Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jan;80(1):398–414. doi: 10.1016/S0006-3495(01)76023-7

Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening.

B K Hoskins 1, C C Ashley 1, G Rapp 1, P J Griffiths 1
PMCID: PMC1301242  PMID: 11159411

Abstract

Force, sarcomere length, and equatorial x-ray reflections (using synchrotron radiation) were studied in chemically skinned bundles of fibers from Rana temporaria sartorius muscle, activated by UV flash photolysis of a new photolabile calcium chelator, NP-EGTA. Experiments were performed with or without compression by 3% dextran at 4 degrees C. Isometric tension developed at a similar rate (t(1/2) = 40 +/- 5 ms) to the development of tetanic tension measured in other studies (Cecchi et al., 1991). Changes in intensity of equatorial reflections (I(11) t(1/2), 15-19 ms; I(10) t(1/2), 24-26 ms) led isometric tension development and were faster than for tetanus. During shortening at 0.14P(o), I(10) and I(11) changes were partially reversed (18% and 30%, respectively, compressed lattice), in agreement with intact cell data. In zero dextran, activation caused a compression of A-band lattice spacing by 0.7 nm. In 3% dextran, activation caused an expansion of 1.4 nm, consistent with an equilibrium spacing of 45 nm. But, in both cases, discharge of isometric tension by shortening caused a rapid lattice expansion of 1.0-1.1 nm, suggesting discharge of a compressive cross-bridge force, with or without compression by dextran, and the development of an additional expansive force during activation. In contrast to I(10) and I(11) data, these findings for lattice spacing did not resemble intact fiber data.

