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ABSTRACT A simple and very efficient protein design strategy is proposed by developing some recently introduced
theoretical tools which have been successfully applied to exactly solvable protein models. The design approach is imple-
mented by using three amino acid classes and it is based on the minimization of an appropriate energy function. For a given
native state the results of the design procedure are compared, through a statistical analysis, with the properties of an
ensemble of sequences folding in the same conformation. If the success rate is computed on those sites designed with high
confidence, it can be as high as 80%. The method is also able to identify key sites for the folding process: results for 2ci2
and barnase are in very good agreement with experimental results.

INTRODUCTION

Two of the most investigated problems in molecular biologyhouse the sequencg and H(I'') is the energy of the
are protein folding and design. Both problems stem fromsequence in the conformatidri. A first obstacle in using
Anfinsen’s discovery (Anfinsen, 1973) that the sequence okq. 1 is the difficulty of determiningd(I"). However, even
amino acids of a naturally occurring protein uniquely spec-assuming the correct knowledge Idf it would be impos-
ifies its thermodynamically stable native structure. The prosible to carry out an exhaustive search of the sequence
tein folding challenge consists of predicting the native statenaximizing P(I"), due to the computational difficulty of
of a protein from its sequence of amino acids, while inaccurately determining.. Several attempts and approxima-
protein design one is concerned with identifying the aminotions have been recently proposed to simplify Eq. 1 (Seno et
acid sequences folding into a pre-assigned native conformay., 1996; Shakhnovich, 1994; Deutsch and Kurosky, 1996;
tion. The protein design problem asks which and how manyorrisey and Shakhnovich, 1996; Seno et al., 1998a;
amino acid sequences fold into a given native structure. ThiMicheletti et al., 1998a,b; Micheletti et al., 1996; Rossi et
last issue, having obvious practical and evolutionary signif-al., 2000; Zou and Saven, 2000) and make it tractable at
icance, has attracted considerable attention and effort frongast within a numerical scheme. These attempts range from
experimentalists and theorists (Pabo, 1983; Quinn eheglecting (Shakhnovich, 1994) tisedependence oZ, to
al., 1994; Shakhnovich, 1994; Seno et al., 1996, 1998bassuming it depends only on the concentration of amino
Deutsch and Kurosky, 1996; Morrisey and Shakhnovichacids (Micheletti et al., 1998a,b; Zou and Saven, 2000) or to
1996; Dahiyat and Mayo, 1997; Micheletti et al., 1998a,b,using a cumulant (high-temperature) expansion (Deutsch
1999c; Street and Mayo, 1999; West et al., 1999; Zou anénd Kurosky, 1996). A simple and convenient way to test
Saven, 2000). The difficulty of the protein design problemthe efficiency of these approximations consists of using
is enormous because, in principle, a rigorous approackodels (Micheletti et al., 1999¢; Dill et al., 1995) that are
(Seno et al., 1996; Micheletti et al., 1999c) would entail aamenable to complete enumeration and hence to a rigorous
simultaneous eXploration of both the famlly of viable S€-and unbiased check of the design procedure_ Several prom-
quences and the family of physical conformations. By doingsing results have been obtained in such frameworks show-
so, it would be possible to find the sequences having lower fregyg how the developed theoretical tools have reached a very
energy in the target structure than in any other conformatiorhigh degree of reliability (Lau and Dill, 1989; Chan and
Stated mathematically, to design a target strudiumne needs  pill, 1993; Dill et al., 1995; Micheletti et al., 1999b; Shakh-
to identify the sequence of amino acidsthat maximizes the  novich, 1994). However, despite several efforts (Shakhnov-
“occupation probability” according to Boltzmann statistics:  jch and Gutin, 1993: Sun et al., 1995; Micheletti et al.,
exp( — BHLI)) exp( — BHL(I)) 1998a), the gxtension of this machinery to the design of
P(I') = D ~ BH(T) = Z (1)  natural proteins has not yet reached maturity. The reasons
w1 €XPL — BH are mainly two: 1) the difficulty in giving a reasonable
evaluated at a suitable physiological temperatur@, %/ functional form ofH(I") (Vendruscolo and Domany, 1999);
kgT. {I'"'} denotes the family of conformations that can and 2) the impossibility of verifying whether the predicted
sequence really folds in the desired conformation, without
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Self-Consistent Protein Design 481

using a simple functional form oH(I") and a limited designing a given structure. As in Street and Mayo (1999), the putative
number of classes of amino acids. The unknown parameteglution could, in principle, be fine-grained into a 20-amino acid alphabet
- - . . by using steric packing and solvation constraints.

deﬂm_ng HS(F) are determined with a strategy (Crlppen, Finally, the last ingredient of our strategy is the introduction of a
19913 Seno et al, 1998b) based on the observation th"';lt,li'[able (free) energy scoring function. The most popular choice adopted in
physical forms of the energy ought to guarantee that angimplified models is the pairwise interaction form
amino acid sequence should recognize its native state as the

o with i . - HOT) = 3 APT)B(S, 3, 3)
conformation with minimum energy score and maximum ~ =

. ™ . . <
thermodynamic stability. We use such optimized energy =
functions to design PDB protein conformations by applyingwherei, j are the positions along the sequence of the amino acids and the
some of the above-mentioned theoretical techniques. FEum is taken over all possible paifS,(s, s) represents the interaction
na”y we check the quality of our predicted sequences I,]Oftrength of the amino acid parands. However, only amino acids that are
| ’h h . ith th v foldi close enough will interact in a non-negligible way. This is enforced with a

on y t rou_g a mere compar-lson with the naturally folding gtapie weight function, or contact maf{?(I") = f(x = |f; — F;), where:
amino acid sequences (retrieved from the PDB), but per- L L
forming a statistical analysis of our results with respect to f(x) = 5 tanh(@, — x) + 5 (4)
the full set of homologous sequences (e.g., sequences fold- .
ing to the selected protein or in homologous conformationsfmOIaO 's a cutoff value that we choose equal to 8 A
Ing p. 9 : - . In addition to this scoring function in Eq. 3, and to assess possible
(F?rShtx 1_999)- In this way we try to establish Whmh amIiNOgesign improvements, we shall adopt also one including three-body inter-
acids are important to stabilizing the sequence in the targeictions:
structure, and we compare these sites with sites important
for the folding process, i.e., sites belonging to the folding
nucleus (Shakhnovich et al., 1996). Furthermore, we show
how it is possible to give a degree of reliability to any whereAf(T) = APD)AR(T)AZ(T). The matrixB; represents the effec-
design attempt tive three-body interactions among the different classes of amino acids.

The paper is organized as follows: in the next section th Indeed, it has been recently suggested that pairwise energies (Vendruscolo
pap 9 ) nd Domany, 1999) may be unsuitable to describe effective amino acid

schematic representation of protein structures is illustratedpteractions in proteins. Hence, the introduction of three-body terms might
together with the energy functions and the classification obe regarded as the first correction term to Eqg. 3 in an expansion scheme
amino acids that have been used. In subsequent sections thigere all many-body interactions are included.

new strategy to estimate interaction potentials is derived, the

design procedure is explained, and results are discussed apgrtitioning the 20 amino acids into classes

summarized. Technical details are given in the Appendices. ) ) ) ) ) o
To estimate the interaction-potential matri&sor B; appearing in Egs. 3

and 5, we introduce a suitable classification of the 20 types of amino acids.

In an attempt to go beyond previous studies (Sun et al., 1995; Micheletti et

PROTEIN MODELING al., 1998a) where the two-letter code was used, we decided to subdivide
amino acids into three classes (Table 1).

Although many other subdivisions could be possible, adopting the one

As is customary in many numerical approaches to folding and desigrfollowed here has the advantage that, besides clustering amino acids
strategies, we shall also adopt a simplified protein backbone representatidifcording to their chemical similarities, it creates classes which are almost
that neglects amino acid rotameric degrees of freedom. In fact, we shall usgdually populated. Because tBematrices are symmetric, the number of
the common coarse-grained model of PDB proteins in which each amin&tries to be determined is 6 and 10 &y andB;, respectively.

acid unit is represented by a centroid placed ongkmarbon (for glycine

the coordinates of the centroid can be estimated by the local geometry gf

the backbone (Park and Levitt, 1996)). According to this procedure an)?'E'o‘F“\"NG THE INTERACTION POTENTIALS

protein conformation[’, obtained by a sequence &f amino acids is A new theoretical approach
specified through the® Cartesian coordinates:

HOI) = HAT) + X ARMBy(s,5,8),  (5)

i<j<k

Two- and three-body energy functions

o . An efficient way to estimate the effective potenti@sand
I'=(@{rrnt, o0, (2) B, was pioneered by Crippen (Maiorov and Crippen, 1992)

Th|_s S|mpI|f!cat|0n is mainly dictated by the necessity to deal_only_w!th the TABLE 1 Three-class partition of amino acids
main protein degrees of freedom but, as we shall mention, it is alsc
particularly appropriate in design contexts. Furthermore, we shall alsoHydrophobic Neutral Charged
partition the 20 types of amino acids into a restricted number of classes ; . -
e . . . - ““Alanine Asparagine Arginine
This simplification is not dictated by the numerical convenience of deallngIsoleucine

with a restricted sequence space (in fact, the design strategy outlined belol\iveucine gl{ft;e%niie II_-)I/I;t;(Zne

can be straightforwardly applied to 20 amino acid classes). Rather, thﬁ/lethionine Glycine Aspartic acid
choice follows from the need to have a sound statistical basis for estimatinghenylalamine Serine Glutamic acid
the free energy contribution of interacting amino acid classes and also frorE> oline Threonine L

the observation that most amino acids in natural proteins can be substitut: lyptophan Tyrosine N

without disrupting native folds (Kamtekar et al., 1993). Hence, within the aline _ o
present design scheme we aim at predicting the classes of amino arit¥<
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and recently optimized and used (van Mourik et al., 1999a form suitable to represent the behavior(af?) for a
Dima et al., 2000). This scheme aims at finding a set ofvariety of protein lengths and families. A very satisfactory
potentials so that, given a protein sequesidts native state  “collapse” of data from many structures could be obtained
I is recognized as having energy substantially below that oby assuming thatn®(i, j) merely depends om and j,
any other equally long conformatiod® (assumed to be irrespective of the chain lengths, ffor— j| < 16, as shown
outside the native basin df (Huang et al., 1998)). For a in Fig. 1.
generic energy functior(I") this requires: This is reasonable because the frequency of “local” con-
, tacts is not expected to be influenced by the overall protein

H{(T) <HJ(I) (6) shape or length. Contacts between residues with sequence

A key difficulty in turning this idea into a powerful separation larger than 16 are rather rare, hence were mod-

automated scheme is the choice/generation of physicall§ed by assuming a constant frequency of occurreﬁ?é,-
viable decoy structured)’. In many instances the decoys | he value ofAf? is regarded as a free parameter that is to
are generated by taking compact “chunks” of suitable lengtP€ tuned separately for each protein 2Iength so that the
from a bank of proteins (gapless threading). Such decoy@verage number of overall contack, A%, matches the
may not be physical for certain sequences (for example, dugumber observed in nature. An analogous procedure was
to steric clashes) so that the inequalities (Eq. 6) may enforcollowed for the three-body weight function, whose func-

rather loose or unrealistic constraints on the extractedional form is shown in Fig. 2. For determining the poten-
potentials. tials we consider a set of 31 nonredundant proteins listed in

The first goal in this paper is to propose a strategy tolable 2. _
overcome this difficulty. Our idea is based on the fact that Hence, through Eq. 7 and Egs. 3, 8 (or 5, 9) we obtained
the thermodynamic stability requirement, Eq. 6, should be®"€ inequality for each protein in the set (that we shall term

simultaneously satisfied as much as possible for a whole séf@ining sej. The determination of the potentialB, was
of conformationl’,, which compete significantly with the done by using an efficient algorithm, called perceptron, that

native state. is guaranteed to provide the best solution for a whole set of
This thermodynamic requirement can be accomplished€qualities. The method is outlined in Appendix 2. In our
by imposing that case, we have one inequality for each of the training pro-
teins. Clearly, by suitably choosing th@ values, it is
H(I') << (Hy, (7)  possible to make each individual inequality arbitrarily large.

here th Vi ied out Il th | The perceptron procedure allows finding the b@stalues
where the average. . . ) is carried out over all the s#t. In that make all inequalities as large as possible simulta-

a more mathematical spirit, Eq. 7 can be derived as fOHOWSheously. There is no guarantee, however, that the inequali-

fies can all be satisfied. Indeed, as a rule of thumb, when the
number of inequalities greatly exceeds the number of pa-
rameters, no solution can be found if the functional form of
it and/or the approximations involved are not satisfactory.

sis in a specific conformatioh at temperaturd. If " is the
native state ofs, below the folding temperature only the
conformations present ifi; give a nonvanishing contribu-
tion to Z,. By writing Z, = exp(log Z) and taking the
first-order term in its cumulant (high-temperature) expan-
sion, the condition of maximizin®(I') yields Eq. 7.

Due to the linear dependence of the energigsandH, 1 - - - . . l -
on the contact maps (the only factors that contain geometric
information about structures), the r.h.s. of Eq. 7 can be 08 b
re-cast into the following forms: o i
8]
c
(H?)y = > (AP)B(s, §), ® S osf
i<j 2
and g 0.4t
5
H) = S @PBAs ) + X ORB(s s @ ©
i<j i<j<k e r
{
Notice that bothfH®)) and(H®) depend on the sequense R AN I S

and no more on the structulé A detailed technical de-
scription of how the averages in Egs. 8 and 9 are obtained
is presented in Appendix 1. To summarize, the functional
dependence ofA®(i, j)) was determined by inspecting its Figure 1 (AP) for small values ok = [i — j|. Fork = 3, four long
behavior as a function afj. The main difficulty was to find  error bars are due to the presenceraind none proteins in our protein set.

2 4 6 8 10 12 14
Sequence separation
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Contact frequency maximizing the occupation probability+(I'*) defined in

Eqg. 1. In the previous section we have, however, shown that
for the correct energy parameters, the desired sequence
should satisfy the inequality:

1
0.8

06 | W(s, I'*) = H(I™) — (H9 << 0, (10)

04 r Therefore, since we have obtained a reliable estimate of

(Hy, we can use Eq. 10 to perform protein design. In
practice, given the target conformation, we search for the
sequence that minimizes the functidffs, I'*) where all the
~ guantities are calculated with the above-determined poten-
Separation o tials. The optimal solution is identified by a stochastic
N— procedure (simulated annealing) in sequence space, the el-
ementary move being the random mutation of a fraction of
FIGURE 2 (A§) for small values ofkL = |i — j| andk2 = |j — k.~ residues from one class to another. Generally, the most
Fluctuations are of the same order as Fig. 1. stringent way to test the reliability/validity of the extracted
parameters would be to apply them to design proteins un-

In our case we dealt with 5 (or 15) parameters and SUCrelated to the training set. However, as shown in Fig. 12, the

ceeded in finding physical solutions to the problem. Thisextracted potentials varied very little when the training sets

1 or 2 of Table 2 were used (a result that reflects the benefit

suggests that the adopted form of the energies was reasolf the coarse-graining into three amino acid classes). For

able, otherwise the problem would have been unlearnablefhis reason, to improve statistics on the potentials instead of

A further propf of this is that, by using a different set of learning them on set 1 and testing them on set 2, we learned
training proteins, nearly the same optimal parameters WerE ~m on the joint set, where the test was carried out.

obtained, a fact that corroborates the robustness of the As in Micheletti et al. (1998a) and Sun et al. (1995), the

potential extraction procedure. success rate of the design procedure is defined as the frac-
tion of correctly predicted amino acid classes with respect to
DESIGNING PDB STRUCTURES those of naturally occurring sequences (as found in the
PDB) for the chosen configuration. The success rate for a
randomly designed sequence where each residue is assigned
Once the potentials are determined, the energy scoringaindomly to one of the three classes would be 33%. For all
function of any desired conformation can be computedhe considered conformations (see Fig. 3) we obtained a
within the energies defined in Eq. 3 or 5. To tackle oursuccess rate between 40% and 55%.
ultimate goal, the design of protein conformations, it is This success rate can be compared with optimized suc-
necessary to define the design procedure. It has been digess rates for two amino acid classes (Micheletti et al.,
cussed in the Introduction that a rigorous, but unpractical1998a) which is, on average;75%. Clearly, increasing the
way of pursuing this objective consists of finding, for a number of classes makes the problem more difficult, hence
given conformationl*, the sequence (or sequences) areduced success rate. Itis interesting, however, to note that
the success rate of the optimal design strategy remains
above the random-guessing threshold-b%0%, as for the
two-letter case. It is also interesting to notice that this rate

0.2
0

The design strategy

TABLE 2 List of protein structures

PDB Length PDB Length PDB Length  does not improve (see Fig. 3) by working with the concen-
Set 1 tration of amino acid biased toward the composition of the

lacp 77 1beo 08 1cei o4  Wild-type sequence or even by using the three-body energy.

1co0 81 1cty 107 lerv 105  This possibly suggests that important features of real pro-

1fd2 106 1fkb 107 1fna 91  teins have been equally neglected by all these kinds of

1fow 76 lkum 108 Imit 69 energy function.

Lopd 85 Lpdr 99 trro 108 However, the one-to-one comparison between the de-
Set 2 signed sequence (defined as the one that minimieess)

1shg 57 1tul 108 1who 96 and naturally occurring ones could not be the best check to

lyat 113 lyeb 108 2c2c 112 do. The reasons are twofold:

2fxb 81 2imm 114 2mem 112

2mhr 118 2rhe 114 351c 82 e Homologous sequences, e.g., sequences that roughly fold

3bsc 93 3ssi 113 3wrp 108 in the same native state, can differ by up to 70% (simi-

9 — — . . . Ly o
mt 104 larity) of their amino acidic composition. A one-to-one

Biophysical Journal 80(1) 480-490
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the HSSP database (Sander and Schneider, 1991), perform-
ing the coarse-graining into H, N, and C classes. The degree
of similarity is measured as the percentage of matches

between aligned classes rather than individual amino acid
types. By definition, the coarse-grained alignment cannot be
smaller than the 20-letter one.

The results for a specific protein, 1acp, are given in Fig.
4. It turns out that, on average, the homology threshold of
30% for the full amino acid alphabet corresponds to 55%
when the three-letter code is used. This value is remarkably
close to the best design scores achieved with our procedure.
This does not automatically imply that our solutions are
viable. Site-directed mutagenesis experiments have shown
that a small fraction of protein sites do not tolerate any
substitutive mutation at all (otherwise, the native state
would be destabilized). It should then be checked whether
FIGURE 3 The success is here defined as the similarity between thguch key residues, which are conserved in homologous
designed sequence and the wild-type sequence as retrieved from the P%oteins, are also conserved by our design strategy. In one

file. The designed sequence has been obtained by a minimizatigvi of . . - . .
(simulated annealing) and the success has been obtained as an average leErfouowmg subsections we shall examine this issue in

10 independent minimizations. The three curves refer to the design using@nNNection with heavily investigated proteins, such as bar-
Egs. 3, 7, and 8 with arbitrary or fixed composition, i.e., exploring only hase and ci2, and we will show that, as a by-product of the
sequences with composition not too different with respect to the compodesign procedure, the location of such sites can be ea_si|y
sition of the wild-type sequence, and using Egs. 5, 7, and 9. predicted with high reliability. This is not a proof that our
design solutions, although different from the native one, are
gj)rrect, too, but it sheds new light on their validity.

Success (%)

30 1 1 1 1 I
0 5 10 15 20 25 30

comparison (although averaged over many sequence
could not be sufficient to verify whether our wrong
predictions are involving the most important amino acidsAre extremized sequences the best?
or only the marginal ones; ) ) )

o Naturally occurring proteins may not have necessarily! "€ design analysis we have described so far was based on
evolved to maximize the occupation probability but alsoth® SElection of sequences that minimizks), i.e., on the
to ensure a fast folding process (Shakhnovich et al"mammlzatlon of the gap petween the energy of the sequence
1996; Maritan et al., 2000a; Hoang and Cieplak, 2000) of"" the target conformation and the average eneltgy-
maximize uniform compactness (Maritan et al., 2000b).
Therefore, to select only the sequences that minimize

W(s) could be a too drastic selection criterion, especially ' ' ' ' ' o
considering that we are working with unperfectly param- e
etrized energy-scoring functions. 0.9 1 e )
To estimate the importance and the effects of these tw@> g8+ . * g‘ ¢ |
arguments we performed the analysis discussed below. % C L., e
G 07f I 1
q) © L0 2 I. (o]
Homologous sequences and % o8 ° e
comparison of similarities & 06 o8 o g 1
° L] 80 [}
It has been shown by Chothia and Lesk (1986) that naturally 45 | % °
occurring sequences with a very low degree of similarity,
~30% (but this rate is very dependent on the length of the 04 X ) ) ) ) ) X
alignment (Sander and Schneider, 1991)) can be homolo- ‘02 03 04 05 06 07 08 09

gous; that is, they adopt almost the same three-dimensional
structure (Fersht, 1999). The original study of Chothia and
Lesk was performed using the full repertoire of 20 types ofFIGURE 4 Three-letter similarity evaluated for two different classifica-
amino acids. In the context of the present study, it istions versus 20-letter similarity. Filled circles correspond to the classifica-

tion of amino acids adopted in our design procedure (see Table 1), while

Important to estimate how the homOIOgy threshold menfopen circles correspond to a random repartition of amino acids in classes.

tioned above changes when the three-letter classification ighe figure refers to a comparison between protein sequence lacp with 51
used. Hence, we re-analyzed the set of protein sequencessdeguences of homologous protein.

20-letter similarity

Biophysical Journal 80(1) 480-490
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However, it is presumable that the evolutionary pressure 100 =—s— . : . .
toward rapid and reliable folding (Micheletti et al., 1999a) | lerv, f0 :8? .
has not taken the maximization of inequality 10 to the 9| 0.9 ~e |
extreme, but to a lower threshold sufficient for biological
purposes. For this reason we chose to test the success rate 8o
not only for the minimum value of\(s), but also for other &
sequences. In particular, it is interesting to compare all theg‘f' 70
sequences with W(s) < W(s*), where s* is the wild-type ]
sequence. For each annealing temperature we extract 180 6o |
decorrelated sequences and make a statistical analysis on

this sequence set. We evaluate the averag&(sf for this 50
set and a “super-sequence” by applying a pointwise major-

ity rule to this set. In other words, for each site we assign the 40 . . . . .
most frequent amino acid class observed in this sequence set 0 20 40 60 80 100 120
at the given location. Fig. 5 shows the data pertaining to Number of gambled sites

such design attempts on five different proteins. It appears _ _
that, indeed, the highest matching with the native sequ(:mCF(:,'lGURE 6 Success as a function of the number of betted sites for the

. btained f he | | ¥ but for high protein lerv. Betting the 40 most locked sites, it is possible to obtain an
IS not obtained for the lowest value &V, but for higher almost 80% success rate. Note that success is almost independent on the

ones. frequency threshold,.
This fact suggests a powerful way to improve the reli-
ability of the design strategy: we can select as putative
solutions a wider range of protein sequences and then praive success rate of 80%. It is tempting to conjecture that the
cess the statistical information contained in them to yield aesidues that are assigned with very little uncertainty by our
single “super-sequence.” Furthermore, one can decide tdesign procedure (conserved design residues) could also
make a prediction only for those sites where a class has arbrrespond to conserved residues in nature. In the next
occurrence frequency larger than some suitable threghold section we shall examine in detail this possibility, and
The number of sitebl, for which we make such a prediction conclude that there is a significant correlation between the
is a decreasing function &, and for a giverf, depends on two sets of residues.
the fictitious temperature (at low temperature all the sites
are locked). Fig. 6 shows success rates ove\thbetted
sites for different values, (data pertain to protein lerv,
other proteins produce analogous plots). It is well known (Sander and Schneider, 1991) that homol-
It is evident that wheNg is small, the design procedure ogous sequences present conserved sites, e.g., sites where
is very reliable: retaining the first 40 sites gives the impresthe type of the amino acid remains unalterated throughout
the full set of sequences. In Fig. 7 this fact is graphically
elucidated (and even enforced) by analyzing the homolo-

Homologous sequences and conserved sites

80 gous sequences of protein lerv with our tripartite classifi-
cation of amino acids. To each site we assign a color
70 t reflecting the conservation of the most frequent class ob-

served in that position. A full conservation of H, N, and C
types is denoted with a saturated green, red, and blue color,
respectively; the lowest possible conservation of the most
frequent class, 1/3, is associated with the white color. Ac-
cording to this scheme, sites with high variability will

Success (%)
[$)]
o

40 t correspond to lighter nuances.
A visual inspection of the colors assigned to protein lerv
30 | (top panelof Fig. 7) reveals that-30% of the sites are
highly conserved. We want to elucidate whether there exists
o0 s . - s - a connection between such conservation of amino acids
25 2 15 -1 0.5 0 0.5 found in nature and the one emerging in the putative solu-

W tion obtained from our design procedure.

_ To do this we performed a simple analysis of the design
FIGURE 5 The success as a function of the cost funciifs I';) = Hg . . .
(T') — (H) per site. Success is defined here by majority rule on a samplin olutions at different values _of the conservation threshold,
of 100 (decorrelated) sequences. The value of the cost function for th&V. IN €ach batch of 100 design runs, the target valug/of
respective wild-type sequences is betweeh48 and—0.78. was fixed (in a stochastic way) by varying a suitable control

Biophysical Journal 80(1) 480-490



486 Rossi et al.

Residue conservation (lerv)

