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ABSTRACT We present experimental results and modeling on the efficacy of dielectrophoresis-based single-particle traps.
Dielectrophoretic forces, caused by the interaction of nonuniform electric fields with objects, have been used to make planar
quadrupole traps that can trap single beads. A simple experimental protocol was then used to measure how well the traps
could hold beads against destabilizing fluid flows. These were compared with predictions from modeling and found to be in
close agreement, allowing the determination of sub-piconewton forces. This not only validates our ability to model dielec-
trophoretic forces in these traps but also gives insight into the physical behavior of particles in dielectrophoresis-based traps.
Anomalous frequency effects, not explainable by dielectrophoretic forces alone, were also encountered and attributed to
electrohydrodynamic flows. Such knowledge can now be used to design traps for cell-based applications.

INTRODUCTION

Dielectrophoretic (DEP) particle traps have been success-
fully used for many biological applications to date. Such
traps operate through the interaction of induced polarization
charge with nonuniform electric fields and can induce trap-
ping at either electrode edges (positive DEP) or electric-
field intensity minima (negative DEP). The diversity of
applications includes particle separation by differential di-
electric properties (Gascoyne et al., 1997; Cheng et al.,
1998; Markx et al., 1994; Talary et al., 1995), force cali-
brations of optical tweezers (Fuhr et al., 1998), measure-
ment of bacterial flagellar thrust (Hughes and Morgan,
1999), three-dimensional positive-DEP traps (Suehiro and
Pethig, 1998), and extraction of electrical properties or
validation of the DEP theory itself (Watarai et al., 1997;
Hartley et al., 1999; Jones and Bliss, 1977; Kallio and
Jones, 1980). Though applications have used multi-particle
traps, in principle, large arrays of traps could be used for the
capture and analysis of many individual particles. In these
applications it is also likely that fluid will be used to deliver
and remove particles (perhaps selectively) from the traps.
Ultimately, reaching this potential will require a large array
of DEP-based single-particle traps and thus the need for
systematic quantitative analysis of their efficacy, which we
define as their ability to hold a cell against fluid flow.

To this end we have compared experimental results on
the efficacy of a common electrode trap geometry, the
planar quadrupole, with predictions from a simulation en-
vironment developed to model such traps. We have used
beads instead of cells because of their more uniform and
well-known physical and electrical properties, which eases
comparison with the models. The results have wide signif-

icance. First, the synthesis of a complete DEP-based mod-
eling environment, including multi-order DEP forces and
exact hydrodynamic (HD) drag force formulations, together
with its experimental validation, allows for quantitative
design of the efficacy of DEP-based cell traps. In principle,
therefore, one can now perform comparative analyses to
design DEP traps with differing characteristics for various
microscale cell-analysis applications, including single-cell
traps for large-array applications. Second, the measurement
technique we demonstrate here, again in conjunction with
the model, allows us to determine sub-piconewton forces at
the microscale. The measurement technique is similar to
previous methods of calibrating optical tweezers (Wright et
al., 1994; Svoboda and Block, 1994), which have the same
fundamental physics as DEP traps. Thus, some applications
of optical tweezers where accurate force analyses are
needed may be candidates for study using our methods.

THEORY

The dielectrophoretic force in its simplest implementation is
the interaction of a nonuniform electric field with the dipole
moment it induces in an object. The prototypical case is the
induced dipole in a lossy dielectric spherical particle. The
force in this case, where the particle is much smaller than
the electric field nonuniformities, is given by

F~1! 5 2p«1R
3Re@CM~v! 3 ¹E2~r !#, (1)

whereF(1) refers to the dipole approximation to the DEP
force,e1 is the permittivity of the medium surrounding the
sphere,R is the radius of the particle,v is the radian
frequency of the applied field,r refers to the spatial coor-
dinate, andE is the complex applied electric field.CM is the
Clausius-Mossotti (CM) factor, which, for a lossy dielectric
uniform sphere (such as a bead), is given by
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wheree1 and e2 are the complex permittivities of the me-
dium and the particle, respectively, and are each given by
e 5 e 1 s/(jv), wheree is the permittivity of the medium
or particle,s is the conductivity of the medium or particle,
and j is =21.

Eq. 1 shows that the spatial and frequency components of
the DEP force are separately contained in the¹E2 andCM
terms, respectively. Depending on the sign of the CM factor,
the DEP force propels particles to either the electric field
maxima (positive DEP, or p-DEP) or minima (negative
DEP, or n-DEP).

Eq. 1 is the simplest approximation to the DEP forces,
and although it is applicable in the majority of situations,
there will be instances where the field is sufficiently spa-
tially nonuniform (in comparison with the size of the par-
ticle) to induce quadrupolar and higher-order moments in
the object. In addition, at field nulls the dipole moment,
because it is proportional toE, is zero, and thus this dipole
approximation to the DEP force will also be zero. In the
mid-nineties Washizu and Jones (Jones and Washizu, 1996;
Washizu and Jones, 1994, 1996) developed a computation-
ally accessible approach to calculating higher-order DEP
forces, which we have implemented into our model (see
Appendix). A compact tensor formulation of their result
(Jones and Washizu, 1996) is

2
·
·
·5

F~n! 5
p~n!@ z #n~¹!nE

n!
, (3)

wheren refers to the force order (n 5 1 is the dipole,n 5

2 is the quadrupole, etc.),p

2
·
·
·5(n) is the multipolar induced-

moment tensor, and [z]n and ¹)n representn dot products
and gradient operations. Thus we see that thenth force order
is given by the interaction of thenth-order multipolar mo-
ment with thenth gradient of the electric field. The multi-
polar CM factor for a uniform lossy dielectric sphere is
given by

CM~n! 5
«2 2 «1

n«2 1 ~n 1 1!«1
. (4)

The HD drag force is related to the flow rate in the
chamber in a similar manner as Stokes’ drag on a sphere in
shear flow, with a correction for the effects of the wall
(Goldman et al., 1967). The force is given by

Fdrag5 6pmR~4Vc/h!F*dragz, (5)

wherem is the viscosity of the liquid,Vc is the fluid velocity
in the middle of the channel,h is the channel height,F*drag

is a nondimensional factor incorporating the wall effects,
andz is the height of the center of the sphere. For a parallel
plate flow chamber,Vc is linearly related to the volume flow
rate.

MATERIALS AND METHODS

Stock solutions

Solutions of two different conductivities, 0.01 S/m and 0.75 mS/m, were
made by taking deionized (DI) water with 0.05% Triton X-100 (Sigma, St.
Louis, MO) added and adding appropriate amounts of Hanks’ balanced salt
solution (Gibco BRL, Grand Island, NY), also with 0.05% Triton X-100,
until the nominal conductivity was reached, as indicated by an Orion model
125 conductivity meter (Beverly, MA). Solutions were filtered through a
0.45-mm filter (Micron Separations, Westborough, MA), and their conduc-
tivity was measured before each use.

Beads

Polystyrene beads (incorporating 2% divinyl benzene), with density 1.062
g/cm3, in three diameters (7.58mm (0.08mm SD), 10.00mm (0.09mm
SD), and 13.20mm (0.89mm SD)) packaged as 10% solids in water were
purchased from Bangs Laboratories (Fishers, IN). A 15-ml aliquot of each
bead solution was washed twice in 1.5 ml of the appropriate conductivity
stock solution and finally resuspended in 1.5 ml of stock solution. All bead
solutions were refrigerated and used within 2 months.

Electrode traps

Thin-film quadrupole electrodes were fabricated using conventional mi-
crofabrication processes. Standard (25 x 75 mm) microscope slides were
cleaned for 10 min in a Piranha solution (3:1 H2SO4:H2O2) and blow dried.
Photolithography was then performed using the image-reversal photoresist
Hoechst AZ-5214 (Somerville, NJ), which gives re-entrant resist profiles,
to define the electrode patterns. Then, 200 Å of chrome and 5000 Å of gold
were evaporated onto the slides followed by resist dissolution and metal
liftoff in acetone. Finally, the slides were cleaned in methanol and isopro-
panol and blow dried. A micrograph of the completed electrodes is shown
in Fig. 1 A, along with relevant dimensions.

Packaging

The packaging scheme is shown in Fig. 1B. Fluid inlet and outlet holes
were drilled in the glass slides with 0.75-mm diamond drill bits (C.R.
Laurence, Los Angeles, CA). Poly(dimethylsiloxane) gaskets, cast in ma-
chined molds from monomer (Sylgard 184, Dow Corning, Midland, MI),
above and below the slide functioned as the spacer material and bottom
sealing gasket, respectively. The top of the chamber consisted of a glass
slide that had been cut to a width of 16 mm and clamped down using an
aluminum block. With this setup, the flow chamber sustained.200-ml/min
flows without leaking.

Chamber height measurement

The chamber height of the fully assembled unfilled package was measured
at various points with an optical interferometer coupled to az-axis linear
gage (543 Series, Mitutoyo/MTI Corp., Aurora, IL) on a Nikon microscope
(UM-2, Nikon, Melville, NY). Corrections were made for the indices of
refraction of the different materials. The measured chamber height was
0.736 0.01 mm.

Electrical excitation

Sine wave excitation up to 20 MHz and 10 Vpp (into 50V) was generated
by an HP 3314A signal generator (Hewlett-Packard, Palo Alto, CA). This
signal was split and sent into four high-speed amplifiers (LM7171, Analog
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Devices, Norwood, MA), 2 noninverting and 2 inverting, that amplified the
signal 23. The amplifiers delivered 180° phase-shifted signals with neg-
ligible gain and phase error up to 10 MHz. The output from the amplifiers
was sent via coaxial spring-contact probes (Interconnect Devices, Kansas
City, KS) to the contact pads at the edge of the glass slide (Fig. 1B).

Fluidics

Fluidic connection to the package was made via HPLC connectors and
tubing (Fig. 1C). The fluidic test subsystem consisted of a four-way valve
(V-101D, Upchurch Scientific, Oak Harbor, WA) that allowed the inter-
change of syringes without introducing bubbles. The bead solution was
injected into the flow using an injection valve (V-450, Upchurch Scientific).
Flow was initiated by a syringe pump (KD-101, KD Scientific, Boston,
MA) using a 5-ml Hamilton luer-lock syringe (1005TLL, Reno, NV).

Optics

The beads were viewed using a Microzoom microscope (Wentworth Labs,
Brookfield, CT) with long-working distance objectives on a semiconductor
probe station. Images could be captured using a Panasonic WV-D5000
video camera (Secaucus, NJ) and a Sony VCR.

Release flow rate definition and measurements

Once beads were captured in the quadrupole trap, flow was initiated. In the
parallel-plate flow chamber, beads experienced a transverse hydrodynamic

force that tended to dislodge them from equilibrium at the center of the trap
(Fig. 2). If the bead was held in the trap at the end of 2 min, the bead was
considered captured. This time was chosen empirically by observing that
beads held for 2 min, if the flow was continued, would usually (.90%) be
held indefinitely (tested up to;5–10 min). The flow rate was adjusted to
find the minimum flow rate (within 1ml/min) at which the bead was
released within 2 min. This is termed the release flow rate. The flow rate
was adjusted above and below the release flow rate to ensure that the true
release flow rate was determined. In practice, one bead could be used
repeatedly by stopping the flow after it was just released, in which case it
would fall back into the trap.

Modeling

The modeling environment, described more fully in the Appendix, used
commercially derived electric-field data (Maxwell 3D, Ansoft, Pittsburgh,
PA) and experimental parameters and, using Matlab (R11, The Mathworks,
Natick, MA), determined whether the particle would be held in a given
flow. It did this by first computing the multipolar DEP, gravitational, and
HD drag forces on the particle everywhere in space and then determining
whether stable points of zero net force existed. By varying the applied flow
rate for a given set of experimental conditions, the modeling environment
could determine when the zero-net-force points ceased to exist and thus the
release flow rate. For the current work we simulated the upper half of the
trap in Fig. 1A, using symmetry boundary conditions at the glass substrate.
Field data from the central portion of the quadrupole was written to a grid,
using a grid spacing of 0.5–2mm, and smoothed using a three-dimensional

FIGURE 1 (A) Micrograph of the completed quadrupole electrodes, showing a single 10.00-mm bead captured in trap; (B) Schematic of packaging
assembly, showing the stack of layers comprising the flow chamber along with the electrical connections via spring-contact probes; (C) Schematic of fluidic
subsystem.
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Gaussian low-pass filter with the following parameters: three-grid-point
convolution kernel (in each direction) with a standard deviation of 1.3 grid
points. The filtering was used in lieu of long simulation times to reduce
high-spatial-frequency noise.

RESULTS

Single-bead holding

Fig. 1 A shows a trap holding a single 10.00-mm bead.
Interestingly, even with these unoptimized traps, we have
demonstrated single-bead capture: when two beads are cap-
tured in a trap, the second bead will be held with much less
force than the first, meaning that we can apply a flow rate
that will selectively remove the second bead while still
holding the first.

Release flow rate as the voltage is varied: the
holding characteristic

If we vary the voltage and measure the release flow rate, we
generate the holding characteristic of the trap for a partic-
ular set of experimental conditions. By comparing the shape
and absolute values of the measured holding characteristic
with the predictions based upon the modeling environment,
we can evaluate the accuracy and completeness of the
modeling environment. The typical shape of the holding
characteristic for these traps is shown in Fig. 3A for
7.58-mm beads in 0.01-S/m solutions at a frequency of 1
MHz. The characteristic behavior in these traps is that the
release flow rate increases from zero until a maximum

release flow rate (the peak release flow rate) is achieved (at
the peak voltage), after which it decreases quickly and then
reaches a plateau (the baseline release flow rate). To vali-
date our model, we have compared the match between these
three parameters, as they define the shape of the holding
characteristic.

To get a sense of the scatter in our experimental results,
we repeatedly took data for the 10.00-mm beads using more
than 10 different beads over 3 months. Individual release

FIGURE 2 (A) Schematic of flow chamber, showing a bead in the trap
experiencing a parabolic HD drag force; (B) Release flow rate and holding
force measurements. The flow rate (force) is increased until the bead is
liberated from the trap. The parabolic flow profile is approximately linear
when the particle is close to the substrate.

FIGURE 3 Experimental (E) and simulated (——) holding characteris-
tics for beads in the planar quadrupole trap of Fig. 1A as the bead diameter
was varied. Bead diameters were 7.58mm (A), 10.00mm (B), and 13.20
mm (C), respectively. Subplot (B) shows the long-term scatter in the data,
which can be taken as typical of the other curves. Also shown inA are the
simulated holding characteristics including only dipole DEP force terms
(z z z). The frequency is 1 MHz and the solution conductivity is 0.01 S/m.
Note the break in the voltage axis.
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flow rates were measured between one and nine times, with
each measurement being double-checked. We have in-
cluded this scatter and the flow rate discretization error in
Fig. 3B. The other data shown in the paper can be assumed
to possess similar scatter over this time frame. We then used
these results as an internal control when acquiring the rest of
the data presented in this paper. We did this by taking data
from equivalent conditions during subsequent runs to estab-
lish experimental precision. When this was inconvenient (as
with different solution conductivities) we used our prior
knowledge that the curves should not greatly shift to check
against our previous data. In addition, equivalent data points
were taken before and after each experimental run to esti-
mate any short-term drift (usually,5%). We did observe a
long-term downward drift (toward lower release flow rate)
in the release characteristic of;16% (which therefore ac-
counts for the majority of the scatter). Several factors could
account for this trend, such as changes in the chamber
geometry, experimental solutions, or room temperature.

Turning back to Fig. 3A, we also show the predicted
holding characteristics calculated including either only the
dipole (n 5 1, dotted line) or dipole and quadrupole (solid
line) DEP force terms (Eq. 3). One sees that computing only
the dipole term gives a monotonically increasing holding
characteristic (dotted line) because thez-directed force from
the dipole term is not strong enough to induce levitation
near the field null, where the particle is located. As de-
scribed below, this levitation is the key to the shape of the
holding characteristic. Including the quadrupole term accu-
rately models the problem, because it correctly accounts for
the levitation force in quadrupole traps, in agreement with
previous work (Washizu et al., 1993; Hartley et al., 1999;
Schnelle et al., 1999a). Incorporating the octopole term does
not qualitatively or quantitatively change the results, indi-
cating that induced octopoles are negligible in this situation
(data not shown).

The match between the experiment and the second-order
simulations is significant, especially considering that there

are no free parameters. The simulations predict a higher
release flow rate (27%) at the peak voltage, a higher peak
voltage (5%), and a higher baseline release flow rate (8%).

The trend in release flow rate as the voltage is varied (Fig.
3 A) is initially nonintuitive, but becomes apparent when
one recognizes that the DEP force influences the height of
the particle. This is shown in Fig. 4, where we plot the
predicted release flow rate along with the predicted holding
force and the predicted height of the particle at release for a
7.58-mm bead in our trap.

When no voltage is applied, there is no confining force,
and neglecting any stiction effects between the bead and the
surface of the glass slide, which have been measured at less
than 1–2ml/min, the release flow rate should be zero. As the
voltage is increased, the DEP forces will create a confining
well (Fig. 4 A). In this prelevitation regime, thez-directed
component of this force, which serves to levitate the bead,
will initially not be large enough to overcome the gravita-
tional force, and thus the bead will remain on the slide
surface. The force pushing the bead from the trap, the fluid
flow, varies linearly with height of the bead and volume
flow rate (Eq. 5). Thus, if the bead height does not change
but the confining forces increase, the release flow rate will
also increase.

At some threshold voltage, thez-directed DEP force will
exactly balance the gravitational force and the bead will
start to be levitated (Fig. 4B). This voltage corresponds to
the peak voltage and peak flow rate. Any increase past this
voltage and the bead will be levitated upwards and then
experience larger HD drag forces (Eq. 5). As can be seen
from Fig. 4, the height of the particle (dashed line) increases
quickly with voltage once it is levitated, and the particle will
experience a rapid ascent. Therefore, the increased exposure
to the HD drag forces with little increase in the DEP force
causes the release flow-rate characteristic to decrease. This
can be contrasted with simulations involving only the dipole
DEP-force term (Fig. 3A, dotted line) where the release

FIGURE 4 Explanation of holding
characteristics as voltage is varied,
showing the simulated release flow rate
(——), the holding force (—z —), and
the height of the particle when it is
released (- - -). (A) Prelevitation. At
very low voltages, the gravitation force
cannot overcome thez-directed DEP
force, and the bead is not levitated. (B)
Rapid ascent. At a certain voltage the
bead will just become levitated and the
holding characteristics will peak. (C)
Saturation. At high voltages, the in-
crease in holding force is balanced by
the increased particle levitation height,
resulting in a flat release flow-rate
profile.
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flow rate never decreases because the particle never be-
comes levitated.

Observing the particle height versus voltage curve (Fig.
4, dashed line), one sees that after an initial rapid ascent, the
slope of the curve decreases and saturates because the
z-directed DEP forces decrease rapidly as the bead is levi-
tated away from the electrodes. This is in accord with the
measured height-versus-voltage characteristics of other re-
searchers (Fuhr et al., 1992a). At this point, the holding
force increases with voltage (Fig. 4, dash-dotted line) are
matched by the increases in the HD drag forces due to the
increased particle height (Fig. 4, dashed line and Eq. 5).
They thus balance each other and give a saturated flat
release-flow rate characteristic (Fig. 4C, solid line).

Holding characteristic as the particle
diameter is varied

Since the DEP forces vary asR3 (dipole) andR5 (quadru-
pole), the gravitational force varies withR3, and the HD
drag forces vary withR, we can use differing particle sizes
to evaluate the accuracy of our modeling environment to see
whether it predicts the correct particle size effects. This will
help us determine whether we are modeling these forces
adequately and whether other forces are significant. We
have performed experiments with three different bead sizes
to explore this trend. The results are shown in Fig. 3, along
with the predicted results (simulated including up to then 5
2 DEP force term). Although all three bead diameters show
the same characteristic peaking-declining-plateau response,
the values of the peak release flow rate, peak voltage, and
baseline release flow rates all differ as the bead diameter
changes.

These differences are shown Fig. 5, where the three
parameters that define the holding characteristic have been
extracted from the simulation and experimental results. In
making this comparison we extracted parameters from only
one data set consisting of three runs at different bead diam-
eters to eliminate the long-term drift seen in Fig. 3B (and
thus we use only a subset of the data displayed in Fig. 3B).
The scatter was estimated from the uncertainty in the peak
height (n 5 7 data points for 10.00-mm beads;n 5 2 for
other diameters) and position (n 5 5 for 10.00-mm beads;
n 5 2 for others) during these runs and from the release
flow rates collected at voltages greater than 0.8 V for the
baseline (n $ 6 for each diameter). In all cases, the scatter
was,17% and usually was,5%.

We see that as the bead diameter is increased, the baseline
release flow rate (Fig. 5C) increases whereas both the peak
voltage (Fig. 5A) and peak release flow rate (Fig. 5B)
decrease. The absolute agreement between simulations and
experiment is quite good, with the dependencies captured
quantitatively; the maximum differences are 30% for the
peak voltage, 27% for the peak flow rate, and 9% for the
baseline release flow rate.

The trends (Fig. 5) can be explained in accordance with
DEP theory. As the bead diameter is increased, the voltage
necessary to initially levitate the bead (which corresponds to
the peak voltage) will decrease because the levitation forces
increase with bead diameter. These smaller voltages cause
the bead to experience smaller DEP confining forces before
being levitated. This leads to the decrease in peak release
flow rate with bead diameter. Finally, the increasing base-
line release flow rate with diameter is due to the fact that
whereas the HD drag forces increase only linearly with
diameter, the DEP confining forces increase asR3 andR5.

Holding characteristic changes with frequency

Whereas the first two trends (voltage and bead diameter)
evaluate the spatial aspects of our model, the frequency
trends are a test of the CM factor of the DEP force, which
is the only frequency-dependent component that we have
included. The CM factor (Eq. 2) for 10.00-mm-diameter
beads is shown in Fig. 6. Although only the dipole term of
the CM factor is shown, the quadrupole and higher terms
display similar behavior, although at slightly different dis-
persion frequencies and smaller ranges (e.g., the quadrupole
term can only vary between21/3 and11/2). To generate
Fig. 6, the conductivity of the beads was estimated by using
very-low-conductivity stock solutions and measuring the
n-DEP to p-DEP transition frequencies, when the beads
would switch from being repelled from to being attracted to
the electrodes, respectively. Fitting these to the zeros of the
CM factor gave a conductivity estimate of 2e24 S/m, which

FIGURE 5 Comparison of extracted experimental (E) and simulated
(——) peak voltage (A), peak release flow rate (B), and baseline release
flow rate (C) from one data set. The frequency is 1 MHz and the solution
conductivity is 0.01 S/m.
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is in accord with literature values for unmodified polysty-
rene beads of this size (Arnold et al., 1987).

As the frequency is decreased, the CM factor goes from
being permittivity dominated to conductivity dominated.

For the high-conductivity solution (0.01 S/m), no dispersion
is apparent because the CM factor is dominated by the
properties of the stock solution. For the low-conductivity
solution (0.75 mS/m), the CM factor decreases in magnitude
as the frequency is decreased. Because the CM factor di-
rectly multiplies the DEP force equation (Eq. 1), changes in
the CM factor will cause corresponding changes in the DEP
force at a given voltage. Thus, we expect little frequency
dependence of the forces at 0.01 S/m and some dependence
at 0.75 mS/m. In essence, the CM factor changes are equiv-
alent to scaling along the voltage axis and should thus shift
the holding characteristic only along that dimension.

Two frequency sweeps were performed, at both high
(0.01 S/m) and low (0.75 mS/m) solution conductivities.
Both of the 1-MHz holding characteristics (Fig. 7,A andD)
agree well with predictions, although the peak flow rates
and peak voltages are smaller than predicted. Although
these predictions can be partly explained by the sensitivity

FIGURE 6 Calculated CM factor (dipole term) for a polystyrene bead in
salt solution.

FIGURE 7 Experimental (E) and
simulated (——) holding characteris-
tics for 10.00-mm beads for three dif-
ferent frequencies at solution conduc-
tivities of 0.01 S/m (A–C) and 0.75
mS/m (D–F). Results are shown for
frequencies of 1 MHz (A and D), 100
kHZ (B andE), and 10 kHz (C andF).
The 10-kHz holding characteristic at
0.01 S/m (C) increases quickly with
voltage and so is truncated in the plot.
Note the break in the voltage axis.
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of the simulations around the peak flow rate, they could also
be due to temperature changes in the measurement room,
causing the chamber height and experimental properties to
change, or experimental observations of neglected forces.
The 100-kHz holding characteristics (Fig. 7,B and E) for
both solutions also have the predicted shape, although the
low-conductivity characteristic (Fig. 7E) deviates more
from predictions than the 0.01 S/m characteristic (Fig. 7B).
The 10-kHz holding characteristics (Fig. 7,C and F) for
both solution conductivities exhibit very different shapes
that cannot be explained by our modeling environment.

The only frequency dependence included in our modeling
environment is through the CM factor. The 10-kHz curves,
which show completely different holding characteristics,
can clearly not be explained through manipulation of the
CM factor. The 100-kHz curve at the low-conductivity
solution has the same characteristic shape but is shifted
toward lower voltages and release flow rates. As explained
before, the release flow-rate shift cannot be caused by
changes in the CM factor. For the voltage shift to be caused
by changes in the CM factor, the CM factor would have to
decrease (become more negative) at low frequencies. Not
only would this require an extremely small (and physically
dubious) bead conductivity (;1e26 S/m), but because the
CM factor is already near its theoretical minimum, the
increase in the magnitude of the CM factor would be much
too small to account for the experimental observations (data
not shown).

The shifts in the 100-kHz (and also possibly the 1-MHz)
holding characteristics can be more readily explained by the
existence of an upward destabilizing force on the bead. The
10-kHz characteristics are consistent with the existence of
an extra confining force on the bead. Thus, we conclude that
the cause of the discrepancies is due to other forces that are
not accounted for in our model, as discussed below.

DISCUSSION

We have demonstrated the ability to trap and hold single
particles with holding characteristics predicted by a model.
These holding characteristics correspond to forces in the
sub-piconewton range, which is a biophysically relevant
force regime. In addition, we have predicted trends as both
the voltage and bead radius are varied, alluding to the likely
generalizability of the modeling environment. Frequency
effects are not predicted accurately, probably (as discussed
below) because forces present at lower frequencies were not
accounted for.

DEP force measurements

The development of the multipolar DEP theory coupled
with the decreasing cost of computing power and the in-
creasing sophistication of microscale DEP researchers has

led to several recent attempts to construct quantitative DEP
microdevices that are amenable to modeling. Recent work
(Schnelle et al., 1999b; Muller et al., 1999) has even started
to concentrate on the interaction between DEP and HD
forces, in their case determining the flow needed to break
through a DEP barrier, similar to our case. The difference
between their situation and the one presented here is that the
particles in that work are located at the centerline of Poi-
seuille flow, and thus the drag force is well defined by the
Stokes drag on a sphere. This allows them to derive ana-
lytical representations for the force balance. As particles
approach surfaces, this analytical formulation becomes
hopelessly complicated, necessitating a numerical approach,
as we have taken.

Our experimental approach, the determination of release
flow rate, has many advantages over direct measurements of
the DEP force. First, the efficacy of particle traps in many
applications will be the ability of the trap to hold a particle
against fluid flow. Thus, this measurement, even if not
correlated to theory, would still be valuable. The compari-
son with theory, however, is ultimately more useful, be-
cause the validation of the modeling environment allows for
future trap design with confidence that the fundamental
physics in a specific operating regime of interest are being
accounted for.

There are several implications of these results for such
future trap design. First, larger voltages are not necessarily
better; optimal holding occurs in our structures at;0.3 V.
The best trapping occurs when particles are deep in a
potential energy well. For these planar quadrupole traps,
this occurs when the particles are on the substrate or just
barely levitated. Second, planar quadrupoles are quite weak
traps (holding at,20 ml/min), and so exploring alternate
geometries may lead to much higher holding forces. Al-
though operating at low frequencies is one route to higher
holding (Fig. 7,C andF), this regime most likely involves
forces other than those accounted for in the model, compli-
cating such designs. If these forces could be understood and
harnessed, however, they might themselves provide routes
to higher holding.

The agreement with predictions also allows us to extract
DEP forces, which themselves are useful for testing the
DEP theory itself or determining the electrical properties of
particles. Other researchers testing the theory have used
particle levitation (Kaler and Jones, 1990; Hartley et al.,
1999), flow-induced particle displacement in DEP traps
(Fuhr et al., 1998; Muller et al., 1999), and particle velocity
measurements in DEP force fields (Cruz and Garcia-Diego,
1997). The release flow rate method described represents a
new addition to this list. The close coupling with our nu-
merical modeling environment removes limits that other
methods may have with respect to electrode geometries or
experimental conditions.

Finally, examining Fig. 4, we see that we are actually
determining forces in the sub-piconewton range. This gives

538 Voldman et al.

Biophysical Journal 80(1) 531–541



an indication to the sensitivity of our measurement meth-
odology. This is comparable to the force sensitivities of
optical tweezers (Wright et al., 1994; Svoboda and Block,
1994), which is the most closely related biophysical mea-
surement. The agreement in shape and actual value of the
predicted and measured holding characteristics gives strong
validation that we are accounting correctly for the DEP, HD
drag, and gravitational forces in our system.

Shear flow approximation to Poiseuille flow

We have used shear-flow drag forces instead of Poiseuille
flow (which actually exists within the parallel-plate flow
chamber) to compare predictions with experiments. At the
bead heights encountered in our experiments, the deviation
between the shear and parabolic flow profiles is less than
2%, and thus both models should be expected to give the
same drag force and thus holding characteristic. We
checked this assumption by comparing predictions using
analytically solved drag forces for each flow profile (Gana-
tos et al., 1980; Goldman et al., 1967). The two drag force
formulations gave release flow rates that differed by 10%,
which was found to be due to a 10% difference in drag
forces predicted by the two theories near the substrate. The
reason for the differences is not entirely clear, but we have
chosen to use the shear flow model for the following rea-
sons: 1) it involves interpolating within a one-dimensional
parameter space, versus two-dimensional for the Poiseuille
flow; 2) our regions of operation are well within its param-
eter space, whereas we are at the asymptotes of the Poi-
seuille flow model; and 3) it predicts release flow rates that
agree better with experiments. Regardless of the flow pro-
file chosen, the predictions are affected by only 10%.

Agreement between predictions and experiments

The absolute agreement between predictions and experi-
ments in Figs. 3 and 5 is remarkable, especially since no
fitting parameters were used. This leads us to conclude that
we are accurately accounting for the DEP, gravitational, and
HD drag forces in our model. One possible cause of the
existing discrepancies that we can rule out would be errors
associated with physical and experimental parameters such
as bead radius and chamber width. Using the modeling
environment to perform sensitivity analyses shows that rea-
sonable errors in these quantities would not result in the
observed deviations between prediction and experiment.

Other causes of error include the sensitivity of the release
flow rate determination around the peak height due to noise
in the numerics, Brownian motion of the particle into lower
force-confining regions (Hughes, 1998), and electrohydro-
dynamic (EHD) flows, as discussed below. In addition,
although the symmetry of the ideal quadrupole electrode
structure precludes any substrate-liquid material interface or

charge relaxation effects from affecting the electric fields,
the actual physical situation could have asymmetries that
cause these effects to appear. A final source of error is that
heat generation will cause inhomogeneities in the electrical
properties of the system, which could alter the electric fields.

To remove this final source of error and to include the
interfacial effects properly in nonsymmetrical electrode ge-
ometries, the electric field would need to be calculated
self-consistently, including frequency and temperature ef-
fects, as others have done (Schnelle et al., 1999b). Here we
see the benefit of the arbitrary choice of field solver, as it
allows us to easily implement such a change.

Forces responsible for anomalous
frequency effects

The experimental results agree with predictions at high
frequencies, but as the frequency is lowered, anomalies
surface that cannot be explained by manipulating our mod-
els. The source of the discrepancies most consistent with
observations is forces unaccounted for in our models, which
we conclude are induced by EHD flows. We ruled out
flow-induced lift forces and linear polarization effects; cal-
culated flow-induced lift forces for our experimental situa-
tion are much too small (;10217 N) (Krishnan and Leigh-
ton, 1995), and linear polarization effects, which would
reducing the electric field in the medium (Schwan, 1992),
would affect predictions much as the CM factor does and
thus shift the curves only toward higher voltages.

EHD flows, induced by the interaction between either
thermally generated or double-layer charge with electric
fields in fluids (Ramos et al., 1998; Melcher and Taylor,
1969; Melcher, 1981), can impart either confining or desta-
bilizing forces. The type of force is dictated by the origin of
the charge (thermal or double-layer) and the applied fre-
quency relative to the relaxation frequency of the medium
(which has the forms/e) (Ramos et al., 1998, 1999).

Several lines of evidence are consistent with EHD flows
being the cause of the release flow rate deviations. First,
flows not predicted by DEP theory alone (and attributed to
EHD phenomena) have been observed repeatedly by DEP
researchers working on microscale electrodes (Fuhr et al.,
1992b; Ramos et al., 1998, 1999; Muller et al., 1996; Green
and Morgan, 1998). Second, small debris (micron sized)
inadvertently introduced into our chamber will flow in
circulatory patterns (reminiscent of other reported EHD
flow patterns) around the electrodes at various voltages and
frequencies. Third, the observed increases (Fig. 7,C andF)
and decreases in the holding forces (Fig. 7E) with fre-
quency are consistent with frequency-dependent changes in
the magnitude and direction of the EHD flows (for systems
such as ours that possess both thermally induced and double-
layer charge). Future work will investigate the nature of the
effects for possible incorporation into the modeling environ-
ment and additional use as trap effectors on their own.
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Thus, based on both our experimental observations and a
plausible rationale for frequency-related deviations between
model and experiment, we conclude that the modeling en-
vironment accounts for DEP, HD drag, and gravitational
forces and thus is valid under conditions where other forces
are negligible. Avoiding possible EHD effects necessitates
design at relatively high frequencies or for relatively large
particles. For the applications that we are interested in,
involving cells, this regime provides a great deal of latitude
in design as we would normally like to operate at high
frequencies to minimize induced transmembrane potentials.

CONCLUSIONS

We have used a microfabricated planar quadrupole as a test
bed for evaluating DEP-based traps, using polystyrene
beads as a model for cells. Using this simple geometry, we
have been able to determine fundamental information, such
as the trap efficacy. In addition, we have determined HD
and DEP forces at the sub-piconewton level. In conjunction
with a modeling environment that we have developed, we
have been able to compare the predicted and experimental
results and found them to be quite close, with no adjusted
parameters. Anomalous frequency-dependent behaviors
were observed, most likely caused by electrohydrodynamic
flows, and do not affect the validity of the modeling envi-
ronment, but rather provide bounds on the design space
where the environment is valid. The combination of mod-
eling and experiments has given us insight into the nature of
DEP traps and guides us in the design of stronger single-
particle traps for various biological applications.

APPENDIX: MODELING ENVIRONMENT

Electric field calculation

The modeling environment takes as its input electric fields computed via
any other method and interpolated onto a regular grid. Simulations can be
run using one set of potentials and extrapolated to other voltages by scaling
the electric field, using the linearity of the electric field with voltage.

DEP force calculation

The program calculates the full multipolar DEP force using the induced-
multipole theory shown in Eqs. 3 and 4. The CM factor is calculated using
the solutions for either a solid dielectric sphere (Eq. 4), to model plastic
beads, or a dielectric shell, to model cells, using expressions from the
literature (Jones, 1995). More complex models could be implemented.

The program uses an innovative iterative force calculation algorithm,
which makes it easy to calculate arbitrary DEP force orders. The algorithm
requires that we catalog the multiple derivatives of the electric field, which
are evaluated using nested loops. We do this with six-dimensional matrices
for the electric field and its derivatives arranged asE(x,y,z,p,q,r) wherep,
q, andr correlate to the number of derivatives of the electric field taken in
the x, y, andz directions, respectively. Because Matlab allows only non-

zero addressing into matrices, the following scheme is used:

E~x, y, z, 2, 1, 1! 5 Ex

E~x, y, z, 1, 2, 1! 5 Ey

E~x, y, z, 2, 2, 1! 5
­Ex

­y
5

­Ey

­x

E~x, y, z, 3, 1, 2! 5
­2Ex

­x­z
5

­2Ez

­x2

···

(6)

This labeling scheme simplifies the DEP force calculation algorithm,
which is given by

F0
~n! 5

2

~n 2 1!!~2n 2 1!!!
p«1R

2n11Re@CM~n!#

^F1
~i!&, ^F2

~i!&, ^F3
~i!& 5 0

for i 5 1 ton; for p 5 0 ton; for q 5 0 to ~i 2 p!;

r 5 i 2 ~p 1 q! (7)

^F1
~i!& 5 ^F1

~i!& 1 F0
~i!E~x, y, z, p 1 1, q 1 1, r 1 1!

3 E~x, y, z, p 1 2, q 1 1, r 1 1!

^F2
~i!& 5 ^F2

~i!& 1 F0
~i!E~x, y, z, p 1 1, q 1 1, r 1 1!

3 E~x, y, z, p 1 1, q 1 2, r 1 1!

^F3
~i!& 5 ^F3

~i!& 1 F0
~i!E~x, y, z, p 1 1, q 1 1, r 1 1!

3 E~x, y, z, p 1 1, q 1 1, r 1 2!

end; end; end,

whereF0
(n) is a constant calculated once. For our situation, the electric fields

are real and so we do not need to worry about complex values except for
the CM factor.

Other forces

The modeling environment includes three other forces: the gravitational
force, the hydrodynamic (HD) drag force on the particle, and a rigid
substrate bottom boundary. The magnitude of the gravitational force is
given by

Fgrav 5
4

3
pR3~r2 2 r1!g, (8)

where r1 and r2 refer to the densities of the medium and the particle,
respectively, andg is the gravitational acceleration constant. The HD drag
force is calculated using Eq. 6. Our final “force” is the implementation of
a rigid bottom boundary defined by the substrate. This allows us to
simulate particles sitting on the substrate surface. To do this we automat-
ically adjust thez-directed total force on the particle so that it is zero (or
positive) when the particle is sitting on the substrate.
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Holding point determination

From the computed forces we can determine whether the trap in this circum-
stance can indeed hold a particle by finding points in space (called holding
points) where the particle experiences zero net force. These are the only points
where we can expect to find a particle (at steady state). If we then increase the
destabilizing fluid forces and determine when the holding points cease to exist,
we can compute the strength of the trap and the release flow rate.

The algorithm proceeds as follows. For each of the three total-force
components (Fx, Fy, andFz) we find the surface where that force compo-
nent is zero, i.e., the zero-force isosurface. This surface is represented in
Matlab using a set of three-to-six-sided polygons. Isosurfaces are calcu-
lated using code (Bengtsson, 1997) based on the Marching Cubes algo-
rithm. Once we have the three isosurfaces, we find where they intersect by
checking for three-way intersections among the polygons comprising the
surfaces. We first do a quick check using a three-dimensional bounding
box algorithm (Bourke, 1987) and then perform computations on this set of
intermediate polygons to determine whether any three-way intersection
points actually exist.

Points found in this way would be holding points if they represented
stable force minima. To check this, we implement an algorithm that
determines whetherF 3 dr , 0 for each direction away from a putative
holding point (Blake, 1985). Other more heuristic methods such as volume
exclusion are also used.

Finally, by varying the flow rate in the model to find the threshold
where no holding points exist we can determine the release flow rate or the
holding force.
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