Full Text

The Full Text of this article is available as a PDF (210.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley C. C., Bagni M. A., Cecchi G., Griffiths P. J., Rapp G. Submillisecond changes in myosin lattice spacing resulting from rapid length changes. J Mol Biol. 1999 Jan 8;285(1):431–440. doi: 10.1006/jmbi.1998.2331. [DOI] [PubMed] [Google Scholar]
  2. Bagni M. A., Cecchi G., Griffiths P. J., Maéda Y., Rapp G., Ashley C. C. Lattice spacing changes accompanying isometric tension development in intact single muscle fibers. Biophys J. 1994 Nov;67(5):1965–1975. doi: 10.1016/S0006-3495(94)80679-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bordas J., Diakun G. P., Diaz F. G., Harries J. E., Lewis R. A., Lowy J., Mant G. R., Martin-Fernandez M. L., Towns-Andrews E. Two-dimensional time-resolved X-ray diffraction studies of live isometrically contracting frog sartorius muscle. J Muscle Res Cell Motil. 1993 Jun;14(3):311–324. doi: 10.1007/BF00123096. [DOI] [PubMed] [Google Scholar]
  4. Brenner B., Xu S., Chalovich J. M., Yu L. C. Radial equilibrium lengths of actomyosin cross-bridges in muscle. Biophys J. 1996 Nov;71(5):2751–2758. doi: 10.1016/S0006-3495(96)79468-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner B., Yu L. C. Characterization of radial force and radial stiffness in Ca(2+)-activated skinned fibres of the rabbit psoas muscle. J Physiol. 1991 Sep;441:703–718. doi: 10.1113/jphysiol.1991.sp018774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenner B., Yu L. C. Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing. Biophys J. 1985 Nov;48(5):829–834. doi: 10.1016/S0006-3495(85)83841-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brust-Mascher I., LaConte L. E., Baker J. E., Thomas D. D. Myosin light-chain domain rotates upon muscle activation but not ATP hydrolysis. Biochemistry. 1999 Sep 28;38(39):12607–12613. doi: 10.1021/bi9905967. [DOI] [PubMed] [Google Scholar]
  8. Cecchi G., Bagni M. A., Griffiths P. J., Ashley C. C., Maeda Y. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers. Science. 1990 Dec 7;250(4986):1409–1411. doi: 10.1126/science.2255911. [DOI] [PubMed] [Google Scholar]
  9. Cecchi G., Griffiths P. J., Bagni M. A., Ashley C. C., Maeda Y. Time-resolved changes in equatorial x-ray diffraction and stiffness during rise of tetanic tension in intact length-clamped single muscle fibers. Biophys J. 1991 Jun;59(6):1273–1283. doi: 10.1016/S0006-3495(91)82342-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corrie J. E., Brandmeier B. D., Ferguson R. E., Trentham D. R., Kendrick-Jones J., Hopkins S. C., van der Heide U. A., Goldman Y. E., Sabido-David C., Dale R. E. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction. Nature. 1999 Jul 29;400(6743):425–430. doi: 10.1038/22704. [DOI] [PubMed] [Google Scholar]
  11. Curtin N. A., Gilbert C., Kretzschmar K. M., Wilkie D. R. The effect of the performance of work on total energy output and metabolism during muscular contraction. J Physiol. 1974 May;238(3):455–472. doi: 10.1113/jphysiol.1974.sp010537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ellis-Davies G. C., Kaplan J. H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):187–191. doi: 10.1073/pnas.91.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ferenczi M. A., Goldman Y. E., Simmons R. M. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J Physiol. 1984 May;350:519–543. doi: 10.1113/jphysiol.1984.sp015216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Godt R. E., Lindley B. D. Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol. 1982 Aug;80(2):279–297. doi: 10.1085/jgp.80.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Godt R. E., Maughan D. W. Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit. Pflugers Arch. 1981 Oct;391(4):334–337. doi: 10.1007/BF00581519. [DOI] [PubMed] [Google Scholar]
  17. Griffiths P. J., Ashley C. C., Bagni M. A., Cecchi G., Maèda Y. Time-resolved equatorial X-ray diffraction measurements in single intact muscle fibres. Adv Exp Med Biol. 1993;332:409–422. doi: 10.1007/978-1-4615-2872-2_38. [DOI] [PubMed] [Google Scholar]
  18. Griffiths P. J., Ashley C. C., Bagni M. A., Maéda Y., Cecchi G. Cross-bridge attachment and stiffness during isotonic shortening of intact single muscle fibers. Biophys J. 1993 Apr;64(4):1150–1160. doi: 10.1016/S0006-3495(93)81481-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Griffiths P. J., Güth K., Kuhn H. J., Rüegg J. C. ATPase activity in rapidly activated skinned muscle fibres. Pflugers Arch. 1980 Sep;387(2):167–173. doi: 10.1007/BF00584268. [DOI] [PubMed] [Google Scholar]
  20. Griffiths P. J., Potter J. D., Maéda Y., Ashley C. C. Transient kinetics and time-resolved X-ray diffraction studies in isolated single muscle fibres. Adv Exp Med Biol. 1988;226:113–128. [PubMed] [Google Scholar]
  21. Harford J. J., Squire J. M. Evidence for structurally different attached states of myosin cross-bridges on actin during contraction of fish muscle. Biophys J. 1992 Aug;63(2):387–396. doi: 10.1016/S0006-3495(92)81613-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Highsmith S. Lever arm model of force generation by actin-myosin-ATP. Biochemistry. 1999 Aug 3;38(31):9791–9797. doi: 10.1021/bi9907633. [DOI] [PubMed] [Google Scholar]
  23. Hoskins B. K., Ashley C. C., Pelc R., Rapp G., Griffiths P. J. Time-resolved equatorial X-ray diffraction studies of skinned muscle fibres during stretch and release. J Mol Biol. 1999 Jul 2;290(1):77–97. doi: 10.1006/jmbi.1999.2857. [DOI] [PubMed] [Google Scholar]
  24. Huxley H. E., Kress M. Crossbridge behaviour during muscle contraction. J Muscle Res Cell Motil. 1985 Apr;6(2):153–161. doi: 10.1007/BF00713057. [DOI] [PubMed] [Google Scholar]
