the nature of the internal myosin
then showed that a simple chemical thermodynamic analysonformational change that he believes is responsible for a
sis directly explains these data and challenges the indepepr_inqyced decline in muscle force. What our data require
dent force generator model of muscle contraction. In h'S(Baker etal., 1999) is that Highsmith's proposed conforma-

L;égeé o the Etdltor of theBt|ophyS|caI Jo?rnaIH[[grllsT|ltlh aonal change is not detected in our electron paramagnetic
( ) presents an accurate summary of our article followe esonance (EPR) studies and is distinct from the myosin

by an intriguing and testable alternative interpretation of Oul. - formational changes correlated with force generation

upon muscle activation, i.e., disorder-to-order in the myosin
catalytic domain and a distinct rotation of the myosin light-
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an alternative to our model, nor does it formally refute ourthermodynamic analysis of our EPR data provides a molec-
conclusions. ular basis for A. V. Hill's model.

Highsmith further suggests that the independent force
generator model might be able to explain our data if theReFERENCES
ternary complex, A.M.D.R were explicitly included in our
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