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ABSTRACT We have examined permeation by Ca21 and Ba21, and block by Mg21, using whole-cell recordings from a1G
T-type calcium channels stably expressed in HEK 293 cells. Without Mgo

21, inward currents were comparable with Ca21 and
Ba21. Surprisingly, three other results indicate that a1G is actually selective for Ca21 over Ba21. 1) Mg21 block is ;7-fold
more potent with Ba21 than with Ca21. With near-physiological (1 mM) Mgo

21, inward currents were ;3-fold larger with 2 mM
Ca21 than with 2 mM Ba21. The stronger competition between Ca21 and Mg21 implies that Ca21 binds more tightly than
Ba21. 2) Outward currents (carried by Na1) are blocked more strongly by Ca21 than by Ba21. 3) The reversal potential is more
positive with Ca21 than with Ba21, thus PCa . PBa. We conclude that a1G can distinguish Ca21 from Ba21, despite the similar
inward currents in the absence of Mgo

21. Our results can be explained by a 2-site, 3-barrier model if Ca21 enters the pore
2-fold more easily than Ba21 but exits the pore at a 2-fold lower rate.

INTRODUCTION

Ca21 entry through voltage-dependent calcium channels is
critical for both electrical and chemical signaling. To per-
form such functions, calcium channels must select for Ca21

over more plentiful monovalent cations. The basic mecha-
nism for Ca21 selectivity is not simple molecular sieving,
because calcium channels pass large monovalent cations if
divalent cations are absent (McCleskey and Almers, 1985).
Selectivity involves ion-ion interactions (Almers and
McCleskey, 1984; Hess and Tsien, 1984; Dang and
McCleskey, 1998) and electrostatic interactions of ions with
negatively charged amino acids in the channel pore (Yang et
al., 1993; Nonner and Eisenberg, 1998).

Permeation mechanisms have been studied most thor-
oughly for L-type calcium channels. Many of the basic
features are also present in T-type Ca21 channels, including
high permeability to monovalent cations and block by mi-
cromolar concentrations of divalent cations (Fukushima and
Hagiwara, 1985; Lux et al., 1990), but there are also differ-
ences in ion selectivity among calcium channels. Notably,
inward currents are;2-fold larger with Ba21 than Ca21 for
L-channels (Hess and Tsien, 1984), but most T-channels
show comparable inward currents with Ca21 or Ba21

(Fukushima and Hagiwara, 1985; Bean, 1985; Carbone and
Lux, 1987; Huguenard, 1996).

The recent cloning and functional expression of T-type
calcium channels allows the study of their biophysical prop-
erties in isolation (Perez-Reyes et al., 1998). We recently
examined the gating kinetics of thea1G channel (Serrano et
al., 1999), which is highly expressed in many brain regions,

including thalamic relay neurons (Talley et al., 1999), where
T-channels play an important role in generation of bursting
activity (Huguenard, 1996). In our initial experiments on the
ion selectivity ofa1G, we were surprised to find that inward
currents were much larger with Ca21 than with Ba21

(Dashti et al., 1999). We report here that this results from
preferential block by Mg21 of currents carried by Ba21.
Without Mg21, inward currents are very similar with Ca21

and Ba21. However, the reversal potential (VR) is more
positive, and outward monovalent currents are smaller with
Ca21, indicating Ca21 selectivity. We conclude thata1G
can distinguish Ca21 from Ba21 ions. Our results can be
described by Eyring rate theory (a 2-site, 3-barrier model) if
Ca21 enters the pore more easily than Ba21, but Ba21 exits
more rapidly. Small differences between the energetics of
Ca21 versus Ba21 are sufficient to produce a;7-fold
difference in Mg21 block, although inward currents carried
by Ca21 and Ba21 are similar over a wide voltage range.

MATERIALS AND METHODS

Electrophysiology

Whole-cell recordings were made from the Nr21 cell line, HEK 293 cells
stably transfected with rata1G (Lee et al., 1999a), as described previously
(Serrano et al., 1999). Briefly, data were recorded at room temperature
using Clampex (pClamp 6.03, Axon Instruments, Foster City, CA) with an
Axopatch 200A amplifier. Data were usually sampled at 20 kHz following
10 kHz analog filtering. Series resistances (initially 6.66 0.4 MV, n 5 34)
were compensated nominally by 80–90%.

The standard intracellular (pipette) solution contained 140 mM NaCl, 2
mM CaCl2, 11 mM EGTA, 10 mM HEPES, 4 MgATP, pH 7.2 with;25
mM NaOH. Free [Ca21]i was 40 nM, and free [Mg21]i was 0.8 mM,
calculated from the program Bound and Determined (BAD) (Brooks and
Storey, 1992). The extracellular solutions contained 140 mM NaCl, 2 mM
CaCl2 or BaCl2 (as noted), 0 or 1 mM MgCl2 (as noted), 10 mM HEPES,
pH 7.2 with;5 mM NaOH.

Extracellular solutions were exchanged by a gravity-driven flow sys-
tem, remotely controlled by solenoid valves. We found it difficult to record
from cells with sufficient stability to obtain fully reversible responses
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(requiring .10 min), resulting from slow changes in leakage currents,
current amplitudes, etc. Thus, many comparisons of currents in different
conditions were made between populations of cells (e.g., partB, Figs. 1–6),
but key results were confirmed in cells where reversible effects were
obtained (as illustrated in partA, Figs. 2–5). Some averagedI-V curves are
shown in multiple figures, to make pairwise comparisons between different
conditions.

Data analysis

Currents were analyzed using Clampfit v.6 and Microsoft Excel (v.5 or 97),
and graphs were prepared using Microcal Origin v.5 and Micrografx
Designer v.7. Unless noted, values are given as mean6 SEM. For
averaged data in the figures, error bars are shown if larger than the
symbols. Current records in the figures were Gaussian-filtered 2 kHz
(unless noted otherwise) using Clampfit. Statistical significance levels
given in the text are from unpaired 2-tailedt-tests (Excel), withp , 0.05
considered to be significant.

Our experiments require accurate voltage clamp to control the large
currents observed over a wide voltage range. For analysis of instantaneous
I-V relations, cells were selected based on two primary criteria, the rise
time of tail currents at2100 mV, and the effect of partial inactivation on
the time course of tail currents at2100 mV (protocol illustrated in Fig. 7).
For selected cells,;70% inactivation affected the time constant for chan-
nel deactivation by,20% (corresponding to 5 mV or less of series
resistance error, given the voltage-dependence of channel closing; Serrano
et al., 1999).

InstantaneousI-V relations were measured by fitting single exponentials
to the decay of current following a brief (2-ms) step to160 mV (see Fig.
1 A). The exponential fit began when the tail currents reached a peak
(0.3–0.7 ms), and extended to the end of the 40-ms voltage steps. In some
cells, the tail currents were well described by a single exponential over that
entire time course, while other cells exhibited slight deviations from
exponential decay during the first;1 ms (which was not strongly weighted
in the fit). The amplitude of the fitted exponential at the starting point of
the fit was used for the instantaneousI-V measurements shown, as an
estimate of the current at the time when accurate voltage clamp was
actually achieved (extrapolating back to time 0 would overestimate the tail
current amplitudes at extreme voltages). This procedure resulted from
much trial-and-error, and was judged to give more consistent results than
alternative approaches (e.g., measurement of the actual peak tail current,
which was more sensitive to filtering and to slight deviations from expo-
nential kinetics). However, different methods produced only subtle differ-
ences in theI-V relations, as the main results were visible “by eye” in the
raw currents (see partA, Figs. 1–5).

Calculations and models

For two permeant ions A and B of any charge (zA, zB), each of which may
be present on both sides of the membrane, the Goldman-Hodgkin-Katz
permeability ratio (PA/PB) was calculated from the observed reversal
potential (VR) (Frazier et al., 2000):

PA/PB 5
2zB

2~@B#i 2 @B#o e2nB!~1 2 e2nA!

zA
2 ~@A#i 2 @A#o e2nA!~1 2 e2nB!

(1)

where nA 5 zAVRF/RT and nB 5 zBVRF/RT. Permeability ratios in the
Results were calculated using concentrations, not activities.

The voltage dependence of Mg21 block was described by a simplified
Woodhull (1973) model, assuming that Mg21 binds to a single site within
the pore, can enter the pore only from the outside, and cannot permeate:

f 5 1/$1 1 @Mg21#/~KD,0e
zdFV/RT!% (2)

wheref is the fraction of current remaining unblocked in the presence of
Mg21, KD,0 is the dissociation constant for Mg21 at 0 mV, z 5 2 is the
charge on Mg21, andd is the apparent electrical location of the binding
site, as a fraction of the electrical field of the membrane measured from the
outside.

Permeation and Mg21 block were also described by a 2-site, 3-barrier
model including ion-ion repulsion, based on the model of Almers and
McCleskey (1984). Specifically, positions of the barriers in the electrical
field (d values) were 0.05, 0.5, and 0.95, with wells at 0.33 and 0.67. Each
rate constant (k) was related to barrier/well energies by:

k 5 k0 e2DGzDdFV/RT (3)

whereDG is the difference in zero-voltage energies between the well and
the barrier,z is the charge on the ion, andDd is the difference in electrical
locations. For comparison to most previous models, we usekT/h (6.1 3
1012) as the preexponential factor (k0) for all rate constants, including entry
of ions into the pore. This has been criticized (Nonner and Eisenberg,
1998), especially for entry rates (Yue and Marban, 1990), so the height of
the “energy barriers” in the model should not be interpreted literally
(Andersen, 1999). When both binding sites were occupied, rate constants
for exit from the pore were increased by the factorQ z zA z zB, whereQ 5
11.89 andzA andzB are the charges on the ions in the two sites (Almers and
McCleskey, 1984). The model was implemented using the SCoP simula-
tion package (v.3.51; Simulation Resources, Berrien Springs, MI). Whole-
cell currents were scaled to typical single-channel current levels assuming
8000 channels per cell. The energy levels of the barriers and wells were
varied for each ion (Ca21, Ba21, Mg21, and Na1). To limit the number of
free parameters, the energy profiles were assumed to be symmetrical for
Ca21, Ba21, and Na1 (butnotMg21), and the middle barrier was the same
height (with respect to the outer well) for all ions. External barriers were
constrained to be from 8 to 12RT, and the outer well for Mg21 was
constrained to be at least 1RT less than the outer barrier. The 11 resulting
parameters (2 energies each for Ca21, Ba21, and Na1, and 5 for Mg21)
were estimated using the SCoPfit program, which uses the principal axis
(Praxis) algorithm.

RESULTS

With Mgo
21, inward currents are larger with Ca21

than with Ba21

To examine the ion selectivity of thea1G channel, we
began with nearly normal ionic conditions, including 2 mM
Cao

21, except that Ki
1 was replaced by Nai

1. The recording
solutions contained 1 mM Mgo

21 and an estimated 0.8 mM
free Mgi

21 (see Materials and Methods). To examine per-
meation using whole-cell currents, we measured instanta-
neous current-voltage (I-V) relations following brief, strong
depolarizations designed to activate channels while produc-
ing minimal inactivation (Fig. 1). In principle, each prepulse
should activate the same number of channels, producing the
same outward current at160 mV during each 2-ms step. If
so, the currents measured shortly after repolarization should
reflect the voltage-dependence of current flow through a
constant number of open channels (Hodgkin and Huxley,
1952). This analysis is aided by the characteristically slow
deactivation of T-channels, witht . 1 ms even at2120 mV
(Serrano et al., 1999).

With 2 mM Ca21, the reversal potential (VR) was
126.06 2.0 (n 5 8), in good agreement with our previous
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study on gating ofa1G (Serrano et al., 1999) and other
reports on Ca21/Na1 selectivity of T-channels (Fukushima
and Hagiwara, 1985).VR is less positive than commonly
observed for calcium currents in native cells because most
such studies use Cs1 (or even less permeant ions such as
N-methyl-D-glucamine) to improve current isolation, and
calcium channels are;3-fold selective for Na1 over Cs1

(Fukushima and Hagiwara, 1985; Lux et al., 1990; Hess et
al., 1986; Dashti et al., 1999). We found it convenient to use
Nai

1 because outward currents andVR were easily measur-
able, and the presence of a single permeant monovalent
cation simplified calculation of permeability ratios (Eq. 1).

The instantaneousI-V relations in Ca21 have a sigmoidal
shape, indicating a relatively high conductance at strongly
negative or positive voltages, and a low conductance near
the reversal potential. As for L-channels (Hess et al., 1986),
this presumably indicates Ca21 permeation at negative volt-
ages, permeation of monovalent cations at positive voltages,
and mutual block near the reversal potential.

When Ca21 was replaced by Ba21, the instantaneousI-V
was affected in several ways.VR was 7 mV less positive
(118.8 6 2.1 mV, n 5 15; p 5 0.03), outward currents
were ;2-fold larger, and inward currents were;3-fold
smaller. The shift inVR is consistent with the idea that the
channel pore binds Ca21 more tightly than Ba21, as for
L-channels. Weaker binding of Ba21 could also explain the
larger outward Na1 currents. However, the considerably
smaller inward currents with Ba21 were a surprise, as cur-
rents through L-channels are larger for Ba21 than Ca21

(Hess and Tsien, 1984), and most T-channels exhibit similar
inward currents with Ca21 and Ba21 (Fukushima and Hagi-
wara, 1985; Carbone and Lux, 1987). Even fora1G, some

other studies have found comparable currents with Ca21

and Ba21 (Klugbauer et al., 1999; Monteil et al., 2000). We
suspected that this discrepancy resulted from some differ-
ence in recording conditions. The weak voltage-dependence
of the inward currents in Ba21, reminiscent of voltage-
dependent block, focused our attention on Mgo

21, a known
blocker of calcium channels (Wilson et al., 1983; Kuo and
Hess, 1993), including T-channels (Fukushima and Hagi-
wara, 1985; Lux et al., 1990).

Mgo
21 selectively blocks inward currents carried

by Ba21

One millimolar Mgo
21 strongly blocked inward currents

carried by 2 mM Ba21 (Fig. 2). Interestingly, outward
currents (carried by Na1) were not affected. Averaging
across cells, the ratio of currents with/without Mgo

21 was
0.196 0.04 at2120 mV (p 5 1 3 1026), but 1.036 0.22
at 160 mV (n.s.). Because Mg21 blocks T-currents more
potently with monovalents as charge carrier (Fukushima
and Hagiwara, 1985), the preferential block of inward cur-
rents presumably reflects voltage-dependent block (ana-
lyzed further below). Note that theI-V relations measured
by this protocol would not be affected by effects of Mg21

on channel gating, e.g., by screening of surface charge.
Mgo

21 also blocked currents carried by 2 mM Ca21, but
more weakly (Fig. 3). Current ratios (with/without 1 mM
Mgo

21) were 0.626 0.15 at 2120 mV (p 5 0.04), and
1.15 6 0.24 at160 mV (n.s.). In an attempt to match the
degree of block observed with Ba21, the effect of 6 mM
Mgo

21 was tested on currents with 2 mM Ca21 (Fig. 4).

FIGURE 1 With Mgo
21, inward currents are larger with Ca21 than with Ba21. (A) Sample records from the protocol used to measure instantaneousI-V

relations, in Ca21 (left) or Ba21 (right). Note small inward currents and large outward currents with Ba21. Channels were activated by a 2-ms step to160
mV, immediately followed by voltage steps in 10-mV increments from2120 to170 mV; every other voltage step is illustrated here. The decay of currents
at each voltage reflects a combination of channel closing (deactivation) and inactivation (Serrano et al., 1999); cell a9n26 (Ca21 1 Mg21); cell c9711 (Ba21

1 Mg21). (B) InstantaneousI-V relations, measured as described in Materials and Methods, from the protocol ofA, averaged from 8 cells (Ca21 1 Mg21)
or 15 cells (Ba21 1 Mg21).
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Current ratios were 0.236 0.04 at2120 mV (p 5 4 3
1026), and 0.756 0.14 at160 mV (n.s.). Mg21 had no
significant effect onVR, either with Ca21 or with Ba21.

In the absence of Mgo
21, inward currents were very sim-

ilar with Ca21 or Ba21 (Fig. 5). This confirms that nearly all

of the difference in inward currents in Fig. 1 can be attrib-
uted to selective Mg21 block of currents carried by Ba21.
However, two subtle but important differences remain be-
tween theI-V relations in Ca21 and Ba21. The outward
currents are smaller in Ca21 (Ca21/Ba21 ratio 0.476 0.09

FIGURE 2 One millimolar Mg21 strongly blocks inward currents with Ba21. (A) Sample records from one cell (a0130), recorded before (left), during
(middle), and after recovery (right) from application of 1 mM Mg21. Note that Mg21 reversibly inhibited inward currents with no effect on outward
currents. The prepulse (4 ms) was twice the duration normally used, so more inactivation occurred during the prepulse. (B) InstantaneousI-V relations,
averaged from 13 cells (Ba21) or 15 cells (Ba21 1 Mg21).

FIGURE 3 One millimolar Mg21 weakly blocks inward currents with Ca21. (A) Sample records, cell g0209. (B) InstantaneousI-V relations, averaged
from 17 cells (Ca21) or 8 cells (Ca21 1 Mg21).
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at 160 mV, p 5 0.003; versus 0.906 0.15 at2120 mV,
n.s.), andVR is more positive in Ca21 (128.96 1.3 mV in
Ca21, n 5 18;123.06 2.1 mV in Ba21, n 5 13;p 5 0.02).
In terms of Goldman-Hodgkin-Katz theory, theseVR values
correspond toPCa/PNa 5 193, andPBa/PNa 5 115 (Eq. 1).

Like most T-channels,a1G passes similar inward cur-
rents with Ca21 and Ba21 (in the absence of Mgo

21). How-
ever, that does not mean that thea1G channel cannot
distinguish Ca21 from Ba21. Three observations indicate
that thea1G pore interacts more strongly with Ca21 than

FIGURE 4 Six millimolar Mg21 strongly blocks inward currents with Ca21. (A) Sample records, cell x0303. (B) InstantaneousI-V relations, averaged
from 17 cells (Ca21) and 11 cells (Ca21 1 Mg21).

FIGURE 5 Without Mg21, inward currents are comparable with Ca21 or Ba21. (A) Sample records, from the same cell as Fig. 3A. (B) Instantaneous
I-V relations, averaged from 17 cells (Ca21) or 13 cells (Ba21).
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with Ba21: the permeability ratio is larger with Ca21, out-
ward currents are smaller with Ca21 (indicating stronger
block of Na1 currents by Ca21), and Ba21 currents are
blocked more potently by Mg21.

Mgi
21 does not block strongly

Our standard recording solutions included 4 mM MgATP,
estimated to produce 0.8 mM free Mgi

21 (see Materials and
Methods). Because a comparable concentration of Mgo

21

potently blocked currents with Ba21, we examined the
effect of removing Mgi

21 by dialyzing cells without MgATP
(and including 1 mM EDTA). No significant difference was
observed in the instantaneousI-V relationship, although
there was a suggestion of larger outward currents in the
absence of Mgi

21 (Fig. 6). Although we cannot exclude a
weak blocking effect of Mgi

21, block by Mg21 is clearly
stronger from the extracellular side of the channel, as re-
ported previously for L-channels (Kuo and Hess, 1993).

Effects on channel kinetics

The description of Mg21 block presented so far effectively
assumes that Mg21 block is instantaneous with respect to
the speed of our voltage clamp. Clearly, the strong block of
the peak inward tail currents in Fig. 2A and Fig. 4A
demonstrates that Mg21 can blocka1G channels rapidly.
However, in several cells, especially when the clamp quality
was judged to be especially good, there was a fast compo-

nent to the tail currents in the presence of 2 mM Ba21 1 1
mM Mg21 (arrow, Fig. 7 B). That component is not a
residual capacity transient or a gating current, because 1) it
is not seen in the absence of Mg21 (Fig. 7A), 2) it is greatly
reduced by partial inactivation (Fig. 7B), and 3) it is absent
in 10 mM Mg21 (Fig. 7 C), where block should be 10-fold
faster. We interpret that rapid component as the partially
resolved time course of Mg21 block. Our method of mea-
suring the instantaneousI-V relationship was designed to
avoid including the fast component (see Materials and
Methods). Thus, the measured currents should reflect the
extent of block at each voltage following equilibration of
Mg21 with the open channel. There was no obvious fast
component to tails with Ca21 1 Mg21, probably because
the extent of block was low with 1 mM Mg21, and the rate
of block was high with 6 mM Mg21.

Our results suggest that the time constant for block by 1
mM Mg21 is ;0.1 ms, possibly faster. That would corre-
spond to a bimolecular blocking rate of;107 M21 s21. For
comparison, for high voltage-activated (HVA) calcium
channels, Mg21 blocks currents carried by monovalent cat-
ions at;108 M21 s21 (Kuo and Hess, 1993; Carbone et al.,
1997). With 110 mM Ba21, the rate is 1.93 105 s21, but
that increases sharply at lower Ba21 (Lansman et al., 1986).

Although our experiments were designed to analyze ef-
fects on permeation, preliminary results suggest that Mg21

may also affect gating. With a “standardI-V” protocol,
where the cell was depolarized directly to a range of volt-
ages without a prepulse to160 mV, Mg21 appeared to shift

FIGURE 6 Mgi
21 has little or no effect. (A) Sample records from a cell (b9728) dialyzed with an intracellular solution containing 1 mM EDTA and no

MgATP. (B) InstantaneousI-V relations, averaged from 8 cells (Ba21, no MgATP) or 13 cells (Ba21).
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channel gating by;10 mV to more depolarized voltages
(data not shown). Consequently, at negative voltages, the
percentage inhibition by Mg21 was greater measured from
the standardI-V than from the “instantaneousI-V.” With
Ca21, addition of either 1 or 6 mM Mg21 decreased the time
constants for channel deactivation; the effect of Mg21 on
the main component of deactivation was less clear with
Ba21. These effects are in the direction expected for screen-
ing by Mg21 of a surface charge associated with gating, but
we cannot rule out additional effects (e.g., altered activation
of a Mg21-blocked channel, or modification of gating by
binding of Mg21 to a separate site outside the pore). Mg21

did not affect the time constant for inactivation, but inacti-
vation of inward currents was;30% faster in Ba21 than in
Ca21, as previously reported fora1G (Klugbauer et al.,
1999).

For purposes of this paper, we conclude that our mea-
surements of instantaneousI-V relations reflect the voltage-

dependence of Mg21 block of the open channel, with neg-
ligible interference from effects on gating, or time-
dependence of Mg21 block. Possible effects of Mg21 and
other blockers on gating ofa1G (Lee et al., 1999b; Laci-
nováet al., 2000) will require further study.

Analysis of Mg21 block

Block by Mg21 is clearly voltage-dependent (Figs. 2–4).
We first examined whether the voltage-dependence was
consistent with a simple Woodhull model (Eq. 2), where
Mg21 can enter and exit the pore only from the extracellular
side (Fig. 8). The data were fitted reasonably well, espe-
cially for Ca21, assuming a binding site 25–30% of the
distance through the electrical field of the membrane from
the outside, with 7-fold lower affinity with Ca21 as the
charge carrier.

The lower affinity for Mg21 in the presence of Ca21

presumably reflects ion-ion competition, not considered in a
Woodhull model. We next tested Eyring rate theory models,
including two binding sites within the channel pore, based
on the classical models for permeation and block of L-

FIGURE 7 A fast component to inward tail currents in 2 mM Ba21 1 1
mM Mg21. Currents were recorded in response to 2-ms steps to160 mV,
in the absence of Mgo

21 (A), with 1 mM Mgo
21 (B), or with 10 mM Mgo

21

(C). In each condition two records are shown, one in a rested cell (the
larger current), and one following partial inactivation (by a 42-ms step to
160 mV, followed by 20 ms at2120 mV to allow channels to deactivate
fully). Same cell as Fig. 6A (no intracellular MgATP). Similar fast tail
current components could also be observed in cells with MgATP; 2.5 kHz
Gaussian filter.

FIGURE 8 Analysis of Mg21 block using a Woodhull model. (A) The
current ratio (Ba21 1 Mg21/Ba21) calculated from the data of Fig. 2B.
The smooth curve was fitted using Eq. 2, withKD,0 5 2.7 mM andd 5
0.30. (B) Current ratios calculated from three cells where 6 mM Mg21

reversibly inhibited the currents with 2 mM Ca21. The average of currents
recorded before and after recovery from Mg21 block was used as the
control. Because the comparisons were made within each cell rather than
across populations of cells, the standard errors are less inB than inA. The
fit to Eq. 2 gaveKD,0 5 19 mM andd 5 0.25 (smooth curve).
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channels (Almers and McCleskey, 1984; Hess and Tsien,
1984). The best-fit parameters reproduced many of the key
features of the data, in five experimental conditions (Ca21

alone, Ba21 alone, Ca21 or Ba21 1 1 mM Mg21, and Ca21

1 6 mM Mg21), over a 190 mV range: the overall shape of
theI-V relations, similar inward currents with Ca21 or Ba21

(in the absence of Mg21), stronger block of inward currents
carried by Ba21, a more positive reversal potential with
Ca21, and larger outward currents with Ba21 (Fig. 9). The
parameters produced Ca21/Ba21 selectivity using deeper
wells for Ca21 (higher affinity binding), but higher barriers
for Ba21 (slower entry into the pore). Both differences
contribute to the more positive reversal potential with Ca21,
but the effects on the amplitudes of inward currents are
opposite and nearly cancel. Crudely put, Ca21 can get into
the pore more easily than Ba21, but once in, it is less likely
to exit. The energy differences are quite small, so it is
striking that the model reproduces the;7-fold difference in
Mg21 block. Both differences between the energetics of
Ca21 and Ba21 favor Ca21 occupancy, reducing the ability
of Mg21 to enter and block.

The Eyring model predicts that Na1 carries an apprecia-
ble fraction of the inward current, even in the presence of 2
mM Ca21 or Ba21. At 250 mV, Na1 would carry 18% of
the current with Ca21, and 50% with Ba21; the fractional
Na1 current would increase with hyperpolarization (calcu-
lations not shown). Because the net currents are nearly equal

with 2 mM Ca21 or Ba21 (in the absence of Mgo
21), there

actually would be more Ca21 entry than Ba21 entry. It is not
clear whether this feature of the model is realistic.

For the Eyring model, the energy profile for Mg21 in-
cludes a high energy barrier on the cytoplasmic side of the
channel. That explains why a Woodhull model (effectively
assuming an infinitely high barrier) can describe Mg21

block reasonably well. The high barrier also explains the
asymmetry in Mg21 block, where Mgo

21 blocks potently
while Mgi

21 does not. For Mg21, the outer site was not well
defined, and in practical terms is not really a binding site.

It is interesting that the Woodhull models suggested that
Mg21 bound toward the outer part of the channel (d 5
0.25–0.30), while the Eyring model placed the site of Mg21

block toward the cytoplasmic side (d 5 0.67). When the
output of the Eyring model was fitted to a Woodhull model
(Eq. 2), the fits were less good than in Fig. 8, withd values
for Mg21 of 0.23 (with Ca21) and 0.29 (with Ba21). This
illustrates that that Woodhull parameters cannot be inter-
preted literally for a multi-ion pore (Hille, 1992). We have
not systematically varied the position of the binding sites in
the Eyring model, so thed 5 0.67 value should not be taken
too literally. However, if the binding sites were constrained
to be in the outer part of the channel (d 5 0.2 and 0.3) (see
Kuo and Hess, 1993), we were not able to obtain a good fit
to the data (calculations not shown).