  25. Huxley H. E., Kress M., Faruqi A. F., Simmons R. M. X-ray diffraction studies on muscle during rapid shortening and their implications concerning crossbridge behaviour. Adv Exp Med Biol. 1988;226:347–352. [PubMed] [Google Scholar]
  26. Huxley H. E., Simmons R. M., Faruqi A. R., Kress M., Bordas J., Koch M. H. Millisecond time-resolved changes in x-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2297–2301. doi: 10.1073/pnas.78.4.2297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  28. Irving T. C., Li Q., Williams B. A., Millman B. M. Z/I and A-band lattice spacings in frog skeletal muscle: effects of contraction and osmolarity. J Muscle Res Cell Motil. 1998 Oct;19(7):811–823. doi: 10.1023/a:1005459605964. [DOI] [PubMed] [Google Scholar]
  29. Kress M., Huxley H. E., Faruqi A. R., Hendrix J. Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J Mol Biol. 1986 Apr 5;188(3):325–342. doi: 10.1016/0022-2836(86)90158-0. [DOI] [PubMed] [Google Scholar]
  30. Linari M., Dobbie I., Reconditi M., Koubassova N., Irving M., Piazzesi G., Lombardi V. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin. Biophys J. 1998 May;74(5):2459–2473. doi: 10.1016/S0006-3495(98)77954-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Malinchik S., Yu L. C. Analysis of equatorial x-ray diffraction patterns from muscle fibers: factors that affect the intensities. Biophys J. 1995 May;68(5):2023–2031. doi: 10.1016/S0006-3495(95)80379-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martin-Fernandez M. L., Bordas J., Diakun G., Harries J., Lowy J., Mant G. R., Svensson A., Towns-Andrews E. Time-resolved X-ray diffraction studies of myosin head movements in live frog sartorius muscle during isometric and isotonic contractions. J Muscle Res Cell Motil. 1994 Jun;15(3):319–348. doi: 10.1007/BF00123484. [DOI] [PubMed] [Google Scholar]
  33. Matsubara I., Elliott G. F. X-ray diffraction studies on skinned single fibres of frog skeletal muscle. J Mol Biol. 1972 Dec 30;72(3):657–669. doi: 10.1016/0022-2836(72)90183-0. [DOI] [PubMed] [Google Scholar]
  34. Matsubara I., Goldman Y. E., Simmons R. M. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach. J Mol Biol. 1984 Feb 15;173(1):15–33. doi: 10.1016/0022-2836(84)90401-7. [DOI] [PubMed] [Google Scholar]
  35. Maughan D. W., Godt R. E. A quantitative analysis of elastic, entropic, electrostatic, and osmotic forces within relaxed skinned muscle fibers. Biophys Struct Mech. 1980;7(1):17–40. doi: 10.1007/BF00538156. [DOI] [PubMed] [Google Scholar]
  36. Maughan D. W., Godt R. E. Radial forces within muscle fibers in rigor. J Gen Physiol. 1981 Jan;77(1):49–64. doi: 10.1085/jgp.77.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Millman B. M. The filament lattice of striated muscle. Physiol Rev. 1998 Apr;78(2):359–391. doi: 10.1152/physrev.1998.78.2.359. [DOI] [PubMed] [Google Scholar]
  38. Molloy J. E., Burns J. E., Kendrick-Jones J., Tregear R. T., White D. C. Movement and force produced by a single myosin head. Nature. 1995 Nov 9;378(6553):209–212. doi: 10.1038/378209a0. [DOI] [PubMed] [Google Scholar]
  39. Perrin D. D., Sayce I. G. Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species. Talanta. 1967 Jul;14(7):833–842. doi: 10.1016/0039-9140(67)80105-x. [DOI] [PubMed] [Google Scholar]
  40. Podolsky R. J., St Onge H., Yu L., Lymn R. W. X-ray diffraction of actively shortening muscle. Proc Natl Acad Sci U S A. 1976 Mar;73(3):813–817. doi: 10.1073/pnas.73.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rapp G., Ashley C. C., Bagni M. A., Griffiths P. J., Cecchi G. Volume changes of the myosin lattice resulting from repetitive stimulation of single muscle fibers. Biophys J. 1998 Dec;75(6):2984–2995. doi: 10.1016/S0006-3495(98)77739-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tokunaga M., Sutoh K., Toyoshima C., Wakabayashi T. Location of the ATPase site of myosin determined by three-dimensional electron microscopy. Nature. 1987 Oct 15;329(6140):635–638. doi: 10.1038/329635a0. [DOI] [PubMed] [Google Scholar]
  43. Xu S., Brenner B., Yu L. C. State-dependent radial elasticity of attached cross-bridges in single skinned fibres of rabbit psoas muscle. J Physiol. 1993 Jun;465:749–765. doi: 10.1113/jphysiol.1993.sp019704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yagi N., Takemori S. Structural changes in myosin cross-bridges during shortening of frog skeletal muscle. J Muscle Res Cell Motil. 1995 Feb;16(1):57–63. doi: 10.1007/BF00125310. [DOI] [PubMed] [Google Scholar]
  45. Yagi N., Takemori S., Watanabe M. An X-ray diffraction study of frog skeletal muscle during shortening near the maximum velocity. J Mol Biol. 1993 Jun 5;231(3):668–677. doi: 10.1006/jmbi.1993.1318. [DOI] [PubMed] [Google Scholar]
  46. Yagi N., Takemori S., Watanabe M. Current X-ray diffraction experiments using a synchrotron radiation source. Adv Exp Med Biol. 1993;332:423–433. doi: 10.1007/978-1-4615-2872-2_39. [DOI] [PubMed] [Google Scholar]
  47. Yu L. C., Steven A. C., Naylor G. R., Gamble R. C., Podolsky R. J. Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation. Biophys J. 1985 Mar;47(3):311–321. doi: 10.1016/S0006-3495(85)83921-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yu L. P., Hartt J. E., Podolsky R. J. Equatorial x-ray intensities and isometric force levels in frog sartorius muscle. J Mol Biol. 1979 Jul 25;132(1):53–67. doi: 10.1016/0022-2836(79)90495-9. [DOI] [PubMed] [Google Scholar]
  49. Zite-Ferenczy F., Häberle K. D., Rüdel R., Wilke W. Correlation between the light diffraction pattern and the structure of a muscle fibre realized with Ewald's construction. J Muscle Res Cell Motil. 1986 Jun;7(3):197–214. doi: 10.1007/BF01753553. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES