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Mark F. Schumaker,* Régis Pomés,™ and Benoit Roux*

* Department of Pure and Applied Mathematics, Washington State University, Pullman, Washington 99164-3113, USA, "Theoretical
Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, and *Groupe de Recherche en
Transport Membranaire, Départements de Physique et de Chimie, Université de Montréal, Québec H3C 3J7, Canada

ABSTRACT This paper describes a framework model for proton conduction through gramicidin; a model designed to
incorporate information from molecular dynamics and use this to predict conductance properties. The state diagram
describes both motion of an excess proton within the pore as well as the reorientation of waters within the pore in the absence
of an excess proton. The model is constructed as the diffusion limit of a random walk, allowing control over the boundary
behavior of trajectories. Simple assumptions about the boundary behavior are made, which allow an analytical solution for the
proton current and conductance. This is compared with corresponding expressions from statistical mechanics. The random
walk construction allows diffusing trajectories underlying the model to be simulated in a simple way. Details of the numerical

algorithm are described.
GLOSSARY

Symbols that appear in two or more subsections are giveq

When uppercase and lowercase symbols are given together}’

lowercase denotes dimensionless quantities. Speaiesy
represent eithed (proton) ord (defect). Roman numer&
denotes either side | or side Il of the channel.

Latin Symbols

a a Weights of boundary regions. Egs.
38, 43, and 65.
bs Boundary statdR. See Fig. B.
Crs Cr Bulk concentration on side R. See
Egs. 32 and 57.
Co A concentration introduced by Eq.

38; see also Eq. 72.
C. The unit concentration, e.g. 1M; see
Eq. 44.
Diffusion coefficient of dipole
reaction coordinate. See above Eq.
18.
d; Defect statd; see Fig. ZC.
E Electric field in pore interior. See
above Eq. 3.
€ Elementary electrical charge.
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WE, w®

Proton electrical distance. See Fig.
2Aand Eq. 12.

Defect electrical distances. See Fig.
2 A and Eqgs. 13-15.

Integral defined by Eq. 120.

Proton state; see Fig. ZC.

Integral defined by Eq. 114.

Integral defined by Eq. 121.

Flux of species s; see Eq. 31.
Current through channel; see Eq. 83.
Boltzmann’s constant.

Integration constants fd?®, see Eq.
34.

Spatial length of channel. See the
first paragraph in Construction of the
Model.

Length of species reaction
coordinate interval. See above Eq.
18.

Number of random walk gridpoints
for each species. See Fig. ZC.
Probability density au®. See Eq. 27
and above Eg. 92.

Probability that state is occupied;
see above Eg. 21.

Probability thatbg is occupied; see
above Eqg. 32.

Framework model probability that a
proton occupies the channel; Eq. 68.
Statistical mechanical probability of
proton occupation; see Eq. 67.
Absolute temperature.

Access time or characteristic time for
speciess. See Eq. 55 and above.
Applied potential on side I; see
above Eg. 3.

Total energies of species See Egs.
17 and above 92.

Spatial coordinate coaxial with the
pore. See the first paragraph in
Construction of the Model.
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Greek Symbols

arCr Entrance transition probability on side
see above Eq. 32.
B (k) -
Br Exit transition probability on sid®; see
above Eqg. 32.
v Forward transition probability from state
See Fig. 2 and Eq. 18.
At Random walk time step; see Eq. 18.
AT Factor inAt independent oh, Eq. 20.
5 Backward transition probability from state
i. See Fig. Z and Eq. 19.
s Defined by Eq. 44.
IR Transition probability frombg to interior of
defect interval; see above Eq. 32.
[T Dipole moment reaction coordinate for
speciess. See Fig. 1 and below Eq. 17.
+ua Maximum extent of coordinate interval.
See Fig. 1.
+ud Effective electrical coordinates of boundary
regions. See Fig. 2 and above Eq. 16.
+ud  Maximum extent of interior of defect
interval. See above Eq. 1.
VR Transition probability from interior of
defect interval tdbg; see above Eq. 32.
& e Dimensionless reaction coordinate for
speciess. See Egs. 90 and 91.
®§  See below Eq. 44.
®d  Eq. 2.
oY Eq. 1.
D°, ¢° Potential of mean force for speciesSee
Fig. 1 and above Egs. 1 and 92.
AD®, Ag® Relative potentials of mean force. See Egs.
1 and above Eq. 92.
ws °  Applied electrostatic potential energy. See
Fig. 1 and Eqg. 3 and above Eq. 92.
v, Energy of an elementary charge in potential
V,. See Eq. 37 and above Eq. 92.
INTRODUCTION

This paper describes the construction dfzaneworkmodel
of single proton conduction through the ion channel gram-analogous to rate theory. The diagram is parameterized by a
icidin. A framework model is a kinetic model, designed to single continuous reaction coordinate. Those authors further
incorporate potentials of mean force and diffusion coeffi-showed how Levitt's boundary conditions can be modified
cients computed by molecular dynamics simulations on &0 that diffusers entering the pore are exponentially distrib-
very short time scale, and then use this information touted in time, corresponding to ions entering an empty chan-
calculate conductances and associated observable quantitieal at steady state.

measured on a much longer time scale. The reaction coor- The framework model we construct below is designed to
dinates of molecular dynamics simulations parameterize acorporate the molecular dynamics results of Psraad
simplified configuration space for the system being mod-Roux (1996, 1997, and manuscript in preparation), who
eled. They explicitly parameterize the degrees of freedonshow how proton permeation may be dependent on both the
thought to be most important for describing the system. Bupotential of mean force of an excess proton within the
they average over fast variables; for example, those thgtermeation pore and the potential of mean force of water
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describe intermolecular vibrations. A framework model that
incorporates information from molecular dynamics is in the
same sense a simplified model of configuration space.

Framework models are somewhat similar to rate theory
models (reviewed by Hille, 1992), which can be regarded as
zero dimensional approximations of configuration space.
Rate theory models consist of states (e.g., the empty chan-
nel, an ion occupying one binding site, an ion occupying a
second binding site, etc.) and transitions between them. As
models of configuration space, they naturally incorporate
restrictions on internal degrees of freedom due to the nature
of condensed phase motion on molecular scales. For exam-
ple, one may easily describe channels whose occupancy is
limited to a single ion (e.g., lger, 1973), or multiply
occupied channels (e.g., Hille and Schwarz, 1978). In this
respect, rate theory models of ion permeation enjoy an
important advantage over mean field models such as Gold-
man—Hodgkin—Katz theory (reviewed by Hille, 1992; re-
cently used by Dieckmann et al., 1999) or Poisson-Nernst-
Planck theory (for example, Chen et al., 1997; also
Kurnikova et al., 1999). In these models, a probability
distribution for ion concentration within the pore corre-
sponds to an average over states of 0, 1, 2, 3, . . . ions in the
pore.

Transitions between states of rate theory models are
exponentially distributed in time. When these transitions
describe ions within the pore, the exponential distributions
can be viewed as asymptotic approximations to diffusion
over energy barriers (Cooper et al., 1985, 1988). When the
transitions describe ions from the bulk solution entering the
pore, the exponential distribution corresponds to the as-
sumption that the ion entry rate into an empty channel does
not depend on the time elapsed since the channel last
became empty (McGill and Schumaker, 1996).

However, rate theory models are not entirely satisfactory
because they do not describe ion transport well when the
conditions for the asymptotic approximation for diffusion
over a barrier are not satisfied (Levitt, 1986; Dani and
Levitt, 1990). A way to overcome this difficulty is found in
the work of Levitt (1986), who showed how occupancy
restrictions can be incorporated into diffusion models.
McGill and Schumaker (1996) demonstrated that Levitt's
model can be viewed as a diffusion within a state diagram
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reorientation in the empty pore (that is, without an excessn response to the excess charge will reduce the dipole
proton). In the first section, we construct the model as thenoment (Roux and Karplus, 1993). The cartoons at the
diffusion limit of a random walk. The purpose of this upper right and left hand corners of the diagram depict
construction is to obtain boundary conditions that restrictstates on the proton segment.
pore occupancy to a single excess charge, or a single defectFigure 1B shows the intrinsic potential of mean force,
in water orientation. The diffusion limit of a random walk is ®", computed for the proton reaction coordinate (Psme
very well known in both the physical (Chandrasekhar,and Roux, 1997, and manuscript in preparation). The sim-
1943) and mathematical literature (e.g., Karlin and Taylorylated system included the channel, pore waters, and a few
1981). A good introduction can be found in the first chapterwaters clustered outside each channel entrance. The mem-
of Zauderer (1989). However, our discussion is self-conrane lipid and bulk aqueous solution were not simulated.
tained. The boundary conditions we obtain allow the result-The wordintrinsic (Levitt, 1986) refers to components of
ing model to be solved analytically. the potential apart from that due to the experimentally
The model is then solved for the special case of thermoapp"ed transmembrane potentidlt' has a shallow poten-
dynamic equilibrium, showing how the occupation proba-ija| minimum near the center of the interval, corresponding
bility of the pore is related to the corresponding expressiony the excess charge located near the center of the pore.
from statistical mechanics. We obtain the general solution The pottom segment of Fig. A is parameterized by the
for the current through the framework model and discus%ipde moment of the water molecules in the pore in the

several of its properties. The solution depends on pmemia'ﬁbsence of an excess proton, dengtédFor simplicity, we

of mean force and diffusion coefficients, which can bei sometimes refer to these states as corresponding to an

obtained from molecular dynamics. We further obtain the ; ;
. i o empty poreor adefect occupying the porand we will refer
solution for the channel conductance, with the derivative o Pty p bying poran

) . fto the bottom segment as the defect segment. Valugs of
current with respect to applied voltage evaluated at thermo-

. g ] . range over the intervaHul, ud]. The valuep® = —ud
dynamlc eq“'."b”“”.‘- Fma!ly, we describe _the method of corresponds to water dipole aligned with oxygens pointing
numerically simulating trajectories underlying the frame-

work model. Schumaker et al. (2000) incorporate into theto. the “g.ht andu Ha (_:orresponds to water dipoles
aligned with oxygens pointing to the left.

framework model the results of the molecular dynamics . ’ ) .
y The molecular dynamics simulations suggest that diffu-

simulations of Pori@and Roux (manuscript in preparation). sion of this reaction coordinate is often associated with an
They then make a detailed comparison with experiment. N . . .
entrance-initiateddefect in the hydrogen bond chain, with

water dipoles aligned on either side as suggested by the
CONSTRUCTION OF THE MODEL cartoons below the defect segment. This terminology was
introduced by Phillips et al. (1999), and refers to a defect

permeation through gramicidin based on the results OFhat originates on the side of the channel opposite an exiting
Pome and Roux (manuscript in preparation). The statdlroton. Those authors have suggested that defects may be

diagram consists of two segments. The top segment Corr(g__xit-initiated instead. Formally, the single proton conduc-_
sponds to diffusion of an excess proton through the porel©" Model that we develop here does not depend on this
For simplicity, we will sometimes refer to these states as & ) o )
proton occupying the poreThe excess proton cannot be dFlgure 1C shows the intrinsic p_otentlal qf mean force,
uniquely identified. Poreand Roux used as their reaction ' » cOmputed for the defect reaction coordinate. Note that
coordinate the axial component of the orientation momeny@lues on the abscissa increase from right to left. The
of the pore contents. Schumaker et al. (2000) show how thigotential minima are reflected in the molecular dynamics
may be rescaled to give the axial component of the dipoléimulations by defects frequently found near one of the
moment of the pore contents computed with respect to afhannel entrances, as indicated by the cartoons at the lower
origin at the center of the channel; we denote this quantitfeft and lower right of Fig. JA. These results suggest that a
uH. To illustrate the meaning of”, consider a simple Proton may enter a channel that hain a range of values
example. Letz be the spatial coordinate co-axial with the concentrated near one of the potential minima. This set of
pore, extending over the intervall/2 = z = L/2. If we possible transitions is suggested by the dashed lines be-
ignore pore waters and consider only an occupying protorfween the segments in Fig.AL
then —gL/2 = ' = gll/2. Figure 2A again shows the state diagram corresponding
The proton segment in Fig.A is parameterized by,  to the dynamics of proton permeation, with the set of
with values ranging over the intervatul, ui]. The value  possible transitions between segments denoted by dashed
w™ = —puk corresponds to a proton at the channel entrancéines. These divide the defect segment into 3 regions; com-
on the left (side 1), angh™ = uk corresponds to a proton at pare with Fig. 1C. The interior, corresponding to most of
the channel entrance on the right (side I1). In general, wehe central barrier, occupies the intervat §2, ud]. Sur-
expectu < e,L/2, since the polarization of the pore waters rounding this are boundary region | to the left and boundary

Figure 1A shows a state diagram for the dynamics of proton

hoice.
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: : : : FIGURE 2 State diagrams and random walk8) State diagram of
| 1 ! ! hypothetical proton conduction mechanism; compare with Figy. & u
ug ]Jg —]Jg —p,g and +ud are the extreme values of the reaction coordinate intervals;
compare with Fig. 1B andC. The interior of the defect interval is bounded
by coordinates+ ud. Boundary regions are the subintervalg < |u9 <
Boundary Interior Boundary ua. In the framework model they have effective electrical coordinates

Region | Region Il +ud. The symbolsH andfd, 4, andfd denote the electrical width of
their respective subintervalsB) State diagram of the framework model.

FIGURE 1 Hvoothetical prot ducti hanism. Al ) The boundary regions are lumped into boundary sthfeand b,,. (C)
othetical proton conduction mechanism. All energies are,
yp p 9 Random walk used to construct the framework model. Stdtes. . , H,,

in units ‘of keT for T = 298 K_. (A) State d_iagram for proton cond_uction scale to the proton segment in the diffusion linmit> . Statesd,, . . . ,
mechanism. The top segment is parametgrlzed by the proton reaction coorc&; are ordered right to left and scale to the defect segment. Siatesib,
nate,u". Cartoons at upper left and upper right depict pore contents at the ends. e 1 the discrete boundary stat@), Symmetrized random walk used

of the segment. An excess plfoton may entgr from side |, at the left, qnd pa?ﬁ/ the numerical simulations. The notation for transition probabilities is
through the pore to exit on side Il, at the right. Pore waters are depicted 8Similar to that shown in pan€

angles with oxygen at the vertex. Oxygens tend to align toward the proton. The

bottom segment is parameterized by the defect reaction coordjifaté

defect in the hydrogen bonding structure between waters must pass through the

channel so that waters are realigned to accept another proton from side djegion Il to the right. Region | is the interval of defect
Dashed lines indicate that the transition from the proton-occupied state to thFeaction coordinate from which a proton can enter the

defect state may occur for the defect in a range of locatidB)s P¢oton channel on side I and reaion Il is the corresponding interval
potential of mean forcep" (dot9, and applied potential energy¥;™ (solid). ! ! gl ' p Ing! Vv

The proton PMF shown is that calculated by Penand Roux (1997). On side II. o _ _ _
Potentials are defined in the intervay < u" < uf. (C) Defect PMF ®¢ The gramicidin dimer is physically symmetrical about the
(dots, as calculated by Pors@nd Roux (1997, and manuscript in preparation) center of the pore, and the intrinsic potentials calculated by

and applied potential energy,® (solid). Energy minima at either end of the the molecular dynamics simulations are very nearly sym-

central barrier correspond to a state with a defect near one end of the pore. . . . .S f
Intervals of reaction coordinate between dashed lines on either side of th etrical about the midpointg™ = 0, s € {H, d}. We will

central barrier are the boundary regions. These are lumped together to form t@SSUMe tha_t these potentials are exgctly symmetrical. Fur-
boundary state, andb,, shown in Fig. 2B. ther, there is an unknown energy difference between the
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proton and defect potentials of mean forcg shoyvn i_n Fig. 1, W — pd) — PY(ud) = 2ulE, 9)
B andC. For these reasons, we will sometimes find it useful
to refer to the following relative potentials of mean force, W) — T — pf) = — eV, (10)
ADH(uH) = OH(uM) — DY, (1) Egs. 7 and 9 follow directly from Egs. 5 and 6. To verify
Eq. 8, consider a proton leaving the channgk3t= u on
AP () = DY) — DL, (2)  side II. We assume that the orientation of the water dipoles
where®? = OH(uH) = OH(— ), anddl = @d(ud) = I this state and the _sta;é’ = —ud are the same. Because
DY~ pnd). the electrical potential energy of the proton on side Il is

zero, it then follows tha®"(u}) and ¥9(—ud) are equal.
Similarly, Eqg. 10 is obtained by considering that a proton
Applied Field leaving the channel from side | carries with it a potential

Let V(2) denote the component of the electrostatic potentiaﬁnergyeov" Adding Egs. 7-10 and dividing by gives

_du_e to an applied transmembrgng po.tent}’al,on side I. It 2uf +2pd = elL. (11)
is independent of the charge distribution of the channel and
the pore waters (Roux, 1997)/(2) is assumed to drop This equation relates the physical length of the pore with the
linearly over the length of the channel, corresponding to anaximum values of the proton and defect reaction coordi-
constant electric fiel& = V,/L in the positivez direction. ~ nates. When the valueg} and uj obtained from the
This form for the potential is appropriate for the simple molecular dynamics simulations of Posend Roux (manu-
cylindrical geometry of gramicidin (Jordan et al., 1989; scriptin preparation) are used, we obtain the relsut22.9
Roux, 1999). Some feathering of the potential does occub (Schumaker et al., 2000). This is slightly shorter than the
near the channel entrances in these calculations, but, fgysical length of the pore. The discrepancy may be due to
simplicity, we will use the linear approximation. the confinement of the excess proton in the molecular
When the applied electric field is constant, the resultingdynamics simulations (Schumaker et al., 2000).
contribution to the potential energy of the pore contents Itis convenient to introduce dimensionless electrical dis-
depends only on its net charge and dipole moment (e.gtances, analogous to those encountered in rate theory (e.g.,
Jackson, 1975). This is seen by considering the electricatlille, 1992).
potential energy¥®, as a function of the charge density,

p%(2), associated with speciessand the electrical potential f=2u(el), (12)
V. fl = (uh — udel), (13)
. f " v & @) = (ud - ndieb), (14)
-2 fo=fg=2ud(el), (15)
where the electrical potential is given by the linear drop \yhere the notatiorf® is used in the appendices. These
V(2) = V|2 — zE 4 electrical distances are proportional to widths of subinter-

vals of reaction coordinate as shown in FigAZEgs. 13 and
over the interval—L/2 < z < L/2. For the cases of the 14 refer to the valug. The pointsu® = + ud are shown
proton occupied and empty pores, the applied potentiah Fig. 2A and will be the effective electrical coordinates of
energy can be written in the forms, the boundary regions. Expressing Eq. 11 in terms of the
WH = e\VJ2 — uME, 5) electrical distances, we have
The total energyW, of the pore contents is the sum of the

whereg, is the elementary electronic charge, isthe % ™ : .
% y ge, auid intrinsic and applied potentials,

dipole moment reaction coordinate. Electrical potential en
ergies corresponding %4, = 0.1 V are shown in Fig. 1B WA(S) = D) + el o). (17)
andC.

The potential energy drop around the cycle of the state
diagram in Fig. 2A must be zero. To compute the drop, Random walk limit to a diffusion process

consider the following energy differences: . .
9 9y In this section, we construct the framework model for pro-

WH(— ui) — Tl = 2ulE, (7)  ton diffusion through gramicidin, whose state diagram is
o . g shown in Fig. 2B. The random walk construction that we
() — P — ua) =0, (8)  use obtains the Smoluchowski equations (or their first inte-
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grals, the Nernst—Planck equations), which describe diffuand &7, for a transition frons, to s_,, are given by
sion of the reaction coordinatgs' and u° in the proton- o8 1
occupied or proton-empty channels, respectively. Most s _ - sy _ s
significantly, the construction also obtains the boundary . At (AF%)? exp<2 AW Ws(“'””)’ (18)
conditions that make possible a description of diffusion on s 1
the state diagram, which is a simplified configuration space s _ - sy _ s
for proton conduction through gramicidin. That is, by the o=at (A% exp(z AW WS(M””)’ (19)
s_tructufre Of. th? random Wr?lk’ Wehdescrrllb(; eltr;]er thel d'ffur']whereﬁ = (ksT) "t andAt is the time interval between steps
o e et a3 11 dscrtedme random walk. We sl i 1 o
the pore waters in the absF,)ence of an excgss charge that the leading order af in the expressions fog; and 5;
: . 9 is n% transition probabilities then remain positive and finite
The difference between the state diagram of Fig.ahd . -
. S - in the limit n — . Let

that of Fig. 2A lies in the description of the boundary
regionsud < |u9 < ua. The framework model lumps these At = A/r?, (20)
into discrete boundary statésandb,, in the lumped state o
approximation.These states are constructed so that theivhereAr is independent af. A7 must be chosen so that the
probabilities are equal to the integral of the BoltzmannProbability of leaving a state at each time step is no greater
factor over the boundary regions under conditions of symhan 1. This choice is made explicitly by the algorithm
metrical equilibrium; see Eq. 64 below. This approximationdescribed in Numerical Solution below.
greatly simplifies the mathematical description of entrance The transition probabilities” and 57 lead to the Boltz-
and exit. Instead of a continuum of possible transitions™ann distribution at equilibrium. To see this, ig} be the
between the boundary regions on the defect segment and tREobability that state of the random walk is occupied. At
endpoints of the proton segment, as suggested by Fig. 2 equilibrium, the system is in detgﬂed balance with zero net
we have a pair of transitions between the lumped states flux between any two states. This means
and b, and the proton segment, shown in FigB2The Svs = Q5,5 1)
lumped states surround the interior of the defect segment, i L
which contains the central barrier shown in FigCITrans-  Inserting the definitions for the transition probabilities gives
port of the defect reaction coordinaté' in the interior is  the result expected from the Boltzmann distribution,
described diffusively, by a Nernst—Planck equation. This
lumped-state approximation gives an accurate description of QV/Q 1 = exp BIWA(ui'y 1) — W) ]- (22)
transport over the barrier (Schumaker et al., 2000; Mapes
and Schumaker, submitted) while leading to a model that i%
analytically solvable.

The state diagram of the random walk is shown in Fig.

The transition probabilities may be expanded in the small
arameter 11'to give a useful expression in preparation for
taking the limitn — <. The expansion gives

2 C. It is discrete in both space and time. Stetei € {1, aps 1

2, ...,n}, denotes a proton at coordinate! = pH@im — ¥ = At@ {1 — 5 BAZW ()

1), and stated,, i € {1, 2, ..., n}, denotes a defect at

coordinateu! = ud(2i/n — 1). States, will refer to eitherH, o s .

or d;. The two additional statds andb,, will be taken to the + (A% + O(n )}’ (23)

boundary states of Fig. B by the random walk construc-

tion. There are altogethen2+ 2 states in the random walk. = A S 1 1 ALV
We will define transition probabilities appropriately and ' — t(A§BS)2 +§B (ki)
take the limith — o« to obtain the framework model.
+ (A%S%€ + @(n‘3)} . (24)
Nernst-Planck equation for channel interior where
Let ™ = 2ul and%? = 2ud be the lengths of the reaction = — BWP(udl4 + BN (198 (25)

coordinate intervals over which transport will be described

by a diffusion process. The distance between the statds and primes denote derivatives with respect to the argument.

Fig. 2C is A¥® = ¥%n. Diffusion over the reaction coor- We assuma\® is continuous. The transition probabilities

dinate intervals is described by diffusion coefficiertis, used by McGill and Schumaker (1996) are obtained from

having units of (dipole momertflime; for simplicity, we  Eqgs. 23 and 24 by truncating after the first-order terms.

assume that these are constants, independeunt. of We now construct a limit of the random walk that leads
The probabilities;y;, for a transition from statg tos, ;,  to the Nernst—Planck equation at steady state. Consider the
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statess, 2 =i = n — 1. At steady state, the total probability have positive probability. The limit om is taken in the
flowing into 5 at each time step equals the total probability Boundary conditions subsection, following this one.
flowing out. Equating these flows, we have the expression We begin the formal development by considering proton

for probability balance, transitions into and out of the channel for the random walk
o ¢ C s state diagram shown in Fig.@. At equilibrium, there is no
QY+ 8) = Quadiis + QL 1¥i s (26)  net flow of ions into the channel at either entrance. On side

I, we form the detailed balance relationships betwegn
andb, and betweet, andd,, and use these to elimina@};
the probability that boundary stabeis occupied. Similarly,
we eliminateQ® on side Il. This leads to

Each states, represents a segment of teenterval of
lengthA¥® = £5n. While taking the limitn — oo, we wish
to consider the densityr®, related to the state probabilities

by
H
Q= PAY, where PP=P().  (27) %ﬂ _ “I'SC'V', (32)
n M
Substitute Egs. 23, 24, and 27 into 26, simplify, and use the y
following finite difference expressions for first and second Qv aCyyy
orratia. = (33)
erivatives: Qf Bi M
(WP (uP(?)’ = lim (W' PPy — We_,' PP))/(2A%9), where theCy, are the excess proton concentrations on Bide
n— (28) We use concentrations instead of activities because diffu-

sion coefficients are defined in terms of concentration gra-
PY(us) = lim (P, — 2P} + PP D)I(A%9? ~ (29) dients (Robinson and Stokes, 1965; see also McGill and

n—o Schumaker, 1996).
whereW? = W' (u?) andu® — w®asn — «. Note from Eq. We require that the detailed balance equations remain
25 thate® tends to a continuous function of in this limit.  satisfied in the limitn — <. In this limit, Q}' and Qy
We obtain the Smoluchowski equation, converge to values proportional to the probability density
, P" on the proton segment at the endpointg and + uk,
a-Pe d respectively. SimilarlyQ¢ and QY converge to values pro-
0= 52+7SBWI(MS)PS' (30) p y 4 d le q (dgn g p -
d(p’?  du portional to P9(—pug) and P9(ue), respectively. The equi-

o o ) ) librium densities on the proton and defect segments are
This is a diffusion equation with the second term corre-gptained by solving Eq. 31 wit® = 0, giving the Boltz-

sponding to a systematic force on the diffuser whose magmann distribution,
nitude is proportional to the gradient of the potential energy

W' Integrating once, we obtain the Nernst—Planck equation, P(ud) = Ko PV, (34)
S where theK® are constants. Take the limit of Egs. 32 and 33
7= _gbs<duS + BW'(MS)PS) : (31)  asn — o, using Egs. 27 and 34. We obtain

where J* is the flux of speciess. The first term on the lim aCiy

right-hand side is Fick’s law, and the second term corre- n—- Bi "
sponds to the systematic force.

Note thatJ® is positive when it is in the direction of lim -
increasingu®. That means that the flux of protons is positive  n— Bu m
when directed from left to right in Fig. &, whereas the flux .o the left-hand side of these equations, we see that the
of defects is positive when directed from right to left. In .qnstantkH/K® must be proportional t&, in the first of
both cases, positive flux corresponds to progress in thg age equations and 16, in the second. This may be

clockwise direction around the diagram. understood by considering the Nernst equation,

C|| = C|eB\PI, (37)

KH
= ea OEBIW(d) — W= )], (35)

a,Cy

KH
= e BB — i) — WG], (36)

Entrance and exit transition probabilities

. . _ ) where¥, = eV|. We will set
In this subsection, we obtain expressions for the entrance

and exit transition probabilities that connect the following K" aC v ac,

states in Fig. Z: H,, b;, andd, on side | of the pore an,, K= aC, t= ac,’ (38)

b,, andd, on side Il. In particular, these probabilities are

scaled withn to obtain, in the limitn — o, the state diagram where the dimensionless quanti§y,and the concentration,

of Fig. 2B. In this figure, the interior of the defect segment C,, have been introduced. We assume these do not depend
supports a probability density and the endpoibtandb,,, onC,, C,, orV,. Below,ais determined by the requirement
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Framework Model for H* Conduction

that occupation probabilities of the framework model agredinally introducing the definition off. The result is
with statistical mechanics in the case of a symmetrical

equilibrium (v, = 0). We discus<, further in Equilibrium
Probability for Proton Occupation.

Insert the second expression of Eq. 38 into the right-hand

side of Eq. 35 and the third expression of Eqg. 38 into the
right-hand side of Eq. 36. The resulting detailed balance
relationships are satisfied by the following decomposition

im e LG XA — W~ ) + W),
(39)
lim W — AexpBIWH(ud) — W(id)]),  (40)
IICII 1 CII
im ““;3” = 5 o eXFBIWA — ) ~ WD), (4D)
lim W = AexpBIW/( — pd) — WA( — ud)). (42)

In making this decomposition, the boundary poih{sand
b, are formally assigned defect reaction coordinatess.

The additional term¥, in the exponent on the right-hand
side of Eq. 39 represents the electrostatic energy of an ion

entering on side |. The distribution of factors fon the

19
NG 1G g
LILTJO 8 ~ac. exp(Bfa¥, + £, (45)
lim —- = fop 46
nlinoc - aexpBfg¥)), (46)
im " LG e tow ), @)
. Bi aC. BL=TAY + 2,
. 4l d
lim — = aexp — Bfg¥)). (48)

n—» 1}

The following definitions are consistent with these con-
straints:

o = a = At(t)ta 'C; e, (49)
B, = At(t) nexp( — BfIW,), (50)
By = At(t) nexp(pfiw, ), (51)

u = At(tY) naexp(BfIW, ), (52)
v = At(t% nfaexp( — BFSW), (53)
m = my = At T, (54)

where the access timd?, is the second free parameter

left-hand side of Eqgs. 39—-42 reflects the fact that the rategptimized to it the Eisenman et al. data set. We also

of transitions from the proton and defect segments into th

boundary stateb, andb,, must scale with one power of

éntroduce the proton and defect diffusion times

t = (L9295, (55)

higher than the rates of transitions from the boundary states o
back to the segments. This is because the boundary sta¢éeres € {H, d}. Eqs. 49-54 complete our description of

probabilitiesQP andQf remain positive in the limih — o
while the states, ands,, s € {H, d}, scale to the endpoints
of probability densities.

We next introduce the new quantities

a= aexp(p[®¢ — ), (43)

{=dL - dF — ksTIn CyC., (44)
where®d = &4(uld) = dY—pud) andC. is the unit con-
centration, e.g.C. = 1 M (the argument of the logarithm
must be dimensionless). In the expression fothe term

the discrete-time, discrete-state random walk whose state
diagram is shown in Fig. €. The time step isAt. The
transition probabilitiesxgCg, Br: Vg, @andng, R € {I, 11},

are all dimensionless. The rates of transitions into the proton
segment, equal taxgCg/At, are independent oh. The
scaling of theBg with n is then determined by the con-
straints given in Egs. 45 and 47.

Our scaling of the entrance rate as independent of
means that proton entrances are exponentially distributed in
time when the channel is accessible to protons. For exam-
ple, when the system is near boundary statef Fig. 2B,
one waits an exponentially distributed length of the accu-

®d — P4 depends on the absolute energy difference bemulated time spent in stat before a proton enters the
tween the proton and defect potentials of mean force. Thishannel. This is very similar to rate theories, where transi-
energy difference was not determined by the moleculations between the discrete states of the system are exponen-
dynamics. As a consequendgewill be treated as an adjust- tially distributed in time and, in particular, one waits an
able parameter in our analysis of the Eisenman et al. (198@xponentially distributed time in the empty state before an
conductance data using the single proton model (Schumaké@n enters the channel. The exponential distribution may be

et al., 2000).

considered as arising from the assumption that the ion entry

We now simplify the exponents of Eqs. 39—-42 by replac-rate into an empty channel does not depend on the time

ing & with a, decomposindV according to Eq. 17, express-

elapsed since the channel last became empty (McGill and

ing ¥ in terms of ¥ using Eqgs. 8 and 10, using the Schumaker, 1996). This will often be a good approximation
definitions for electrical distances, Egs. 13 and 14, andor the entry of distinct ions into the channel, although it
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20 Schumaker et al.

does not capture the fractal character of the trajectories alefinition of J¥, Eq. 31, to obtain (see Appendix A)
individual ions.
The electrical distancé$, appearing in Egs. 45 and 47 is P"( — u)$" exp( — Bf4W¥,) = —J'* + QPatefc,

assigned to the8g. This means that the entrance rate is (57)

independent of¥,. Physically, this choice assumes that

entrance is limited by diffusion up to the channel mouth,wherec, = C,/C. is the dimensionless concentration.

and not by a local barrier at the channel entrance. Diffusion T0 complete the analysis of side I, balance flux in and out

up to the channel mouth should not be very sensitive to a®f stated,

applied electric field, which would not penetrate far into an

electrically conducting solution. In contrast, an applied field QA& + 1) = Qmy + QY-1¥h-1 (58)

might well speed transitions over a local barrier near the

membrane surface. The sublinear IV curves observed in thilake the appropriate substitutions, rearrange terms and

proton conduction experiments of Eisenman et al. (1980)take the limitn — o to obtain

Decker and Levitt (1988), and Akeson and Deamer (1991)

at low proton concentrations, where conductance is likely to Q= P ud)*aexp(pfz V). (59)

be limited by entrance, are consistent with the idea that the

entrance rate iS not Strong|y dependent\hn Even in the S|m||a.r|y, on Side ”, ﬂUX in and out Of StatHn iS balanced

absence of a local entrance barrier, however, our assignmel obtain

of f4 neglects interfacial polarization (Andersen, 1983),

which becomes significant at low ionic strength and largeP" (kA" exp(BFaW) = It + Qae¥cy , (60)

applied potentials. ) . .

The transition probabilitiesys, are scaled witm in the ~ and balancing flux in and out of the stade gives

same way ag’ ands’ (see Egs. 23 and 24, nadef® « 1/n). . oo s

These latter transition probabilities lead to a diffusion pro- i = P — po)Zlaexpl — BiW). (61)

cess in the limitn — . The scaling of thevg is thus o b b

consistent with modeling motion of defects from the region W€ can further eliminat€y’ and Q; from Egs. 57 and

of the central barrier to the boundary regions as diffusive 29—61 to yield

The scaling of theng with n is then determined by the y ot o

constraints given in Eqs. 46 and 48. The assignment of thB"( — ma)L"exp( — BRW)

electrical distanced,g, to the transition probabilitiesyg, _ ar  d\cpd d

instead of theng, is arbitrary. But we do not expect these = I PpoFexppisy + 0)a, (62)

Lip:(rjnggrr::i;c.ms to be rate limiting, so this choice may nOtPH(M,':)ifHeXF(Bfi‘E)
= I+ P — pd)FexplB(— FE¥ + O)cy, (63)

Boundary conditions Note that these expressions are dimensionless. The density,

) . . P®, has units of inverse reaction coordinate, and the figx,
In this subsection, we start from expressions for a steadyra5 units of inverse time.

state flux through the entrances | and Il of the pore as
described by the random walk in Fig.Q Inserting the
definitions for the transition probabilities that we have pre-
viously obtained, and taking the limit — o, we obtain
boundary conditions for the framework model of FigB2  The dimensionless quantifywas originally introduced in
The calculations are straightforward, but somewhat cumgEq. 38 and then expressed in termsaf Eq. 43. To obtain
bersome. Use of the dimensionless variables described @n expression foa, we set the probability of the boundary
Appendix A shortens the intermediate expressions. stated, andb,, equal to the integral of the Boltzmann factor

On side |, balance probability flux in and out of the stateover the respective boundary regions under the condition of
H, of Fig. 2C. We have symmetrical equilibriumC, = C,, andW¥, = 0. For example

Expression for a

QT(V? +B)= lealcl + Q';SE', (56) I
Q= J PY () dus. (64)
Substitute in expressions for transition probabilities, Egs. pd
23, 24, 49, and 50, as well as the relationship between state
probability and density, Eq. 27. Divide by a common factor, At equilibrium, P%(u%) is given by Eq. 34. Substitute in for
rearrange terms, take the lintit— o, and, finally, use the QP using Eq. 59, with¥, = 0, and then on both sides for
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Framework Model for H* Conduction 21

PYu%) using Eq. 34. Solving for, we obtain i
) Qkw = J PH(uH) du”. (68)
Ha w
a= () j exp( — BADY(u?)) dut #a
1e We also have the normalization condition
- o
= (@) expl — BADYuY) du’.  (65) 1= f P dp”
—ud .
The value ofa is given as an integral over the relative ue
energy,A®(u%) = ®(u) — d(ud), and can be evaluated +j Puddud + QP + QY. (69)
after a choice is made fqud. Eq. 65 completes the con- ul

struction of the single proton model using the lumped state

approximation. We next show that the model is consistent We construct an expression comparable to that from

with statistical mechanics under the condition of symmet-statistical mechanics by dividing the right-hand side of Eq.

rical equilibrium. 68 by the right-hand side of Eq. 69. Form the ratio and
simplify (see Appendix B) to obtain

EQUILIBRIUM PROBABILITY FOR Qhw
PROTON OCCUPATION

, o _ , , ¥ expl — BWH(p™)) dp™
Insight may be gained into the physical assumptions that lie = FC, '
behind the framework model by comparing the expression [ expl — BWH(u™) dut' + gac P — BVl
for the equilibrium probability of proton occupation of the " !
pore with the analogous expression from statistical mechanics. (70)

where
Statistical mechanics

d
For the purpose of constructing a partition function, the totalyy — fﬂc expl — BWA(d) dud
energy of the empty pore includes the energy of a reference o

proton in solution far away from the channel. Assuming that
the reference state is on side |, and approximating activities ud
by concentrations, the energy of the reference proton may  + exp( — B¥9(ug)) f exp( — BDU(uY) dud
be written in the form

e

He
V\,r_lef = kBT In C|/CH + ‘I’| y (66) d

+exp( — YU — up)) j expl( — BOY(u))

d
—

—

whereCy is a constant with units of concentration. Accord-
ing to statistical mechanics, the probability of proton occu-

pation is then equal to (71)
e expl = BWH(p™)) du To make the correspondence betwe@f, and Q5
Q= f,ia . expl — BWH(™)) du” equate the coefficient of the integral in the second term of

" the denominator of Eq. 67 with the coefficientdfin Eq.
+ (Ci/Chexpl — B\P')MLR exp( — BW(n) d(’g?) 70. This leads to | |

— H d
Because the intervals{u}, uh] and [—ud, ud] only in- Chi = (LTE)Co. (72)
clude the pore interior, this expression neglects all interaCyyith this identification, the equilibrium expressions for
tions between the channel and ions in the aqueous solutloQgM andQY,, are identical when?, = 0. Under the influ-

outside. ence of an applied potential, the framework model makes
the approximation

Framework model uﬁi
The equilibrium probability for proton occupation in the j expl( — BWA(u))dp? = sd. (73)
framework model is —u
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22 Schumaker et al.

The expression ford, Eq. 71, shows that the boundary F2=F3 + Fic + Fig, (77)
regions of the framework model act electrically like points.
Cois a free parameter in the framework model theory thatyhere theF? are coefficients given in Appendix C.
we have developed thus far, and is combined with the Note that the coefficienE? in the denominator ofi!
unknown free energy differenc@? — @, between the includes a term proportional to the produgt,. As ¢, and
defect and proton potentials of mean force in the expressiog, increase, this term, in principle, gives an eventually
for { given by Eq. 44. Our analysis of the data of Eisenmandecreasing flux,J™. Single-ion theories that describe the
et al. (Schumaker et al., 2000) only requires a valuelfor empty channel by a single indivisible state give rise to
However, an expression fdC, can be obtained with the expressions fod" whose forms are similar to Eq. 74, but
help of the statistical mechanical theory of selective ionwithout such quadratic terms in the denominator. This is
channels developed by Roux (1999). This git®sas the  true for single-ion rate theories (for exampléuiger, 1973)
inverse of an effective pore volume accessible to the excesgnd single-ion diffusion theories (Levitt, 1986; McGill and
proton (Schumaker, manuscript in preparation). This resul§chumaker, 1996).
may be useful for interpreting temperature dependence stud- The origin of the quadratic term is reminiscent of the
ies of proton conduction. “clogging” mechanism described by Schumaker and Mac-
Kinnon (1990). When botle, andc,, are sufficiently high,

the system becomes trapped in the proton segment of the
GENERAL SOLUTION OF FRAMEWORK MODEL state diagram of Fig. B. For example, an ion that exits on

In Appendix C, we find the general solution for the frame- Side Il will leave the system in stats;, but an ion entry
work model proton current]”. The method of solution from §|de Il is likely to occur before t_he defect reaction
depends on solving a linear set of equations, and, in thi§oordinate can cross the central barrier to stateThis
respect, is similar to that of rate theory. See, for example?ffeCt reduces thS rate of cy.clmg around the diagram and so
Lauger (1973) or Hille and Schwarz (1978). reduces the flud™ at very highc,c;,.

A linear system of eight equations and eight unknowns is
obtained. Two of the equations arise by integrating the
Nernst—Planck equations, Eq. 31, fere {H,d}. Four = PROPERTIES OF THE GENERAL SOLUTION
equations come from the boundary conditions, namely Egs.
57 and 59—61. The seventh equation is the normalizatioFurrent symmetry
condition, Eq. 69, and the eighth equation is simply theThe gramicidin dimer is symmetrical about its cenzes; 0,
equality of the proton and defect fluxed! = J, which 4 property reflected in the symmetry of the potentials of
holds at steady state. The eight corresponding unknowns affiean force calculated by Pomand Roux (manuscript in
the densities at either end of the proton and defect diffusiopreparation) ®S(u®) = ®(— ). As a consequence of this
intervals, namelP" (), PH(—uR), P(ud), andP(—pgd),  and the symmetry properties of the applied potential

the probabilitiesQP andQ}} of the defect boundary regions, about the channel center, the framework model curdent
and the fluxes)™ andJ®. Three variables are quickly elim- Eq. 74, should have the symmetry

inated to give a system of five equations in Appendix C,
which is then solved. Jc,, ¢, — W) = —Jd(cy, C,, V) (78)

The solution for the current has the form
BV for all concentrationg, andc,, as well as electrical poten-

Ge G 74 tial energiesb. Further, the symmetry should hold while the

R+ R+ R (74) characteristic timest® ied i
est’, are varied independently of each

other. Write the coefficient§; in the denominator ofl,
iven by Eqs. 75-77, as functions of the applied potential:
? = F5(¥,). Then the current symmetry holds if and only
if the coefficients have the properties,

J(e, ¢y, W) =

where the dimensionless variablgsand ¢, give the nu-
merical value of the bulk concentrations on either side of th%
channel in standard units (e.g., moles), @&, = eVi/kgT
is proportional to the applied electrical potentid, t™ and
t? are the characteristic times for proton and defect diffusion
defined by Eq. 55, and the access titigis a characteristic
time for entrance and exit, processes that were not repre- < g
sented in the molecular dynamics simulations. The coeffi- F3(=¥) = e P'F3(W), (80)
cients of the characteristic times have the form

Fa(—W) = e PYRY(W), (79)

F3(—W) = e PYF5(D), (81)
F"=Ff + Fl'c + Fe,, (75)
y . . g In Appendix D, we demonstrate that these coefficient sym-
F = Fic + Fze + Fecy (76)  metries hold.
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Saturating current at high voltage ud

d__ dy—1 _ d
At very high applied potentials, it is reasonable to expect 9 = (£9 f dexp( PADY () dps. (88)
that the proton current through gramicidin should saturate at “Ha
a finite value. This is because one would not expect the The first two terms in the expression f6y Eq. 44, give

applied potential to reach far into the aqueous solutions O e free energy difference between the proton and defect
either side of the membrane, because these solutions Sﬁ%tentials of mean force. The denominator of Eq. 84 con-
electrical conductors. This reasoning is consistent with | tains terms proportional to bo## ande #. Consequently,

measurements through gramicidin by Akeson and Deamehe conductance decreases if the free energy difference

(1991). However, it ignores the effects of interfacial polar—bet een the profiles is either sufficiently large and positive
ization, which were measured by Andersen (1983) for the W proies 1s &l utticiently larg POSIV

duci ¢ | diff t cali h h cidi or sufficiently large and negative.
conduction of several difterent cations through gramicidin- 6 conquctance also decreases if AB° have shapes
at low ionic strength.

ith high maxima (theng, are large) or deep minima (t
The framework model is constructed to give the saturatwI 9 xima (thetg ge) p minima (tfug

ina behavior- th N ‘ ; ind are large). Conductance is maximum when th@® are
Ing behavior, the entrance rate cons i, are in e relatively flat and the magnitude of the energy differerige,
pendent of the applied potenti}, see Eq. 49. In Appendix

E the limit Ci lculated o b is not too large. Finally, notice that the denominatoiGyf
» (N€ imiting current 1s caiculated to be is quaderatic inc, reflecting the quadratic dependence of the
lim J = ¢ (t%) e (82) denominator of), Eg. 74, on concentration.