FIGURE 9 Analysis of Mg21 block using an Eyring rate theory model. (A and B) The smooth curves are the best fits to a 2-site, 3-barrier model,
superimposed on the experimental data from Fig. 2B and Fig. 3B, respectively. The model-generated single-channel currents were scaled to match the
whole-cell currents, assuming 8000 open channels. (C) The energy profiles for the different ions. The model was based on that of Almers and McCleskey
(1984); see Materials and Methods for details. The energy barriers and wells (from outside to inside) were 9.62,210.91, 1.87,210.91, 9.62 (Ca21); 10.17,
29.60, 3.17,29.60, 10.17 (Ba21); 12, 22.38, 10.39,22.38, 12 (Na1); and 8, 7, 19.77,29.75, 23.75 (Mg21). In the format recommended by the Journal
of General Physiology (Andersen, 1999), 10RT corresponds to RCR5 4.3, assuming a frequency factor of 6.13 1012 (see Materials and Methods).

Selectivity of a1G T-Type Ca21 Channels 3059

Biophysical Journal 79(6) 3052–3062



Recently, many crucial features of L-channel permeation
have been described by a different theoretical approach,
Poisson-Nernst-Planck (PNP) theory (Nonner and Eisen-
berg, 1998). PNP can qualitatively reproduce several of our
principal results if we assume that the chemical potential for
Mg21 varies linearly within the pore (to explain the asym-
metrical block; calculations not shown). However, we have
not found parameters that quantitatively describe the instan-
taneousI-V curves. Thus far, we have attempted to find
appropriate PNP parameters “by hand” rather than by auto-
mated error-minimization routines (as used above for Ey-
ring models), so we cannot conclude that PNP theory is
unable to explain our results.

DISCUSSION

Although Ca21 and Ba21 carry comparable inward currents
through thea1G T-type calcium channel, the channel is
actually selective for Ca21 over Ba21. This difference is
shown most clearly by the;7-fold difference in the appar-
ent affinity for block by Mg21. A more positive reversal
potential with Ca21, and stronger block of outward currents
by Ca21, also imply that Ca21 interacts more strongly with
the a1G pore than does Ba21. In terms of an Eyring rate
theory model, Ca21 enters the pore more easily than Ba21,
but exits more slowly.

Ca21-Ba21 selectivity

Most studies on native T-type calcium channels found sim-
ilar inward currents with Ca21 and Ba21 (Huguenard,
1996), with the exception of thalamic reticular neurons,
where Ca21 currents were;50% larger (Huguenard and
Prince, 1992). However, comparison among studies can be
difficult. The Ca21 and Ba21 concentrations have varied
from the physiological range to isotonic (especially for
single-channel studies), which could affect the apparent
selectivity. Many studies used the current at the peak of the
I-V relationship as an index, which could be affected by
changes in channel gating as well as by the conductance of
the channel to Ca21 or Ba21. The activation of L-type and
other HVA channels is known to be affected by surface
potentials, which can differ between Ca21 and Ba21 even at
the same concentration; few studies have examined effects
of surface potential on T-channels (Becchetti et al., 1992).

Few studies of T-currents have compared reversal poten-
tials or outward currents for Ca21 versus Ba21. One impor-
tant exception is Fukushima and Hagiwara (1985), who
found for T-currents of B lymphocytes that the reversal
potential was;10 mV more positive and outward currents
were smaller with Ca21, in good agreement with our results
for a1G.

One of our main conclusions is thata1G T-channels
resemble L-channels in selectivity for Ca21 over Ba21, by

traditional criteria such as permeability ratios. For L-chan-
nels, the channel conductance is higher for Ba21 (opposite
to the selectivity sequence), while fora1G the whole-cell
Ca21 and Ba21 conductances are similar. In terms of an
Eyring model, in L-channels the primary difference in en-
ergy profiles for Ca21 and Ba21 is a deeper energy well for
Ca21 by ;4 RT (Almers and McCleskey, 1984). Fora1G,
our parameters also give a deeper well for Ca21, but only by
1.3RT. We also found a lower external barrier for Ca21 not
present in the L-channel models. Overall, it is noteworthy
that relatively modest differences in energy profiles can
have significant effects on ion selectivity and block.

Calcium channels often show an anomalous mole fraction
effect (AMFE) between Ca21 and Ba21, where the current
in a mixture of Ca21 and Ba21 is less than with either ion
alone (Almers and McCleskey, 1984; Hess and Tsien,
1984). The Eyring model predicts a very weak AMFE for
a1G, maximally a 6% reduction in current amplitudes near
260 mV, and no AMFE for the reversal potential (calcula-
tions not shown).