Homologous sequences

| TR, [ I

Designed sequences

2.85

FIGURE 7 Color-coded conservation of res-

idues in protein lerv (thioredoxin) in natural

context fop) and in putative solutions obtained

with our design procedure. The color code,

described in the text, assigns lighter colors to 2.38
highly variable sites. The conservation in the —

natural context was obtained from the analysis E*

of the HSSP database (Sander and Schneider, &b

1991). i)

|

1:83 +—

4% L

Sequence index

parameterT (by analogy, if we identifyjyV as an energy cost appear to have interactions that are relatively small in mod-
function, T plays the role of the temperature). Finally, for ulus, and hence contribute much less to the minimization of
each value off we analyze the conservation of residues inexpression 10. In fact, the locking of neutral residues is
the designed sequences and color them with the samebserved for temperatures much lower than the ones shown
scheme described above. The results are shown in the large the plots.
box of Fig. 7. An even more quantitative analysis of the correlation
For high values off (high W) all the color intensities are between designed and homologous sequences can be ob-
very low, indicating a uniform (random) distribution of the tained by a simple geometrical construction. For each amino
classes, but upon decreasing the temperature some of theanid located at sitein a given protein, a three-dimensional
start to be selected with higher and higher frequency. Awector is constructed whose components are the frequencies
very low temperature all the sites are locked in a particulawith which the three classes appear: in the design sequences
class. This trivial situation is not shown in Fig. 7 which, (we term the vector%iD) or in the homologous sequences
instead, concentrates on the more relevant range of inte¢f™). To make the comparison meaningful, the design pro-
mediate temperatures. cedure was carried out at a value Dfchosen so that the
The comparison of the native colored panel and thdraction of conserved residues was similar to the one ob-
designed one strongly confirms the hypothesis that siteserved in nature. The vector of a site conserved in a specific
locking early (at high values of) are related to the natu- class of amino acids is aligned with the associated axis,
rally conserved ones. This connection is examined in a morevhereas the vector of a nonconserved site has at least two
circumstantial context in the next section, where we connhonvanishing components.
sider two specific protein instances: barnase and chymo- The angle; formed by the two vector§’ and?i'\l pro-
trypsin inhibitor. vides a quantitative measure of the correlation between
It is interesting to note that locking occurs first for hy- residue conservation in the natural and design contexts. This
drophobic residues and later for charged ones, a fact refleceingle is zero if the agreement is perfect, while it attains the
ing the strength of interactions. Neutral residues, howevemaximum value ofw/2 ~ 1.5 if a residue is maximally
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conserved in nature and minimally conserved in design (ofFersht, 1995; Itzhaki et al., 1995), Fersht and co-workers
the other way around). have identified a restricted set of residues, the folding nu-
In Fig. 8 we plot (for four different proteins) the histo- cleus, which play a key role in the folding process in
gram of these correlation angldght gray). Remarkably, proteins such as barnase (1a2p) and chymotrypsin inhibitor
for all the proteins the highest entries correspond to smal{2ci2). Although, generally speaking, naturally occurring
angles, and they represent a considerable fraction (Zerv proteins can tolerate a fair degree of amino acid substitu-
24, 2imm= 18, 2ci2= 12, and 1la2p= 20) of all sites, thus tions without disrupting the native state, random mutations
highlighting a highly significant agreement. To validate the of sites in the folding nucleus will impair the folding pro-
design scheme it is then crucial to verify whether the highestess dramatically. Indeed, recent theoretical studies
agreement (small angles) is observed in correspondence @flicheletti et al., 1999a) have shown that key sites in the
sites highly conserved in nature. This is indeed the case: ifolding process nucleus are part of a bottleneck in the
the same figure we plot, for each angle bin, the number ofolding kinetic, which is mainly dictated by the native state
sites that are naturally highly conservath(k gray), i.e.,  topology. Overcoming such a bottleneck can occur only
that have a conservation entropy, evaluated as in the HSSRrough a careful selection of the type of involved amino
data bank (Sander and Schneider, 1991) lower than In(1.5cids (Cecconi et al., 2000). This novel argument confirms
(In(2) and In(3) correspond respectively to the minimumand explains the observation already present in the literature
and the maximum values for the entropy when only ong(Shakhnovich et al., 1996) that sites involved in folding
class is assigned or all three classes are assigned with equralclei should have been conserved during the evolutionary
probability). Almost all the sites with a vanishing correla- process. Hence, our goal in this section is to design the
tion angle satisfy this property! backbone of 1a2p and 2ci2 and compare the set of residues,
We can then conclude that amino acids which, in ourwhich are conserved in our design strategy with those in the
design scheme, are designed with a higher confidencdolding nucleus. As already seen in the previous section, we
strongly correlate with those that are conserved in naturabdentify the conserved residues by monitoring the frequency
sequences. with which a given residue is assigned to one of the three
classes during the lowering aV controlled by suitably
changing the temperature-like paramefgrjntroduced in
the previous section. As we said before, the tendency of one
In this last section we shall apply the design strategy to twite to prefer one class over the others grows strongdr as
proteins whose folding process has been heavily investiis reduced (e.g., minimizing/). However, not all sites show
gated experimentally. With a series of key measurementthis preference at the same valueTofas shown in Fig. 9,
where we have shown the intensity with which protein sites
in barnase are locked in the H, N, and C classes. The most
conserved residues are those for which the class-locking