W —>0

This regult is easily understood in view of the expression forNUMERICAL SOLUTION

arCr given by Eq. 49. The saturating current is simply the

entrance rate: the transition probability divided by the timeNumerical simulations of random walks are used by Schu-

stepAt. maker et al. (2000) to qualitatively demonstrate the nature
of the trajectories underlying the single proton conduction
model. They may also represent an interesting alternative

Equilibrium conductance method for generating Brownian dynamics simulations (for
The conductance at Nernst equilibrium is defined by example, Jakobsson and Chiu, 1987). In this section, we
describe how to construct simulations corresponding to the
di dJ" analytical theory.
Geq = av, . gy, (83) The random walk shown in Fig. @ is convenient for
q

construction of the framework model, but less suitable for
wherel = e,J" is the current through the channel. Appendix numerical simulation. Instead, the numerical simulation
F shows how this quantity is computed from Eq. 74 and thatakes place on the symmetrized random walk shown in Fig.
the denominator can be written in a surprisingly compac® D. To account for the additional state, we replace> n +
form. The result simplifies even further under the condition1 in the formula for the time step, Eqg. 20, and in the

of a symmetrical equilibrium, witlt, = ¢, = c and¥, =  formulas for the entrance and exit transition probabilities,
0. Denoting byG, the conductance evaluated at symmetri-Eqgs. 49-54. These formulas then define the simulated ran-
cal equilibrium, we find dom walk.
According to Eq. 27, each random walk gridpoint corre-
G. = ﬁ c (84) sponds to a reaction coordinate subinterval of widfh®.
O ke TL(t"NY + 2t)e F + thic](gf + ghePc)’ This is true even for the symmetrized endpoints 0 and
i = n corresponding to coordinates’ = +ul. The sym-
where metrized random walk should then most appropriately be
y identified with diffusion on the intervat-(1 + 1/n)ud. For
Pl this reason, we compare analytical results using the value
H _ (cpHy-1 H )
ho = (&£7) Hexp(BA(I) (), (85) for a given by Eqg. 65 with numerical results using the
“Ha modified value
d dy—1 & d M
Mo= () | expBa®pu)du, - (86) 8 = (49 f exp(~BADY () dud.  (89)
THe @+ 2npd
H - e 9y In the simulations, half of the probabilities associated with
% = (£7) expl — BAD"(w))dp, (87)  the endpoints = 0 andi = n are added to the boundary
—uf state probabilitie®Q® and Qf), respectively. With our defi-
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24 Schumaker et al.

nition of the symmetrized random walk, useaf,, and this

treatment of probability is necessary for the good agreement  ¢.04
between the simulated and exact probability densities de-
scribed below. However, this method of simulating the 0.03
boundary conditions has an ad hoc character and can un-
doubtedly be improved. G 002

The simulated random walk is discrete in both time and

space, conforming to the theoretical discussion. Because of
the large difference between the proton and defect diffusion
coefficients obtained from molecular dynamics (Schumaker
et al., 2000), transition rates on the proton segment of the

75 -5 .25 0 25 5 75

state diagram are much higher than those on the defect
i ical effici - He D)

segment. To retain numerical efficiency, different values of H
AT are used to describe proton and defect diffusion. For the o
same reason, dwell times in the stabesndb,, are calcu- B
lated from geometric distributions directly, without taking 015
time steps, similar to the method used to calculate exit from  0.125
the empty state of the single ion model (McGill and Schu- 01
maker, 1996). '

Proton and defect probability densities are shown in Fig. §_0.075
3, AandB. These runs use the potentials of mean force and 0.05
diffusion coefficients obtained from the molecular dynam-
ics simulations of Pongand Roux (manuscript in prepa- 0.025
ration), and shown in Fig. 1B and C. Densities shown in 0
Fig. 3 represent the average of four simulations of about -2 -1 0 1 2
2.1 X 10° time steps each. Each of the four simulations was LlH (e D)

given a different seed to initialize the random number
generatorran2, described by Press et al., 1992) but all otherriGuRE 3  Exact and simulated framework model probability densities.
parameter values were kept the same. In making thesSene analytical solution of the framework model is given by the solid
calculations, the intrinsic potentials are interpolated linearlycurves, and results of numerical simulations are given by the dots. Proton
between grid points where potentials of mean force Werémd defect _trajectori_es were simulate_d‘ on the symm_etrized random‘ walk
. . . shown in Fig. 2D with n = 57. Densities were obtained by averaging
calculated by m0|eCUIajr, dynam_l(_:s' The pleceWIS? Smoqtlfbgether the results of four runs of about X110° time steps eaclC, =
character of the probability densities is due to the piece-wise, = 0.01 M andv, = 100 mV. Parameter values agdl = 3.35, y2 =
linearity of the interpolated potentials. 8.1,x8 = 6.8, andyd = 5.7 with = 0.4348 and scaling. = ax® (see
The simulated and exact proton densities are very similafchumaker et al., 2000). In additiohs= 3.60 and® = 23.5 ns. ) Density
in both shape and amplitude. The integrated probability of™ the proton segment for ] < u" < w. (B) Density on the defect
the simulated proton density is only about 0.5% greater thaﬁfgmem for- g = ' < pic. The analytical solutions for the probabilties
. . A the boundary regions on either side of the defect intervaQire 0.440
that of the exact solution for the proton density. This excel-andQ? = 0.188. Numerically estimated values of these probabilities are
lent agreement is in part fortuitous, because only 896 proP = 0.438 andQj; = 0.184.
tons entered and left the pore in the simulations that pro-
duced Fig. 3. If we estimate the uncertainty in this number
as 896/2, the corresponding variation in the probability for mean first passage times across the defect potential barrier
proton occupation is about 3.3%. In a second simulationas a function of applied potential, following the protocol
made using a different parameter set, the difference betweeassed to construct Fig. 5 in Schumaker et al. (2000). Mean
the simulated and exact proton occupation probability wagirst passage times obtained by the simulation method are in
slightly larger than the estimate based on the square root @xcellent agreement with those results (unpublished).
the number of protons that enter the pore (results not
shown). For the simulation used to make Fig. 3, the defec
density and boundary state probabilit@dandQf are also bISCUSSION
in excellent agreement with the exact solution. We have constructed a framework model for single proton
Fig. 4 shows the current through the framework model agonductance through gramicidin, a model designed to in-
a function of applied voltage. The exact solution of thecorporate the results of molecular dynamics simulations
framework model is compared with simulations at 50, 100,(Pome and Roux, 1996, 1997, and manuscript in prepara-
and 200 mV applied potential. Agreement is very good. Wetion) and used it to predict conductance properties. Such
have also used the numerical simulation method to calculatsodels are currently necessary to bridge the gap in time
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Framework Model for H* Conduction 25
3.5 approximations to diffusion over energy barriers (Cooper et
al., 1985, 1988). The defect potential of mean force has the
form of a high central barrier separating potential minima.
The potentials and diffusion coefficients, obtained from
molecular dynamics, completely determine the description
of transport in the pore interior. By incorporating this in-
formation from the simulation, the framework model can
describe this portion of the permeation process without
adjustable parameters.
However, the simulations of Pomeand Roux do not
0.05 04 015 0.2 address the processes of ion entrance and exit. Here, it is
necessary for the framework model to introduce some de-
Voltage (V) scription. We take a very simple and phenomenological
approach. Proton entrances on a given side are assumed to
FIGURE 4 Exact and simulated framework model proton current. Thepa exponentially distributed in time when the channel is

fi h i i . . .
igure shows current as a function of applied voltage under the same o oqgiple to occupation. The entrance process is then de-
conditions as in Fig. 3. The analytical solution of the framework model, Eq.

74, is shown by the solid curve. Error bars show twice the standardscribed by a single adjustable parameter, the mean time
deviation of the mean for the four runs described in the legend of Fig. 30efore a proton enters an empty channel. This is the same
description of ion entrance as is implicit in rate theories. The
exit process must then satisfy detailed balance with entrance
scales between molecular dynamics simulations and ele@t equilibrium. It also involves a single adjustable parame-
trophysiology. The framework model consists of a coupledter, which would be known if the absolute free energy
pair of Nernst—Planck equations describing the diffusion ofdifference between the proton and defect potentials of mean
the axial component of the pore dipole moment in theforce were known. Finally, there is a third adjustable pa-
presence or in the absence of an excess proton in the chaiameter, which is also concerned with the ion entrance and
of water molecules occupying the gramicidin pore. In theexit process. This is due to the fact that the state of the
absence of an excess proton, the dipole moment parametavaters in the empty channel is not precisely known just as
izes the reorientation of the pore waters from a configuraan excess proton leaves or enters; instead, the dipole mo-
tion in which the axial component of their dipole momentsment of the empty channel may be in one of the boundary
point in the —z direction to a configuration in which the regions of Fig. 1C. The width of these regions is the third
axial component points in thez direction. The simulations parameter. In practice, a reasonable value for this parameter
suggest that water reorientation is mediated by a defect inan be chosen, encompassing the potential minima on either
the hydrogen bond structure that passes through the watside of the central barrier (Schumaker, et al. 2000). Only the
chain. Therefore, we also describe the empty or neutralwo parameters controlling the entrance and exit rates need
channel as one in which a defect occupies the pore. be optimized to make a comparison with experiment.

The Nernst—-Planck equations and their boundary condi- The conduction mechanism of our framework model is
tions are obtained as the limit of a sequence of randoneasily grasped by means of a state diagram, which is anal-
walks. By the random walk construction, the boundaryogous to those that describe rate theory permeation models,
conditions restrict the model to describing a single diffusingsee Fig. B. As a proton passes through the channel, say
proton or a single diffusing defect. In other words, we from side | to side Il, the proton reaction coordinate follows
construct a diffusion process on a simplified configurationits progress on the upper segment of the diagram from left
space for proton conduction through gramicidin, portrayedo right. The proton exits the channel, leaving water mole-
by the state diagram shown in Fig.B2 This is much cules partially aligned. This corresponds to the lumped state
different from Goldman—-Hodgkin—Katz theory (Hille, b,. The dipole moment of the water chain must then turn to
1992) or Poisson Nernst-Planck theories (for examplebecome receptive to another proton entering on side I. The
Chen, 1997), which are mean field theories. In these lattemolecular dynamics simulations (Posmand Roux, 1997,
cases, a solution corresponds to a superposition of margnd manuscript in preparation) suggest that turning is me-
different occupancy states of ions in the pore. diated by a defect in the hydrogen bond structure that passes

From the simulations, we obtain the potential of meanthrough the water chain. This defect is followed by the
force for proton and defect diffusion through the pore asreaction coordinate that parameterizes the lower segment of
well as estimates of the proton and defect diffusion coeffi-the state diagram, from right to left. When the reaction
cients (Schumaker et al., 2000). The proton potential otoordinate is in the lumped staltg the system is ready to
mean force, shown in Fig. B, has the form of a shallow accept another free proton from side I.
potential well. Transport across such a profile is not de- The most problematic feature of this model may be the
scribed well by rate theories, which are based on asymptotitreatment of the boundary conditions. An important com-

Current (pA)

o
o
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ponent of the configuration space is missing, which was F=—1t"Yp"(&) + w' (&)p(H)]. (98)

pointed out following the statistical mechanical expression o _ o _

for the probability of proton occupation, Eq. 67. Therefore, SuPstitution of this expression into Eq. 97 gives Eq. 57.

there is no description of the interaction of the channel with

excess protons outside, but close to, the entrance. For eAPPENDIX B: EQUILIBRIUM PROBABILITY FOR

ample, itis plausible that water dipoles are partially orientedPROTON OCCUPATION

by nearby protons before they enter the channel. In contrasth_ _ , _

our model implicitly assumes that the orientation of channeE 's appendix shows how Eq. 70 is obtained from Egs. 68 and 69. To
.. . gin, consider the Boltzmann distribution of the densifyat equilib

waters I1s mdependent of excess protons on the outside, arr‘@m, Eq. 34 withs = H. From this equation, obtain an expression for

that proton entrance only becomes possible when the water!(u") in terms ofP™(— ) by eliminatingk™. Integrate the result to find

dipoles happen to be favorably aligned. To test this assump- )

tion and possibly construct a more realistic model, it would [** _, H

be very useful to have molecular dynamics simulations of P(u") du

the ion entrance process. ~pa
Ha
APPENDIX A: DIMENSIONLESS VARIABLES AND = PH(— pa)exp(BWH(— ua)) f exp(—BWH(u")) du".
BOUNDARY CONDITIONS — !
Results in the body of this paper are given in dimensional form, but many (99)

calculations become less cumbersome when dimensionless variables are
used. Reaction coordinate intervals over which proton or defect diffusiorNext, consider the second integral in Eq. 69. Use the Boltzmann distribu-

is described are conveniently rescaled to [0, 1]. Let tion at equilibrium to solve foP%(u) in terms ofPY(ul) and integrate to
obtain
&= (1+ pui2, (90)
d
Hc
&= 1+ pipdi2. (91) P du

d
Then the random walk of Fig. @ takes place on the grid poiné& = i/n, “He
{i=1,2,...,nh y

Dimensionless energies are define = BDY (), Ad¥ = c

BADX(d), (&) = BDPH(®), andw (&) = B\(/\g;zus). IEor Eh;)energ(yg?!ue to = Pd(Mdc)eXF(BVVd(MdC)) J eXF(_BVVd(P«d)) de- (100)
the applied potential, write};, = BW,. The dimensionless probability
density isp(&) = P, Electrical potential energies, corresponding to
Egs. 5 and 6, can then be written: We now considerQP. Start with Eq. 59 and substitute the middle

expression foa from Eq. 65. Transform the exponent using, from Egs. 6

YY) = /2 — 128" — Dy/2, (92)  and 14,
PA(E) = —FL28 — D2, (93) fow, = Wi(ud) — P(up), (101)

For the derivation of the boundary conditions, it is helpful to use the to obtain
compact notationy? = w¥&) andwy’ = w*(&), where the prime denotes b 4 d d 4 d
a derivative with respect to the argument. The transition probabilities canQI =P (MC)quV\F(P”C)}eXF{_B\P (MB))
then be written as

d
—pe

fAexm—B®%u%>mﬂ. (102)

d
Fc

W€
S= At A1 - —~+ 5+ 0(n? 94
Vi ( ) (Zn) n2 ( ) ’ ( )
we' & Finally, consider the probabilit appearing in Eq. 69. Obtain a new
Sis = At(ts)*an 1+ _ + % + @(n,3) , (95) expression by considering Eq. 61. The teR¥{—ud) can be written in
(2n) n terms of P%(ul) by using the Boltzmann distribution f&, Eq. 34, and
eliminating K%, Substitute the last expression farfrom Eq. 65. The

wheret®is given by Eq. 55 and exponent can be simplified using

€ = —W' (&4 + w(&)78. (96) fO0, = —Wd(—pud) + W(—pl) (103)
Insert Egs. 94, 95, 49, and 50 into Eq. 56 andnlet> o to obtain yielding
0= (t){p"(0) + W (0)p"(0)] b = P pd)expW(uld))exp(— BPH(— pul))
— (M0 ™ + (1) 'Qra e . (97) u
This equation can be simplified by noting that the Nernst—Planck equation, X J . exr(—Bd)d(Md)) de' (104)
Eq. 31, can be written in terms of dimensionless variables as THa
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Eqg. 69 and substitute the results of Egs. 99, 100, 102, and 104 to obtain hs(&) =

We now divide the right-hand side of Eq. 68 by the right-hand side of ¢
j explAdi(n) — (21 — D)yu/2) dn, (114)

0

MRH —B/WH d
2, exp(— BW(w))du (105)

QEW = N ’
fﬁlg exp(—BW(w))du + A% where we usé’ = f& and denoté® = h%(1). Then evaluate Eq. 113 &=
1 and divide by a common factor to get

—Fthe = p(Lexp(—F/2) — p(0)expfe/2).  (115)

whered is given by Eq. 71 and

B = PYpQP(— pid) expBIW (1) — WH(—p)]).
(106)  This s the form of the integrated Nernst—Planck equation to be used for the
general solution.
% can be transformed by substituting from Eq. 62 evaluated at equilibrium.  The eighth equation is obtained from the normalization condition,
Further, use the definitions associated with the potendéisndW* to find which we write in terms of dimensionless variables

P, (7 + )P,

dy _ M _gd @i v g 1 !
WD) = W= i) = 2 = PR - 2 J pH(9)d + f POde+ QP+ Q=1 (116)
(107) 0 0
leading to We proceed to express the integrals in termd afdp3(0). Solve Eq. 113

B = (§£H/§£d)(C./C|)eX[XB[CDg _ q): —w, - 7). (108) for p%(&) and integrate to get

L ) ) ) 1 1 3
Simplifying the exponent using Eq. 44 finally yields Eq. 70. j ps(g)dg _ _Jstsj eXFX—WS(g)) f eX[XWS(”q))d”qdf

0 0 0

APPENDIX C: GENERAL SOLUTION OF THE
FRAMEWORK MODEL

In this section, we find the general solution for the framework model
proton current. We will obtain a system of eight equations for eight
unknowns. Calculations are somewhat less cumbersome when made in (117)
terms of the dimensionless variables defined in Appendix A. Further, many
equations can be written in parallel for the proton and defect species. W&he following difference of energies will be useful,
will use the superscripg to denote either protons,= H, or defectss =
d. In this notation, the eight unknowns are the densities at either end of the f3(2n — Dy
proton and defect diffusion intervals, named}(0) andp%(1), the proba- Ws(n) —W¥(¢) = Ad)s(’f]) I R Ad)s(f)
bilities Q° andQ}, of the defect boundary regions, and the proton and defect
fluxes, J°. N

The first equation is simply" = J9, which must hold at steady state. + f(2¢ 1)1'[“
This is immediately eliminated by introducing a common variable for the 2 '
flux, J = J° The boundary conditions, Egs. 59 and 61-63, give us four
more equations. Written in terms of dimensionless variables, these are Then, the second term on the right-hand side of Eq. 117 can be rewritten

Q" = p(Da explfiu), g
Q" = p(0)a expl— 124, (110)  expwi0) f exp(—WO) dé = expfuiDgs,  (119)

P (O)exp(— ) = —JE + pDexp(fdy + B, i

+ p(0)expWw(0)) J exp(—w(§))dé.

0

(118)

111) where we define the integral

P (Dexpfay) = It + p'(O)exp(— 5 + BOcy,  (112) Jl
o=

The sixth and seventh equations are obtained by integrating the Nernst—
Planck equation, Eq. 31, which, in terms of dimensionless variables, is Eq.
98. Multiply by an integrating factor and integrate to get

exp(—AP*(é) + F5(2¢& — Dyi/2)dé.  (120)

0

Further, define

& 1
—J J exp(wi(n)) dn = p(&)expw(&)) is = J exp(—WH(8)) J' §exp(\,\f(n))dndg

0

0 0

exp(—A¢%(§) + f 328 — D/2)h¥(§)dg, (121)

Note thatws(§) = (&) + (&), where they(§) are given by Egs. 92
and 93. It is convenient to define the integrals

— p(0)expw(0)). (113) fl

0
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where Eq. 118 and the definition, Eq. 114, are used to obtain the secontil4, 120, and 121, respectively. For this appendix, we define these inte-

expression. Use this result and Eq. 119 to rewrite Eq. 117 as

grals as functions of and ¢s as follows:

1 3
J podE = — It + pYO)expfi/2)gs.  (122) h(& ¢) = f exp(Adi(n) — (20 — 1)y/2)dn, (133)
0 0
Substituting this expression and the boundary conditions, Egs. 109 and 1
110, into the normalization condition, Eq. 116, we have the final form for oY) = | exp(—Ad(nm) + f5(2n — 1)yY/2)dn, (134)
the eighth equation, o
—JtHiM + pH(0)exp(fy/2)gt — It + pi(0)exp(f Lys/2)g .
+ pU(D)aexp(fdyy) + pl(O)aexp(—flyy) = 1. (123) I*(Y) = J exp(—APY(§) + (2 — Dyl2)h(§, Y)dé.
0
We now have a system of five equations and five unknowns. The (135)

equations include the boundary conditions, Egs. 111 and 112, the inte-

grated Nernst—-Planck Egs. 115, and the normalization condition, Eq. 123As a special case, noté(yy) = h(1, ). In the following, we make use of

The unknowns are the proton and defect densities at the ends of thethe symmetries of the potentials of mean forte(£) = Ad (1 — ), and

intervals,p%(0) andp%(1), and the common curredt change variables’ = 1 — £orn’ = 1 — 7, in the integrands. We find
These equations may be solved by straightforward algebra. For exanmimmediately

ple, eliminatep™(0) andp"(1) by substituting from Egs. 111 and 112 into

Eq. 115 (fors = H) and Eq. 123. Then solve f@f(0) in Eq. 115 (fors = hs(—) = (), (136)
d) and use this to eliminatp®(0) in the two remaining equations. This
leaves a system of two equations for the unknowf{s) andJ. These can gs(_ l//) = gs(l/,), (137)
be finally solved forJ to obtain Eq. 74. In these calculations, there are
several points where Eq. 16 may be used to simplify an exponent. By the same method, it follows that
In the denominator of, the coefficientF" is given by Eq. 75, where
h5(&, =) = W1, ¢) — WL~ & ), (138)
FS = hf[g? + 2a cosh(f§ + f&/2)yJeh’2 ¢,
(124)  which is used to obtain
FH = (=" + hfgre”, (125) (=) = GF(WWhTW) — i) (139)
H_ H Using these results, it is straightforward to show that the coefficiEfjits
Fo=1" (126) given by Egs. 124-132, have the symmetries of Eqgs. 79—-81.
The coefficientF? is given by Eq. 76, where
. APPENDIX E: SATURATING CURRENT AT
F{=[—i%+ hig? + hfaexp(f§ + f&2)y)lexp(y, (127
FS =9+ hfaexp(fg + f%/2)ys, (128)  In this section, we obtain the asymptotic formula for the framework model
current asy, — «, Eq. 82. Dimensionless variables are again used, see
Fg — g”h“exp(t!f./Z + BD- (129) Appendix A. We must first obtain asymptotic expressions for certain

integrals. The following calculations are intuitively reasonable and can be
justified rigorously by use of Watson’s lemma (Keener, 1988).

The integrah®(¢) is defined by Eq. 114, whete® = h%(1). As i, — =,
the integrand becomes sharply peaked ngar 0, and it is therefore
reasonable to write

Finally, the coefficient=% is given by Eq. 77, where

Fa = 2expys/2 — BO)[g? + 2a coshfg + f4/2)ys]

X cosh(fg + fH/2)y (130) ;
Ff: gHEXF(]. _ fdA _ fH/Z)l,UI ! (131) hs(g) -~ eXFXAd)S(O)) J; eXFi_fs(Z”f) - 1)¢|/2)d”’7
F5=g"exp((fa + f*2)p). (132) ~ (Fsyn) texp(foys/2), (140)

where~ means{5y;,) ~texp(f Sy, /2) is asymptotic th%(£) asy, — =, in the
sense of asymptotic expansions. In particular, this result hold&*fer
h%(1). The integrab® is defined by Eq. 120. By an argument similar to the
In this appendix, we describe how the coefficient symmetries, Eqs. 79—81gne just given, we have
are obtained. These guarantee the current symmetry, Eq. 78, which must

g° ~ () ~‘explfyi/2),

hold by the symmetry of the gramicidin channel potential of mean force.
asy, — . The integral®is defined by Eq. 121, depending bf{¢) whose

APPENDIX D: CURRENT SYMMETRY

(1412)
We work with the dimensionless variables described in Appendix A.
The coefficients=’ depend on the integrals, g%, andi®, defined by Egs.
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asymptotic behavior is given by Eq. 140. A — o, we have B(yy) = g% + 2acoshfg + f&/2)yy . (150)
i°~ (Foyn) expl(fyi/2) we can then write

Jl tHFH + tdFd + taF a|Eq = eXF(_Bé‘ + l,/|/2)A(llf|)B(lJ/|)
X | exp(—Adi(é) + F3(2& — D/2)dé
0 + [g"A(y) + t°h™B(y)]cy + thig exp(BE + ¢i/2)ccy .

~ (fon) “explfoy). (142) (151)

In the case of a symmetrical equilibrium, = ¢, = c andy, = 0, the

Finally, we must consider, as a special case, the combingtion- i*. ) . )
denominator can be written in the factored form

From the definitions, Eqgs. 114, 120, and 121, we have

. M t"FH + Y + e, = [A(0)e P + t*hic][B(0) + ghePic].
gh*—i°= f dé f dn expA¢(n) — Ad(&) (152)
0 ¢ Note thatB(0) = g + 2a, whereg is defined by Eq. 120 anaby Eq. 65.

Wheng is written in dimensional formg® + 2a = gf, as defined by Eq.
+ (& —n)yYy). (143)  88. Inserting the result of Eq. 152 into Eq. 148 then leads to Eq. 84.

Making the substitutiony = n — £, this becomes
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