Although the Eyring model fora1G gave a good quan-
titative description of our results, we emphasize the quali-
tative explanation that it provides for the differential sensi-
tivity of Ca21 and Ba21 currents to Mg21 block. First, the
results presented here are limited to a single concentration
(2 mM) of divalent cation as charge carrier. Preliminary
results demonstrate substantial increases in current either
upon removal of extracellular divalent cations (and addition
of EGTA), or in isotonic Ca21 or Ba21, but those data are
not yet suitable for quantitative modeling. Second, there is
a lively debate regarding the physical plausibility of Eyring
models for channel permeation (McCleskey, 1999; Nonner
et al., 1999). One specific issue is that Eyring models
(including ours) tend to predict significant changes in the
net charge in the pore with voltage and ion concentration,
while PNP models predict an essentially electroneutral pore
(Nonner and Eisenberg, 1998). For the moment, we present
this model as one specific and intuitive explanation of
interactions among Ca21, Ba21, and Mg21.

The molecular basis for the variations in selectivity
among calcium channels remains to be explored. All known
HVA channels contain four glutamates in the P region, at
the corresponding site in each of the four P loops, and
mutations at those sites strongly affect channel selectivity
(Yang et al., 1993). The cloned T-channels contain aspar-
tates at two of those positions, in domains III and IV
(Perez-Reyes et al., 1998; Cribbs et al., 1998; Lee et al.,
1999a). Those differences are an obvious candidate for the
changes in selectivity (Yang et al., 1999), but are unlikely to
explain all differences in selectivity and block among cal-
cium channels. For example, thea1E channel, which has
four glutamates, exhibits larger currents with Ca21 than
with Ba21 (Bourinet et al., 1996). Also, thea1H T-channel
is ;20-fold more sensitive to block by Ni21 than are the
other cloned T-channels (Lee et al., 1999b).
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Mg21 block

Although Mg21 block of calcium channels is well estab-
lished, we were surprised by the potency of the block, which
appears to be stronger than for L-type channels (Campbell
et al., 1988; Hartzell and White, 1989; Wu and Lipsius,
1990; Dichtl and Vierling, 1991; Hall and Fry, 1992; Zhang
et al., 1995; Song et al., 1996), although the use of different
charge carriers at different concentrations again makes di-
rect comparisons difficult. In cardiac cells, one study also
found that Mg21 inhibited T-channels more effectively than
L-channels (Wu and Lipsius, 1990). For N-type channels of
frog sympathetic neurons, with 2 mM Ba21, the effect of 3
mM Mg21 on the instantaneousI-V relationship could be
described by a Woodhull model withd 5 0.25 andKD,0 5
9 mM (W. Zhou and S. W. Jones, unpublished observa-
tions),;3-fold weaker block than found here fora1G.

It has been suggested that Mg21 “block” actually results
from screening of surface charge, rather than true pore block
(Wilson et al., 1983). Although we do not have an estimate
for the surface charge associated with T-channels, it is
unlikely that a surface charge-mediated effect of 1 mM
Mg21 (in the presence of 2 mM Ba21) could be as strong
and as voltage-dependent as observed (Fig. 2B). Further-
more, there is evidence (at least for HVA channels) that
little surface charge is associated with permeation, in con-
trast to the well-known effects of surface charge on gating
(Kuo and Hess, 1993; Zhou and Jones, 1995). The obser-
vation of discrete Mg21 block of single L-channels also
argues against a surface charge mechanism (Lansman et al.,
1986; Kuo and Hess, 1993).

It is well known that blockade of calcium channels is a
competitive process that depends on the nature and concen-
tration of permeant ion (Hagiwara et al., 1974; Hess and
Tsien, 1984; Lansman et al., 1986; Yang et al., 1993). In the
calcium channel of barnacle muscle, Ba21 normally carries
larger currents than Ca21, but currents are larger with Ca21

following partial blockade by Co21, early evidence that ion
selectivity in calcium channels involves selective binding
(Hagiwara et al., 1974). Similarly, currents carried by Ba21

are more sensitive to block by Mg21 in cardiac L-channels
(Campbell et al., 1988). Fora1G, one recent study noted
that block by Cd21 and Ni21 is more potent with Ba21 than
with Ca21 (Lacinováet al., 2000).

Although we have emphasized mechanistic implications,
Mg21 block of T-current may also play a physiological or
pharmacological role. Even with Ca21, 1 mM Mg21 pro-
duced a modest inhibition of inward current, suggesting that
Mg21 block occurs even under physiological conditions.
The block is stronger at more negative voltages, where
significant Ca21 entry can occur through T-channels during
the “tail current” following an action potential (Huguenard,
1996). In cardiac cells, Mg21 block of T-current has been
suggested to play a role in the antiarrhythmic effect of
elevated Mgo

21 (Wu and Lipsius, 1990).

As a practical matter, our results demonstrate that the
choice of [Mg21]o can critically affect the outcome of
experiments on calcium channels in vitro. Furthermore,
Mg21 block can be a useful tool for dissection of calcium
channel selectivity.
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