Data for barnase and chymotrypsin inhibitor

15 gy RS prerrprrr occurs at very high temperature. It turns out that the sites
] involved in the locking process occupy buried positions and
10 -
5 _: 2.85 IR NI == = "Ry e o ey ey s pep
0 0 - ]
0 05 1 15 0 05 1 15 238 . 7
2cid 1a2p C ]
30 TTTT [ TT 1T I TIrT1T I_ TTTT | Tti71 7T I LIELELE :&c\/ [ L4 _
] ¥ 1.93 - . -
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lerv 2imm Sequence index

FIGURE 8 Distribution of the angles (in radians) between amino acidFIGURE 9 Quenched index versus sequence index for barnase.
frequency vectors for designed sequences and aligned sequences for all tQeenched index is defined here as the first index for which the relative
sites (ight gray) and for conserved siteslgrk gray). For this plot we  frequency for the hydrophobic classs0.5. Circled dots represent sites
considered conserved sites with entropin(1.5). belonging tocorel, core2or core3(Serrano et al., 1992).

Biophysical Journal 80(1) 480-490



488 Rossi et al.

are consistently assigned to the hydrophobic class. A visualhese residues can be related to the conserved sites obtained

inspection of Fig. 9 reveals that sites that are first locked irby a statistical analysis of naturally occurring homologous

barnase correlate well with the hydropholoiocrel, which  sequences. Moreover, for two specific proteins (barnase and

Fersht identified as the initiator of the folding transition. chymotrypsin inhibitor), these highly predictable sites cor-
An excellent agreement with experimental findings isrespond, with very good precision, to the folding nucleus,

also observed for 2ci2, where key sites have been pinwhich is crucial for the folding process.

pointed through mutagenesis experiments and measure-

ments of¢p-values (Itzhaki et al., 1995). The key sites have

been identified as those positions which are the highest ranKPPENDIX 1:

in order of early locking. As visible in Fig. 10, the most DETERMINATION OF THE WEIGHT FUNCTIONS

conserved sites in our design scheme include those found to

be crucial in the folding process. Again, these striking T Wo-body energy

results serve a twofold purpose. On one hand, they confirnve estimated the average contact mai®) and(A$p) by considering as

the validity of the present design approach; on the othera set of possible competing configurations an ensemble of structures

they also show some of its possible applications in connecextracted from the PDB. We analyzédi = 116 proteins (with length
. - P - ranging from 36 to 296) and for each conformatibp, we computed the
tion with the predlctlon of fOIdmg nucleus. corresponding value of the contact mamiﬁ,?)(l"n). If the structures had the

same Iength(Afﬁ) could be estimated by simple averaging:

SUMMARY |
1

To summarize, we carried out automated protein design (AP) =N > AT, . (11)

attempts over some PDB conformations by introducing n=1

several novel strategies to identify optimal energy-cost
functions and select putative design solutions. A mere comtlowever, because we are working with proteins of different length, we can

. . . . (2) i i i-
parison of designed sequences with the PDB ones gives Pt @ dependence @i,%(I";)) on the length of the chains. To invest

b 20% d 55% wh i .. gate this possibility we first notice th&anj?(I",)) mainly depends on the

success rate between 40% an o when working Withle, ence separatidn= || — i| (at least for smalk) between the amino
three classes of amino acids: a value well above the randomgids along the chain more than from the position along the chain and from
guessing threshold. This success rate is not improving byhe length of the protein (see Fig. 11).
introducing more Sophisticated energy functions, Suggesting Let l',IS now compute the avera@ef?) value of this contact frequencies
that important features of real proteins are neglected by°cerding t©

short-range Hamiltonians. Nevertheless, a statistical analy-

. . . . N
sis of aW|de_r set (honextremal) of possible solutions shoyvs (AQ) = 1 S AT (12)
how the design procedure could be used to correctly predict, N . LA /IR
. . . . . n=
with a high confidence, at least a subset of protein sites.
1 . . . .
=2
a =3 N
a =4 s
08} & s ., =5 oo 1
2 WA ¥
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FIGURE 11 Contact frequency for different values of the amino acid
separatiork as a function of the length the protein. Hor= 3 andk = 4
FIGURE 10 Backbone for the CI2 with the six most conserved residueghe fluctuations are large and depend on the protein familyo( B)

in our design attempts. Three of them (Ala-35, lle-76, Leu-68) are indi-consideredx-protein orB-protein. For all thek values there is no signifi-
cated by Itzhaki et al. (1995) as the most important in the folding processcant dependence on the protein length.
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where( - - );_j_ represents the arithmetic average over all the contactswhere L is the length of the protein. Ifh(I') denotes the number of
with a given sequence separatiofor a given protein. Then, we notice that contacts in the conformatidn involving amino acids of typek andl, and
it is a rapidly decaying function of the chemical distankésee Fig. 1). (n{?) the corresponding average computed on the set of competing con-
We can then estimat@ﬁz)) according to the rules: figurations by using Eqg. 13, Eq. 18 can be rewritten as:
AP k<l g g
APy =1 \i (13) @) - - = (B
j AP k=k. 2 (@) = mgM)Byk, 1) = 3 au(DBy(k, ) = Fr(B)
k>I=1 k>I=1

wherek,, is a cutoff distance that we fixed equal to 16. The vai&) can (29)
be estimated numerically from the data bank through Eq. 12, wha{@as .
should be determined according to the length of the chain. where the vectoB,; is defined as:

Indeed, the dependence of the total number of conmﬁz)(l“n), is
well approximated by a linear function of the length, or number of amino
acids,L,, of I',,. Thus, using this linear dependencelgrand Eq. 13 we are
able to determin@@.

B=(B(1, 1), B(1, 2, B(1,C),
B(2, 2, B(2, 3),B(3,3) (20)

Given the native statE and the sequenc the six entries o, depend
only on the average properties of the decoy structures.
Three-body energy For a given set oM inequalities to be satisfied simultaneously, it is
convenient to identify the one (related to the conformafignthat, with a
given set of trial potentials, is the least satisfied one, e.g.:

F.(B)<F(B) k=1,....M k#s (21)

The average contact map{?) can be determined in an analogous way.
For a conformatiod” we define the total number of three-body contacts as

NXID) = 2 ARD). (14)
i<j<k Oncel’ has been determined, one updates the trial potentials adding a
quantity proportional toay(I'y), where the proportionality constant is
Similarly to the former case, this number of contacts can be fitted by achosen to be much smaller than one. With this new choice of the potentials,
linear relation. In this larger parameter spaaé?) will depend on two  each inequality is re-evaluated and the updating cycle is repeated until

indexeskl = |j — il andk2 = |k — j|: F-(B) (stability) reaches the maximum possible value. One is allowed to
@ 5 fix the scale ofB values by requiringB| = 1, where theg - | is the usual
<Aijk> = A®(k1, k2). (15) Euclidean norm. This method can be shown to converge to an optimal

solution,#*, which can be of either sign. If it is negative, it means that no
Forkl, k2 < ko (that we choose on the basis of the statistical analysis to beset of potentials can be found that consistently satisfied all inequalities in
ko = 6) the set. Otherwise, the problem is learnable and the optimal potentials are
identified with those giving the highest stability.
1 N We have extracted potentials by using the perceptron schemé/with
A(3)(kl, k2) = — E <Ai(ji)(rn)>j—k=kzi—j=k1 (16) 31 globular proteins. The related set of inequalities has turned out to be
N n=1 ' learnable in all cases, with two- or three-body energy terms.

while for k;, = k, or k, = k, we assume a constant value. Here,
() —k=kyi—j=k, rEPresents the arithmetic average over all the contacts
with given sequence separati@y k.. R R

i c-c ]

The average contact map for a generic protein will be 0.5 N=C |

L C-H 4

Aoy _ [ APKLKR) KLk <k, . [ 2 ]

() = AP otherwise. (17) . i N-N O ° ]

s of : ]

Using, again, thak,_; (A% is well interpolated by a linear function = - H-N

of L,, we can determind$® in Eq. 17 afterA® (k,, k,) for ki, k, < k, have ..“03 [ i

been evaluated. o, R |

-—0.5 —]

APPENDIX 2: PERCEPTRON LEARNING OF THE I i
OPTIMAL POTENTIALS - HRo Loy e 1
A convenient way to find the optimal potentials that satisfy inequality -0.5 0 0.5

Potentials

constraints such as those of Eq. 7 is the use of the perceptron algorithm for

the opt|m!zat|0n of a set of linear inequalities (Krauth and Mezard, 1987’FIGURE 12 The potentiald determined using a set of 15 proteins and
van Mourik et al., 1999). )
; : - another set of 16 proteins (see Table 2) are plotted versus the same
For instance, in the case of the two-body Hamiltonian, Eg. 7 can be - . ) -
it ina th It of Eq. 8. as: potentials determined by the whole set of 31 proteins. The correlation
Wwritten, using the result ot £q. ©, as. between the potentials obtained with the two sets and the largest one is

nearly perfect (ideally, points should lie on the diagonal). Using the whole

. @ @ set of Table 2 we found® = (0.12, 0.22, 0.36,-0.76, 0.35, 0.32).
E (<Aij > - Aij (F))Bz(sh %) >0 (18) Potentials are here sorted as in Eqg. 20, where 1, 2, 3 refer respectively to
i>j=1 classes P, H, C.
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For the two-body energy we have extracted a first set of potentials usingviaritan, A., C. Micheletti, A. Trovato, and J. Banavar. 2000b. Optimal
the 15 proteins and a second one with the remaining 16. The two sets of shapes of compact stringsature.406:287-290.
potentials are plotted one versus the other in Fig. 12, showing a extremellicheletti, C., J. Banavar, A. Maritan, and F. Seno. 1999a. Protein struc-
good correlations. tures and optimal folding from a geometrical variational principleys.
This validates the conclusion that an interaction maBixlepending Rev. Lett82:3372-3375.
only on six parameters can be determined with a dozen nonredundamdicheletti, C., A. Maritan, and J. R. Banavar. 1999b. A comparative study
globular proteins. Similar results have been obtained with the three-body of existing and new design techniques for protein modélsChem.
energy (Serrano et al., 1992). Phys.110:9730-9738.
Micheletti, C., F. Seno, A. Maritan, and J. Banavar. 1998a. Design of
proteins with hydrophobic and polar amino acid&oteins: Struct;
We thank Marco Punta for many useful discussions. This work was Funct; Genet32:80.

supported by INFM (PAIS project) and MURST (COFIN99). Micheletti, C., F. Seno, A. Maritan, and J. Banavar. 1998b. Protein design
in a lattice model of hydrophobic and polar amino ackIsys. Rev. Lett.
80:2237.
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