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ABSTRACT The weaver mutation (G156S) in G-protein-gated inwardly rectifying K1 (GIRK) channels alters ion selectivity
and reveals sensitivity to inhibition by a charged local anesthetic, QX-314, applied extracellularly. In this paper, disrupting the
ion selectivity in another GIRK channel, chimera I1G1(M), generates a GIRK channel that is also inhibited by extracellular local
anesthetics. I1G1(M) is a chimera of IRK1 (G-protein-insensitive) and GIRK1 and contains the hydrophobic domains
(M1–pore-loop–M2) of GIRK1 (G1(M)) with the N- and C-terminal domains of IRK1 (I1). The local anesthetic binding site in
I1G1(M) is indistinguishable from that in GIRK2wv channels. Whereas chimera I1G1(M) loses K1 selectivity, although there are
no mutations in the pore-loop complex, chimera I1G2(M), which contains the hydrophobic domain from GIRK2, exhibits
normal K1 selectivity. Mutation of two amino acids that are unique in the pore-loop complex of GIRK1 (F137S and A143T)
restores K1 selectivity and eliminates the inhibition by extracellular local anesthetics, suggesting that the pore-loop complex
prevents QX-314 from reaching the intrapore site. Alanine mutations in the extracellular half of the M2 transmembrane domain
alter QX-314 inhibition, indicating the M2 forms part of the intrapore binding site. Finally, the inhibition of G-protein-activated
currents by intracellular QX-314 appears to be different from that observed in nonselective GIRK channels. The results
suggest that inward rectifiers contain an intrapore-binding site for local anesthetic that is normally inaccessible from
extracellular charged local anesthetics.

INTRODUCTION

Many inhibitory neurotransmitters exert their actions, in
part, by stimulating G-protein-coupled neurotransmitter re-
ceptors and activating G-protein-gated inwardly rectifying
K1 (GIRK) channels (Hille, 1992; Nicoll et al., 1990;
North, 1989). Near the cell’s resting membrane potential, a
small efflux of K1 ions flows through GIRK channels and
reduces membrane excitability (Hille, 1992). GIRK chan-
nels are expressed in a variety of cell types, including
cardiac, brain, and endocrine tissues (Doupnik et al., 1995).
In the heart, parasympathetic activation slows the heart rate
by opening atrial muscarinic GIRK channels (Harris and
Hutter, 1956; Trautwein and Dudel, 1958). In the brain,
GIRK channels are postulated to be an important regulator
of neuronal membrane excitability. Mutant mice that lack
GIRK2 channels and GABAB receptor-activated GIRK cur-
rents are more susceptible to seizures (Signorini et al., 1997;
Slesinger et al., 1997).

Four different mammalian GIRK channels have been
identified thus far, GIRK1–GIRK4 (Kir3.1–Kir3.4)
(Doupnik et al., 1995). Although GIRK2, GIRK3, and
GIRK4 channel subunits form homomultimers in heterolo-
gous expression systems (Duprat et al., 1995; Kofuji et al.,
1995; Krapivinsky et al., 1995a; Velimirovic et al., 1996),
the GIRK1 subunit does not appear to form homomultimers
(Hedin et al., 1996). InXenopusoocytes, GIRK1 co-assem-
bles with an endogenous GIRK subunit, XIR, to form func-

tional heteromultimers on the membrane surface (Hedin et
al., 1996), whereas in mammalian cells, GIRK1 subunits
fail to express on the membrane surface (Kennedy et al.,
1996; Philipson et al., 1995). By contrast, expression of
GIRK2 cRNA in Xenopusoocytes gives rise to large basal
and G-protein-activated inwardly rectifying K1 currents,
indicating that GIRK2 channels form homomultimers (Ko-
fuji et al., 1995; Lesage et al., 1995; Slesinger et al., 1996).
GIRK channels are opened by the direct interaction of G
protein Gbg subunits with the N- and C-terminal domains of
GIRK (Huang et al., 1995; Inanobe et al., 1995; Krapivin-
sky et al., 1995b; Kunkel and Peralta, 1995). In addition to
the cytoplasmic N- and C-terminal domains, GIRK chan-
nels possess two putative membrane-spanning domains (M1
and M2) (Kubo et al., 1993) and a highly conserved pore-
loop complex that is involved in ion selectivity (Kofuji et
al., 1996b; Slesinger et al., 1996).

In the developmentally impairedweavermouse, a gly-
cine-to-serine mutation was identified in the pore-loop com-
plex of GIRK2 (G156S, referred to as GIRK2wv) (Patil et
al., 1995). The G156S mutation disrupts the ion selectivity
of GIRK2 channels (Kofuji et al., 1996b; Slesinger et al.,
1996) and appears to initiate the cellular changes that un-
derlie the cell death observed inweavermouse cerebellum
(Kofuji et al., 1996b; Patil et al., 1995; Slesinger et al.,
1997). Surprisingly, GIRK2wv channels exhibit a sensitivity
to inhibition by externally applied QX-314, a permanently
charged derivative of the local anesthetic lidocaine (Kofuji
et al., 1996b). Local anesthetics, however, are better known
for their actions on voltage-gated Na1 channels (Hille,
1992). The mechanism by which QX-314 inhibits GIRK2wv

is not well understood. A detailed electrophysiological char-
acterization of the QX-314 inhibition of GIRK2wv channels
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may provide insights in the structure of inwardly rectifying
K1 channels. Interestingly, intracellular application of QX-
314 has been reported to inhibit G-protein-gated inwardly
rectifying K1 currents in different types of neurons (Alreja
and Aghajanian, 1994; Andrade, 1991; Lambert and Wil-
son, 1993; Nathan et al., 1990; Otis et al., 1993; Yamada et
al., 1999). These findings raise the possibility that GIRK
channels possess a single binding site for local anesthetics
that is accessible from the cytoplasmic side of the mem-
brane for wild-type channels and from the extracellular side
of the membrane for nonselective channels.

In this paper, two different nonselective mutant GIRK
channels, GIRK2wv and I1G1(M), were used to study the
role of the ion selectivity filter in the inhibition produced by
extracellularly applied charged local anesthetics. In addi-
tion, the inhibition of wild-type GIRK channels by intracel-
lular QX-314 was compared with that produced by extra-
cellular QX-314 in nonselective GIRK channels. Some of
these results have been reported in abstract form (Slesinger,
1999).

MATERIALS AND METHODS

Molecular biology

I1G1(M) (referred to previously as IGM); Slesinger et al., 1995) and
GIRK2wv (Slesinger et al., 1996) cDNA constructs were made as described
previously. Chimera I1G1(M) contained amino acids 1–86 and 179–428
of IRK1 and 86–179 of GIRK1. Chimera I1G2(M) was constructed using
overlapping PCR and contains amino acids 1–86 and 179–428 of IRK1
and 96–189 of GIRK2. In some experiments, a hexahistidine-tagged
GIRK1 was expressed with GIRK4 in oocytes; the tag had no obvious
effect on channel function. Mutations in the pore-loop complex and M2
transmembrane domain were constructed using the PCR overlap technique.
The numbering nomenclature for the mutants refers to the amino acid
number in GIRK1. All PCR-generated products were subjected to DNA
sequencing (Salk Sequencing Facility, La Jolla, CA) for potential errors
generated byTaq polymerase. Gb1 and Gg2 subunits were used as de-
scribed previously (Reuveny et al., 1994). In vitro methyl-capped cRNA
was made using a T3 or T7 RNA polymerase kit (Epicentre, Madison, WI).
The concentration and quality of cRNA were estimated by separating on an
ethidium-stained formaldehyde gel and comparing with the RNA molec-
ular weight marker.Xenopusoocytes were isolated as described previously
(Slesinger et al., 1996). Stage V/VI oocytes were injected with a 46-nl
solution containing cRNA for the G protein Gb1 (;2–8 ng) and Gg2 (;2–8
ng) subunits and/or GIRK channels (0.5–5 ng). In some experiments, 13 ng
of the phosphothioated oligonucleotide XHA1 was co-injected with the
cRNA to suppress the expression of XIR (Hedin et al., 1996). Oocytes were
incubated in 96 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, and 5
mM HEPES (pH 7.6 with NaOH) for 2–7 days at 18°C.

Oocyte electrophysiology

Macroscopic currents were recorded from oocytes with a two-electrode
voltage-clamp amplifier (Geneclamp 500; Axon Instruments, Foster City,
CA), filtered at 0.05–2 kHz, digitized (0.1–2 kHz) with a Digidata 1200
A/D interface (Axon Instruments), and stored on a laboratory computer.
Electrodes were filled with 3 M KCl and had resistances of 0.4–1 MV.
Oocytes were perfused continuously with a solution containing 90 mM
XCl (X 5 K1, Na1, or NMDG), 2 mM MgCl2, and 10 mM HEPES (pH

7.5 with ;5 mM XOH or HCl for NMDG). QX-314 (RBI, Ballwin, MO),
QX-222 (Tocris, Natick, MA), and lidocaine (Sigma Chemical Co., St.
Louis, MO) were dissolved in dH20 at a concentration of 40–50 mM and
diluted before each experiment. A small chamber (0.1253 0.600 in) with
continuous, fast perfusion (5 ml/min) was used to change the extracellular
solutions and was connected to a virtual ground via a 3 M KCl agarose
bridge. For examining the effect of intracellular QX-314, 32.2 nl of 40 mM
QX-314 dissolved in dH20 was injected into oocytes 30–60 min before
recording the currents for a second time.

Analysis

For dose-response experiments, the data were normalized by dividing the
current in the presence of the drug by the current in the absence of the drug
(I/Io). The normalized data were fit with the Hill equation (Eq. 1), where
Ki 5 the concentration at which there is 50% inhibition andh 5 the Hill
coefficient.

I
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Dh (1)

The meanKi and Hill coefficients were determined by fitting each set of
data points individually. The time course of QX-314 inhibition was fit with
a sum of two exponentials.

For the study of mutant channels, the apparentKi was estimated using
a variation of the Hill equation (Eq. 2), wheref 5 I/Io, [QX-314] 5 100
mM, andh 5 Hill coefficient for wild-type channels (0.855).

Ki 5
@QX-314#

S1 2 f

f D1/h (2)

Ki 5 Ki~0!ezdFV/RT (3)

The voltage dependence of QX-314 was determined by plotting theKi as
a function of voltage and fitting with the Woodhull equation (Woodhull,
1973), whereKi(0) 5 the concentration required to produce 50% inhibition
at 0 mV,zd is the equivalent electrical distance (z 5 1 for QX-314), and
F, R, and T have their usual meaning (Eq. 3). The equation assumes a
negligible rate for QX-314 exiting into the cytoplasm.

The permeability ratio (PNa/PK) was calculated (Eq. 4) from the shift in
zero current potential (DErev) that occurred from changing the extracellular
solution from all K1 to all Na1 (Hille, 1992).

DErev 5
RT

zF
lnSPNa@Na#0

PK@K#0
D (4)

All values are reported as mean6 SEM. Data were analyzed for statistical
significance (SigmaStat 2.0) using one-way ANOVA followed by an
appropriate post hoc test. Values ofp , 0.05 were considered significant.

RESULTS

Loss of K1 selectivity in I1G1(M) and GIRK2wv

Wild-type GIRK channels showed strong inward rectifica-
tion and exhibited high selectivity for K1 ions when ex-
pressed inXenopusoocytes. Macroscopic currents were
measured using two-electrode voltage clamp from oocytes
injected with the cRNA for GIRK1 and GIRK4 subunits and
the G protein Gb1 and Gg2 subunits (Fig. 1A). Under these
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conditions, large inwardly rectifying currents were observed
due to Gbg activation of GIRK channels (Reuveny et al.,
1994). To examine the K1 selectivity, the macroscopic
currents were elicited by voltage steps from150 mV to
2100 mV in oocytes exposed to an external solution con-
taining all K1 and then to one with all Na1. GIRK hetero-
multimers composed of GIRK1 and GIRK4 subunits did not
display any Na1 current (Fig. 1A). In K1, note that the
current-voltage plot shows little outward current at poten-
tials positive to 0 mV, indicative of strong inward rectifi-
cation (Fig. 1A). As shown previously (Slesinger et al.,
1996), substituting a serine for the glycine (G156S) in the
pore-loop complex of GIRK2 (GIRK2wv) dramatically al-
tered the K1 selectivity, allowing Na1 to permeate the
channel nearly equally as well as K1 (Fig. 1 B).

Chimera I1G1(M) contains the GIRK1 hydrophobic core
sequence, which includes the M1, pore-loop complex and
M2, and the N- and C-terminal domains from IRK1
(Kir2.1), a G-protein-insensitive inwardly rectifying K1

channel (Slesinger et al., 1995). Oocytes injected with the
cRNA for I1G1(M) gave rise to large, basal inwardly rec-
tifying K1 currents (Fig. 1C). Surprisingly, I1G1(M) chan-
nels sustained a large Na1 current. I1G1(M) channels
showed inward rectification but discriminated poorly
among Na1 and K1 ions, like GIRK2wv channels (Fig. 1,B
andC). ThePK/PNa permeability ratio was 0.766 0.01 for

I1G1(M) (N 5 10), as compared with 0.786 0.11 for
GIRK2wv (Slesinger et al., 1996). By contrast, I1G2(M),
which has a hydrophobic core region (M1–pore-loop-com-
plex–M2) from GIRK2, exhibited normal K1 selectivity
(Fig. 1 D). Thus, the loss of K1 selectivity in I1G1(M)
appeared to be caused by amino acids in the GIRK1 channel
(see below).

To examine whether nonselective channels were pro-
duced by the co-assembly of I1G1(M) with the endogenous
GIRK subunit XIR, the cRNA for I1G1(M) was co-injected
with an oligonucleotide antisense to XIR (KHAI). KHAI
was shown by Hedin et al. (1996) to suppress the expression
of the XIR. I1G1(M) channels continued to form inwardly
rectifying and nonselective currents when co-expressed
with KHAI (data not shown). These results suggest that
I1G1(M) channels form homomultimers that lose K1

selectivity.

Inhibition of I1G1(M) and GIRK2wv channels by
external QX-314

Kofuji et al. (1996) reported that external application of
QX-314 inhibited GIRK2wv channel activity when ex-
pressed inXenopusoocytes. Thus, I1G1(M) channels might
also exhibit sensitivity to externally applied QX-314. Sev-
eral local anesthetics, QX-314, QX-222, and lidocaine (Fig.
2 D), were examined for their ability to inhibit I1G1(M) and

FIGURE 1 Chimera I1G1(M) loses K1 selectivity. Xenopusoocytes
were injected with the cRNA for GIRK1 and GIRK4 and the G protein Gb1

and Gg2 subunits (A), for GIRK2wv (B), for I1G1(M) (C), or for I1G2(M)
(D). Macroscopic currents were recorded with a two-electrode voltage
clamp from oocytes bathed in a solution containing 95 mM KCl or NaCl.
Macroscopic currents were elicited by voltages steps from150 mV to
2100 mV (10-mV increments) for GIRK11GIRK4, I1G1(M) and
I1G2(M), and140 to 2140 mV (20-mV increments) for GIRK2wv. The
holding potential was 0 mV forA, B, andD and280 mV for C. Dashed
line indicates zero current. The current-voltage plots are shown to the right
of the current traces.

FIGURE 2 Comparison of the local anesthetic inhibition of I1G1(M)
and GIRK2wv. Continuous current was recorded from an oocyte injected
with the cRNA for I1G1(M) (A) or GIRK2wv (B). Extracellular solution
contained 95 mM KCl plus 100mM QX-314, 100mM QX-222, or 100mM
lidocaine or 95 mM NMDG. The holding potential was280 mV. Dashed
line indicates zero current.C, Fractional current remaining (I/I0) for
I1G1(M) and GIRK2wv channels (N 5 4). Asterisk indicates statistical
significance (p , 0.05) between I1G1(M) and GIRK2wv using one-way
ANOVA followed by Bonferroni post hoc test.D, Chemical structures for
local anesthetics. Lidocaine is shown in the protonated form.
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GIRK2wv channels. The macroscopic current was recorded
continuously (at280 mV) from oocytes that were express-
ing I1G1(M) or GIRK2wv channels (Fig. 2,A and B).
Although these local anesthetics differ in the size of the
terminal amine group (Fig. 2D), all three local anesthetics
rapidly (less than 50 s) suppressed 30–70% of the inward
K1 current. No inward current was measured when all of
the K1 was substituted with the large organic cationN-
methyl-D-glucamine (NMDG) (Fig. 2,A and B). I1G1(M)
and GIRK2wv exhibited the same degree of inhibition as
well as rank order sensitivity to inhibition by 100mM of
each local anesthetic (QX-314. QX-222. lidocaine; see
Fig. 2C). Co-expression of KHA1 oligonucleotide with the
cRNA for I1G1(M) or GIRK2wv had little effect on the
inhibition produced by 100mM QX-314 for I1G1(M) plus
KHAI (0.42 6 0.04;N 5 3) and for GIRK2wv plus KHAI
(0.46 6 0.22; N 5 13). Thus, the local anesthetic binding
site in I1G1(M) appears to be similar to that in GIRK2wv

channels.
To characterize the QX-314 binding site in more detail,

the current inhibition was examined at different concentra-
tions of QX-314 and at different voltages. Macroscopic
currents were elicited by voltage steps from150 to 2140
mV in the absence and then presence of 500mM QX-314
(Fig. 3). Voltage steps lasted 3–4 s to ensure that inhibition
reached equilibrium. Heteromultimers composed of GIRK1
and GIRK4 subunits were insensitive to extracellular QX-
314 (Fig. 3A). By contrast, the extent of current inhibition
increased with negative membrane potentials between220
and2100 mV for I1G1(M) and GIRK2wv channels (Fig. 3,
B andC). At membrane potentials more negative than2100
mV, the inhibition by 500mM QX-314 became less pro-

nounced, suggesting that there was some relief of inhibition
at very negative membrane potentials. This relief of inhibi-
tion could be due to QX-314 exiting into the cytoplasm at
strong hyperpolarizing membrane potentials.

To compare the sensitivity and the voltage dependence of
QX-314 inhibition, the steady-state current at the end of the
voltage step was divided by the current in the absence of
QX-314 (I/I0) and plotted as a function of QX-314 concen-
tration (Fig. 4,A and C). The normalized data for each
voltage were fit with the Hill equation (Eq.1, see Materials
and Methods). For both channels, theKi decreased with
hyperpolarization and the Hill coefficient was at or slightly
below unity (see Fig. 4 legend). TheKi was plotted as
function of voltage to measure the voltage dependence (d)
of QX-314 inhibition (Fig. 4,B and D). The data points
were fit with the Woodhull equation (Eq. 3), which relates
the inhibition at a single site within the membrane to an
equivalent electrical distance (Woodhull, 1973). The inhi-
bition produced by QX-314 was strongly voltage dependent
for both I1G1(M) and GIRK2wv channels, having ad of
0.56 and 0.76 for I1G1(M) and GIRK2wv channels, respec-
tively. The exponential fits were limited to voltages over
which the relief from QX-314 inhibition (i.e., QX-314 ex-
iting into the cytoplasm) appeared negligible. Although
both channels lose K1 selectivity presumably through dif-
ferent mechanisms, the binding site for QX-314 appears to
be remarkably alike.

FIGURE 3 Voltage dependence of inhibition with extracellular QX-314.
Xenopusoocytes were injected with the cRNA for GIRK1 and GIRK4 and
the G protein Gb1 and Gg2 subunits (A), for I1G1(M) (B) or for GIRK2wv

(C). Macroscopic currents were recorded from oocytes bathed in 95 mM
KCl in the absence and then presence of extracellular 500mM QX-314.
Macroscopic currents were elicited by voltage steps from140 mV to
2140 mV (20-mV increments). The holding potential was 0 mV. Dashed
line indicates zero current. The current-voltage plots are shown to the right
of the current traces.

FIGURE 4 I1G1(M) and GIRK2wv channels possess similar QX-314
binding sites. The fractional current remaining (I/I0) at different voltages is
plotted as a function of QX-314 concentration for I1G1(M) (A; N 5 5) and
GIRK2wv (C; N 5 6). The smooth curves show the best fit to the Hill
equation (Eq. 1). The Hill coefficient ranged from 1.006 0.04 (240 mV)
to 0.736 0.02 (2120 mV) for I1G1(M) and from 0.696 0.14 (240 mV)
to 0.666 .10 (2120 mV) for GIRK2wv. TheKi is plotted as a function of
voltage for I1G1(M) (B) and GIRK2wv (D). The smooth line shows the best
fit using the Woodhull equation (Eq. 3). TheKi(0) andd were;380 mM
and 0.56 for I1G1(M) and;420 mM and 0.76 for GIRK2wv.
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Inhibition of I1G1(M) and GIRK2wv by
extracellular Ba21

To elucidate possible differences in the pore structure be-
tween GIRK2wv and I1G1(M), the sensitivity to inhibition
by extracellular Ba21 was examined. Current through het-
eromultimers composed of GIRK1 and GIRK4 subunits was
nearly completely inhibited by 500mM Ba21 (Fig. 5A). As
shown previously, GIRK2wv channels were also inhibited
by 500 mM extracellular Ba21 (Fig. 5 C) but slightly less
than the inhibition of GIRK1-GIRK4 (Fig. 5A) or GIRK1-
GIRK2 heteromultimers (Slesinger et al., 1997). Surpris-
ingly, I1G1(M) channels exhibited dramatically reduced
inhibition with extracellular 500mM Ba21 at membrane
potentials between210 and 2100 mV (Fig. 5 B). To
quantify these differences in Ba21 sensitivity, the steady-
state current in the presence of Ba21 was divided by the
control current (I/Io) and plotted as a function of Ba21

concentration. The data points were fit with the Hill equa-
tion (Eq. 1) to determine theKi and Hill coefficient.
GIRK2wv channels were less sensitive to inhibition by ex-

tracellular Ba21 than heteromultimers composed of GIRK1
and GIRK4 (Ki 5 2346 42 mM for GIRK2wv versus 616
20 mM for GIRK1-GIRK4 heteromultimer). By contrast,
I1G1(M) showed little inhibition with 3 mM Ba21 and had
an extrapolatedKi of ;50 mM Ba21. Similar to the inhi-
bition by QX-314, co-expression of the KHA1 oligonucle-
otide had little effect on the inhibition produced by Ba21.
These results suggests that pore structure of GIRK2wv chan-
nels is not identical to that of I1G1(M), even though both
channels lose K1 selectivity and have similar local anes-
thetic binding sites.

The remaining experiments focused on the QX-314 inhi-
bition of I1G1(M) channels because GIRK2wv channels
were toxic to oocytes (Slesinger et al., 1996; Tucker et al.,
1996) and appeared functionally similar to I1G1(M) channels.

Time course of inhibition by extracellular QX-314

To examine the onset of inhibition in more detail, the
inward current through I1G1(M) channels was recorded in
the absence and then presence of different concentrations of
extracellular QX-314 (Fig. 6A). The current in the presence
of QX-314 was divided by the control current (Fig. 6B,
inset) and was fit best with a sum of two exponentials. The
presence of two time constants suggests that more than one
binding site exists for QX-314. Both time constants de-
creased with more negative membrane potentials (Fig. 6B),
consistent with the voltage-dependent inhibition measured
from steady-state inhibition (Fig. 4). In addition, both time
constants decreased with higher concentrations of extracel-
lular QX-314 (Fig. 6B). Thus, the inhibition of I1G1(M) by
QX-314 is a bimolecular reaction that is governed by volt-
age and concentration.

To determine whether the permeant ion had any effect on
the rate of inhibition, as has been shown for inhibition by
external Ba21 (Hurst et al., 1995), the rate of QX-314
inhibition was measured in 15 mM extracellular KCl. Be-
cause Na1 permeates I1G1(M), an equimolar concentration
of NMDG was substituted for KCl. In 15 mM KCl, the
reversal potential shifted to negative voltages and the cur-
rent amplitude decreased (Fig. 6C). The rate of inhibition
followed a double-exponential time course with time con-
stants that were indistinguishable from those obtained in 95
mM KCl (Fig. 6 D). Moreover, the voltage dependence of
the fast and slow time constants were similar in 15 and 95
mM KCl. These results suggest that QX-314 inhibition does
not depend onV-EK and that K1 does not compete directly
for QX-314 binding in the pore.

If voltage drives the permanently charged QX-314 di-
rectly into the pore, then the recovery from inhibition would
be expected to be voltage dependent. A standard two-pulse
protocol, commonly used to examine the voltage depen-
dence of channel inactivation, was used to study the rate of
recovery from QX-314 inhibition (Fig. 6,E andF). In this
voltage protocol, the membrane potential was changed from

FIGURE 5 I1G1(M) displays reduced sensitivity to inhibition by extra-
cellular Ba21. Xenopusoocytes were injected with the cRNA for GIRK1
and GIRK4 and the G protein Gb1 and Gg2 subunits (A), for I1G1(M) (B),
or for GIRK2wv (C). Macroscopic currents were elicited by voltage steps
from 150 mV to 2100 mV (10-mV increments). The holding potential
was 0 mV for A and280 mV for B and C. Dashed line indicates zero
current. Extracellular solution was 95 mM KCl.D, Fractional current
remaining (I/I0) at280 mV plotted as a function of Ba21 concentration for
GIRK1 1 GIRK4 (N 5 6), I1G1(M) (N 5 6), and GIRK2wv (N 5 7). The
smooth curves show the best fit with the Hill equation (Eq. 1), with aKi of
2346 42 mM and Hill coefficient of 0.596 0.03 for GIRK2wv, with a Ki

of 61 6 20 mM and Hill coefficient of 0.696 0.12 for GIRK11 GIRK4,
and with an extrapolatedKi of 50 mM and Hill coefficient of 0.66 for
I1G1(M).
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0 mV to 280 mV for 3 s (first pulse) to induce QX-314
inhibition, was returned to 0 mV for varying lengths of time
to allow for recovery, and was then changed to280 mV for
a second time to assess the extent of recovery. With increas-
ingly longer times separating the two voltage pulses, the
peak current recovered to control levels (Fig. 6,E andF).
The recovery of the inhibited current was plotted as a
function of the time interval (Fig. 6E). With a 3–4-s
interval the current recovered to nearly 100% of control.
The time course of recovery followed a single-exponential
time course at240 mV, where channels remain partially
inhibited, and a double-exponential time course at 0 and
140 mV (Fig. 6F). The rate of recovery at140 mV was
faster than that at240 mV suggesting that QK-314 prefer-
entially exists extracellularly. The voltage and concentra-
tion dependence of the onset and recovery rates of inhibition
suggest that QX-314 binds to sites in the permeation pathway.

Mutations in pore-loop complex of I1G1(M)
partially restore K1 selectivity and reduce
QX-314 inhibition

Chimera I1G2(M), which contains the hydrophobic do-
mains (M1–pore-loop-complex–M2) from GIRK2, formed
functional K1 selective channels inXenopusoocytes (Fig. 1
D). The loss of K1 selectivity in I1G1(M) channels might
be therefore caused by amino acids that are unique to
GIRK1. A comparison of the amino acid sequence in the
pore-loop complex of different GIRK channel subunits (Fig.
7 A) revealed two amino acids, F137 and A142, that are
unique to GIRK1. These two amino acids were mutated to
the corresponding amino acid in GIRK2. I1G1(M) channels
containing either an F137S or an A142T mutation displayed
significantly smaller currents in 95 mM Na1 (Fig. 7,C and
D). The INa/IK ratio was;0.4 and;0.55 for I1G1(M)-
F137S and I1G1(M)-A142T, respectively, as compared
with 0.8 for I1G1(M) (Fig. 7E). In addition, I1G1(M)-
F137S and I1G1(M)-A142T both exhibited statistically sig-
nificant smallerPNa/PK permeability ratios (Fig. 7G). Chi-
mera I1G1(M) containing both mutations (F137S/A142T)
showed tiny Na1 currents and aPNa/PK of 0.146 0.04 (Fig.
7, E–G), as compared with aPNa/PK of 0.05 for GIRK1 and
GIRK2 (Kofuji et al., 1996b). These changes in selectivity
and Na1 current suggest that F137 and A142 in the pore-
loop of I1G1(M) altered the K1 selectivity.

If K 1 selectivity is nearly completely restored by mutat-
ing two amino acids in the pore-loop of I1G1(M), then the
inhibition produced by extracellular local anesthetics might
be impaired. To test this hypothesis, the effects of 500mM

FIGURE 6 Time course for onset and recovery from QX-314 inhibition
of I1G1(M). A, Inward currents were elicited by voltage pulses from140
to 2140 mV (20-mV increments) in the absence and then presence of
extracellular 100mM extracellular QX-314 in 95 mM KCl. The holding
potential was 0 mV. Dashed line indicates zero current potential.B, inset,
Time constants for the onset of inhibition determined by fitting the QX-314
current divided by the control current (QX-314/control) with a sum of two
exponentials (superimposed dashed line). The QX-314/control current with
100mM QX-314 is shown for280,2100,2120, and2140 mV. The two
time constants are plotted as a function of extracellular QX-314 concen-
tration for the indicated voltages.C, Inward currents were elicited by
voltage pulses from140 to2140 mV (20-mV increments) in the absence
and then presence of extracellular 100mM QX-314 in 15 mM KCl. The
holding potential was 0 mV.D, Time constants for the onset of inhibition
plotted for 15 and 95 mM KCl. The straight line shows the best fit to the
equationA0exp(zFd/RT), whered is 0.38 (t1, 15 KCl), 0.43 (t1, 95 KCl),
0.33 (t2, 15 KCl), and 0.2 (t2, 95 KCl). E, Time course for recovery of
QX-314 inhibition of I1G1(M). A two-pulse protocol was used to measure
the recovery from QX-314 inhibition. The membrane potential was shifted
to 2120 mV for 3 s (first pulse) to induce;70% inhibition by 100mM
QX-314, returned to240, 0, or140 mV for varying lengths of time (Dt)
to allow for recovery from QX-314 inhibition, and then shifted to2120
mV for a second time to assess the extent of recovery. The interpulse
holding potential was 0 mV. Current traces are superimposed following
subtraction of the current recorded in NMDG to remove capacity transients
and leakage current.F, Amplitude of the QX-314-sensitive current during
the second pulse divided by the amplitude of the first pulse (normalized
current) and plotted as a function of the interpulse interval,Dt (N 5 3).

Smooth line shows the best fit with a single exponential for240 mV (t1 5
0.976 0.17 s) and a sum of two exponentials for 0 mV (t1 5 0.376 0.03 s
andt2 5 1.686 0.57 s) and140 mV (t1 5 0.266 0.05 s andt2 5 1.186
0.46 s).
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QX-314, QX-222, and lidocaine on the mutant I1G1(M)
channels were examined (Fig. 8). Whereas QX-314 inhib-
ited .80% of the current through I1G1(M) channels, QX-

314 reduced the current by only 30% and 60% for I1G1(M)-
F137S and I1G1(M)-A142T, respectively. I1G1(M)-F137S
and I1G1(M)-A142T channels also showed significantly
less inhibition by extracellular QX-222 than I1G1(M) (20%
vs. 60%). More importantly, the K1-selective I1G1(M)-
F137S/A142T double mutant was insensitive to extracellu-
lar local anesthetics (Fig. 8,D andE), similar to wild-type
channels. Thus, the inhibition produced by local anesthetics
decreased as the K1 selectivity improved, indicating that
the inhibition by extracellular QX-314 is tightly linked to
K1 selectivity.

Alanine substitution in the M2 transmembrane
domain of I1G1(M)

The strong voltage dependence of QX-314 inhibition indi-
cates that QX-314 moves;60% within the electric field,
where it could potentially interact with amino acids in the
M2 transmembrane domain. The M2 transmembrane do-
main forms part of the inner vestibule of inward rectifiers

FIGURE 7 Two amino acids in the pore-loop complex of I1G1(M) are
involved in determining K1 selectivity.A, Alignment of the amino acids in
the pore-loop complex of GIRK1, GIRK2, GIRK3, GIRK4, and KcsA
channels. F137 and A142 in GIRK1 are indicated by the asterisks. Dashes
indicate 100% conservation with GIRK1. The structure of KcsA is shown
with two of the four subunits. The enlargement shows the position and side
chain of the amino acids in KcsA that are homologous to those in GIRK1
and the three K1 ions in the pore. Note that the side chain of S69 of KcsA,
which is F137 in GIRK1, points away from the pore and interacts with M1
and M2 transmembrane domains.B–G, Xenopusoocytes were injected
with the cRNA for I1G1(M) (B), I1G1(M)-F137S (C), I1G1(M)-A142T
(D), or I1G1(M)-F137S/A142T (E). Macroscopic currents were elicited by
voltage steps from150 mV to 2100 mV (10-mV increments) in 95 KCl
or 95 NaCl. The current-voltage plot is shown to the right.F, Ratio of INa

to IK at 280 mV is shown. Asterisks indicate statistically significant
differences (p , 0.05) from I1G1(M), using one-way ANOVA followed by
Bonferroni post hoc test (N 5 3–8). G, Plot of thePNa/PK permeability
ratio determined from the change in the zero-current potential in 95 mM
NaCl and 95 mM KCl (Eq. 4). All mutant I1G1(M) channels showed a
statistically significant shift in thePNa/PK from that of I1G1(M) (N 5
10–11).

FIGURE 8 Increase in K1 selectivity is associated with reduced sensi-
tivity to inhibition by extracellular QX-314. Continuous currents were
recorded from oocytes injected with the cRNA for I1G1(M) (A), I1G1(M)-
F137S (B), I1G1(M)-A142T (C), or I1G1(M)-F137S/A142T (D). Oocytes
were perfused continuously with 95 mM KCl (solid bar), with 95 mM
NaCl, with 100mM QX-314, QX-222 or lidocaine in 95 mM KCl, or with
95 mM NMDG. The holding potential was280 mV. Dashed line indicates
zero current.E, Bar graph showing the average fractional current remain-
ing following extracellular exposure to each local anesthetic. Asterisks
indicate statistically significant differences (p , 0.05) from I1G1(M),
using one-way ANOVA followed by Bonferroni post hoc test (N 5 3–8).
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(Lu and MacKinnon, 1994; Reuveny et al., 1996; Stanfield
et al., 1994). In addition, mutagenesis studies of voltage-
gated Na1 channels have localized the local anesthetic
binding site to the S6 transmembrane domain (Ragsdale et
al., 1996; Sunami et al., 1997), which is homologous to M2
transmembrane domain in GIRK channels. Thus, the M2
transmembrane domain in I1G1(M) might serve as part of
the local anesthetic binding site.

To examine this possibility, each amino acid in the M2
transmembrane domain of I1G1(M) was mutated individu-
ally to alanine and examined for a change in the sensitivity
to the inhibition produced by extracellular QX-314. The
apparentKi was estimated using a form of the Hill equation
(Eq.2, see Materials and Methods). For comparison among
different batches of oocytes, theKi for each mutant channel
was normalized to theKi for I1G1(M) channels that were
expressed in the same batch of oocytes (Table 1). Five
mutations in I1G1(M) (G158A, I159A, L163A, L168A, and
I177A) decreased significantly (approximately twofold) the
sensitivity to inhibition by QX-314. By contrast, six muta-
tions (F162A, Q165A, I167A, G169A, I171A, and G178A)
increased significantly the sensitivity to inhibition by extra-
cellular QX-314 nearly twofold (Table 1). Interestingly, the

elimination of the negative charge at D173 had no effect on
QX-314 inhibition (Table 1).

Inhibition of I1G1(M) by intracellular QX-314

Intracellular application of QX-314 inhibits neuronal G-
protein-sensitive inwardly rectifying K1 currents (Alreja
and Aghajanian, 1994; Andrade, 1991; Nathan et al., 1990;
Otis et al., 1993; Yamada et al., 1999). The effect of
intracellular QX-314 on cloned GIRK channels has not been
studied extensively. To examine the possible inhibition by
intracellular QX-314, carbachol-induced currents were re-
corded first, QX-314 was then injected directly into oocytes,
and carbachol-induced currents were recorded from the
same oocyte for a second time. Based on a volume of;1 ml
(Sunami et al., 1997), a 32.2-nl injection of 40 mM QX-314
would produce a final concentration of;1250 mM. Intra-
cellular QX-314 reduced the early component of the carba-
chol-induced current (at280 mV) by;75% (Fig. 9,C and
D). The same concentration of QX-314, however, inhibited
only ;20% of the current through chimera I1G1(M) (Fig. 9,
A andD), a nearly fourfold change in sensitivity. By con-
trast, 1250mM of extracellular QX-314 would be expected

TABLE 1 Inhibition of I1G1(M) alanine mutants by QX-314

Mutation
in M2

Kimut/Kiwt
DDG†

(kcal/mol)Mean6 SEM N

I1G1 (M) 1.006 0.11 10 0
G158A *1.716 0.16 5 0.31
I159A *1.79 6 0.13 7 0.34
I160A 0.826 0.04 5 20.12
L161A 1.296 0.16 5 0.15
F162A *0.476 0.04 10 20.44
L163A *2.16 6 0.16 8 0.45
F164A 0.956 0.09 7 20.03
Q165A *0.366 0.03 5 20.59
S166A 0.856 0.07 5 20.10
I167A *0.51 6 0.12 5 0.39
L168A *1.72 6 0.10 5 0.32
G169A *0.346 0.07 6 20.63
S170A 0.946 0.09 5 20.04
I171A *0.53 6 0.05 8 20.37
V172A 0.706 0.05 8 20.21
D173A 0.826 0.06 5 20.12
A174T 0.816 0.02 10 20.13
F175A 0.956 0.06 5 20.03
L176A 1.066 0.04 5 0.03
I177A *1.45 6 0.05 7 0.22
G178A *0.546 0.07 8 20.36
C179A 1.286 0.11 5 0.15

The amino acid number refers to the amino acid in GIRK1. TheKi for each
I1G1(M) mutant was estimated using a modification of the Hill equation
and divided by theKi for I1G1(M) determined in the same batch of oocytes
(Eq. 2).
* Statistically significant difference in theKi for mutant I1G1(M) channel
as compared with theKi for I1G1(M) (p , 0.05, using one-way ANOVA
followed by Bonferroni post hoc test).
† DDG 5 RTln(Kimut/Kiwt).

FIGURE 9 I1G1(M) loses sensitivity to inhibition by intracellular QX-
314. Oocytes were injected with the cRNA for I1G1(M) (A), I1G1(M)-
F137S/A142T (B), or GIRK1 plus GIRK4 along with the m2 muscarinic
receptor (C). The current responses elicited by voltage steps between160
and2100 mV (20-mV increments) are shown before and then 30–60 min
after the injection of 32.2 nl of 40 mM QX-314. The holding potential was
0 mV. The carbachol-induced (1carb minus agonist-independent basal)
currents are shown for GIRK1/GIRK4. Note the slow activation upon
hyperpolarizing to2100 mV is more pronounced after intracellular injec-
tion of QX-314. D, Average fractional current remaining after injecting
intracellular QX-314. The current was measured 10 ms after the voltage
step to minimize contribution from relief of inhibition at negative mem-
brane potentials (N 5 7–10). Asterisks indicate statistically significant
differences (p , 0.05) from GIRK1/4, using one-way ANOVA followed
by Bonferroni post hoc test.
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to inhibit .90% of the current through I1G1(M) channels
(Fig. 2). The K1-selective, double mutant I1G1(M)-F137S/
A142T also showed little inhibition with intracellular QX-
314 (Fig. 9,B andD). These results suggest that the local
anesthetic binding site in I1G1(M) is inaccessible from the
cytoplasmic side of the membrane.

DISCUSSION

There are three main findings in this paper. First, chimera
I1G1(M) unexpectedly loses K1 selectivity, although there
are no mutations in the chimera sequence. Second, the loss
of K1 selectivity in I1G1(M) occurs coincidentally with an
acquired sensitivity to inhibition by extracellular QX-314.
Mutations that restore K1 selectivity in I1G1(M) eliminate
the inhibition by extracellular QX-314. Third, the inhibition
of wild-type GIRK channels by intracellular QX-314 ap-
pears to be different from that produced by extracellular
QX-314 in nonselective GIRK channels. The results are
discussed in terms of a model in which the pore-loop
complex must be properly positioned to maintain high K1

selectivity and prevent large cations from reaching an in-
trapore binding site.

Loss of ion selectivity in chimera I1G1(M) caused
by amino acids in the pore-loop complex

Both I1G1(M) and GIRK2wv channels lose the ability to
discriminate among K1 and Na1 ions when expressed in
Xenopusoocytes. In GIRK2wv, a G156S mutation exists in
the GYG sequence of the pore-loop complex (Patil et al.,
1995), a region that is highly conserved among all K1

channels and is critical for maintaining high K1 selectivity
(Heginbotham et al., 1994; Slesinger et al., 1996). The loss
of K1 selectivity in chimera I1G1(M), however, was unex-
pected because I1G1(M) does not contain site-specific mu-
tations in the pore-loop complex or anywhere else in the
channel. There are several plausible explanations for the
loss of K1 selectivity in I1G1(M).

First, the loss of K1 selectivity could arise from the
co-assembly of I1G1(M) with XIR, the endogenous GIRK
subunit in oocytes. This explanation is unlikely because
co-injecting the cRNA for I1G1(M) with an oligonucleotide
that is antisense to XIR did not prevent the expression of
inwardly rectifying Na-permeable and QX-314-sensitive
ion channels (Hedin et al., 1996). Moreover, expression of
I1G1(M) yielded large currents, unlike the small currents
recorded from oocytes injected with the cRNA for GIRK1
(Hedin et al., 1996). A second possible explanation is that
the N- and C-terminal domains of IRK1 are incompatible
with the hydrophobic core domains of GIRK1 in I1G1(M).
The loss of K1 selectivity in I1G1(M) channels, however,
was not associated with a large change in the inward recti-

fication, suggesting that these regions changed little in
I1G1(M).

A more likely explanation for the loss of K1 selectivity in
I1G1(M) is that the combination of four identical pore-loop
complexes from GIRK1 is incompatible with high K1 se-
lectivity. First, Silverman et al. (1998) reported that a
GIRK4 chimeric channel containing the pore-loop complex
from GIRK1 was permeable to Na1, like I1G1(M). Second,
a chimera composed of GIRK2 in the core region, I1G2(M),
was shown to be K1 selective in this paper. Third, muta-
tions of two amino acids that are unique to GIRK1 (F137
and A142) dramatically improved the K1 selectivity of
I1G1(M) when mutated to the homologous amino acids in
GIRK2. The F137S mutation in GIRK1, in particular, was
implicated previously in the slow activation kinetics and
heteromeric assembly of GIRK channels inXenopusoo-
cytes (Chan et al., 1996; Kofuji et al., 1996a). Chan et al.
(1996) also found that GIRK1-F137S could express on the
surface of oocytes as a homomultimer. At present, the
mechanism by which a serine substitution in the pore-loop
complex alters these properties of GIRK channels is not
well understood.

Assuming that the pore structure of GIRK channels is
similar to that of the bacterial K1 channel, KcsA, the
homologous amino acids (S69 and T74 in KcsA) in the
pore-loop helix are positioned where they can potentially
affect K1 selectivity (Fig. 7A). In KcsA, S69 is buried in
the protein core between the pore-loop helix and the M1 and
M2 transmembrane domains and contacts the main-chain
carbonyl oxygens and side chains of L40 and S44 of M1 and
partly V95 of M2. The bulkier phenylalanine could disrupt
the packing of the protein, producing a large change in the
backbone carbonyl oxygens in the GYG sequence, which
must be positioned accurately to favor stabilizing unhy-
drated K1 ions versus smaller unhydrated Na1 ions (Doyle
et al., 1998). The shift in the GYG must be large enough
(;10 Å) to allow QX-314 to reach the intrapore binding
site. The T74 in KcsA, on the other hand, faces the pore and
may be involved in inhibition by Ba21 (Doyle et al., 1998).
The weak inhibition of I1G1(M) by extracellular Ba21

might be due to the presence of an alanine at position 142,
as compared with the more Ba21-sensitive GIRK2wv, which
has a threonine at the homologous position. That A142T
must be combined with F137S to restore K1 selectivity in
I1G1(M) suggests that the bulkier threonine is structurally
more compatible than alanine for maintaining K1 selectivity.

An intrapore binding site for extracellular QX-314
in nonselective GIRK channels

The second main finding in this paper is that nonselective
GIRK channels, in general, appear to be sensitive to inhi-
bition by extracellular QX-314. The most parsimonious
explanation for the acquired sensitivity is that GIRK chan-
nels possess an intrapore binding site that is normally inac-
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cessible to permanently charged local anesthetics applied
from the extracellular side of the membrane. If we suppose
that a loss of ion selectivity occurs when the position of the
critical GYG in the pore-loop complex is altered, then
permanently charged local anesthetics could move past the
misaligned selectivity filter to a binding site deep within the
pore. Consistent with this conclusion, the mutations in the
pore-loop helix that restored K1 selectivity also dramati-
cally reduced the inhibition produced by all three local
anesthetics. The selectivity filter of Na1 channels may serve
a similar role. Sunami et al. (1997) reported that mutations
in the selectivity filter of skeletal muscle Na1 channels
exposed an intrapore binding site for QX-314. Similarly,
Adams et al. (1999) recently reported that a mutation in the
pore-loop complex of a Na1 channel altered Na1 selectivity
and revealed a voltage-dependent inhibition by extracellu-
larly applied tetraethylammonium (TEA). Thus, by virtue of
the strong ion selectivity in these ion channels, the selec-
tivity filter also prevents large, charged cations from reach-
ing the central pore cavity.

Although the mechanism underlying the change in ion
selectivity in I1G1(M) and GIRK2wv is likely different, both
channels are inhibited by extracellularly applied local anes-
thetics. Most parameters of QX-314 inhibition (e.g.,Ki(0),
Hill coefficient, voltage dependence, and rank order sensi-
tivity to inhibition by QX-222, QX-314, or lidocaine) were
indistinguishable between I1G1(M) and GIRK2wv, suggest-
ing that the local anesthetic binding sites in GIRK1 and
GIRK2 are similar. Like GIRK2wv, GIRK4 channels con-
taining theweavermutation also lose K1 selectivity and
become sensitive to inhibition by extracellular QX-314 (Sil-
verman et al., 1996). The sensitivity to inhibition by extra-
cellular QX-314 may be a general feature of nonselective
GIRK channels.

The voltage dependence of QX-314 inhibition indicates
that QX-314 binds to a site within the pore that senses more
than half the electric potential drop across the membrane. In
voltage-gated K1 channels, the majority of the voltage drop
occurs across the pore-loop complex (Yellen et al., 1991).
Thus, QX-314 likely moves to a site deep within the pore,
just cytoplasmic to the pore-loop complex. In fact, the upper
half of the M2 transmembrane domain may comprise part of
the binding site for QX-314. Of the 21 alanine substitutions
studied in I1G1(M), 11 significantly shifted the sensitivity
to inhibition by QX-314 by approximately60.4 kcal/mol
(DDG). TheseDDG values are comparable to those (0.4–1.9
kcal/mol) reported for changes in QX-314 inhibition that
were produced by mutations in the S6 transmembrane do-
main of voltage-gated Na1 channels (Ragsdale et al., 1996;
Sunami et al., 1997). In Ca21 channels, alanine substitutions
in the S6 transmembrane domain produced 0.4–0.94-kcal/
mol changes in the sensitivity to diltiazem inhibition (Kraus
et al., 1998). Different types of amino acid substitutions in
the M2 of I1G1(M) might result in largerDDG values.

When arranged into ana-helix, six of the amino acids
that shifted the sensitivity of QX-314 inhibition (G158,
I159, F162, Q165, G169, and I177) cluster along one face of
the helix. Based on studies that have systematically mutated
the M2 transmembrane domain of inwardly rectifying K1

channels (Choe et al., 1995; Collins et al., 1997; Loussouarn
et al., 2000; Lu et al., 1999), L163, Q165, G169, and I177
would be expected to face the pore and are in a good
position to affect QX-314 binding. In the model proposed
by Minor et al. (1999), four of the amino acids (G158, F162,
Q165, and G169) would be at M1-M2 helix contact points
and three would face the pore (K159, L163, and I177). The
majority of the pore-facing amino acids that changed QX-
314 were hydrophobic, suggesting that the dimethylphenyl
moiety of QX-314 might interact preferentially with
I1G1(M). Using the KcsA structure as a model for inward
rectifiers, the internal pore of a GIRK channel is likely a
water-filled cavity lined with hydrophobic amino acids,
which is large enough (10 Å) to accommodate either TEA
or QX-314 (Doyle et al., 1998). In fact, both TEA and
QX-314 bind to an intrapore binding site in voltage-gated
K1 channels (Baukrowitz and Yellen, 1996). The hydro-
phobic environment of the intrapore cavity of GIRK chan-
nels may therefore comprise the binding site for QX-314.

Comparison with inhibition by
intracellular QX-314

In neurons (Andrade, 1991; Lambert and Wilson, 1993;
Yamada et al., 1999) andXenopusoocytes (this study),
activation of GIRK currents is inhibited by high concentra-
tions of intracellular QX-314. I1G1(M) channels, however,
showed fourfold less inhibition to intracellular QX-314 than
did wild-type GIRK channels. Even the K1-selective
I1G1(M)-F137S/A142T showed little inhibition with intra-
cellular QX-314, indicating that lack of K1 selectivity in
I1G1(M) did not account for the change in sensitivity to
intracellular QX-314. I1G1(M) channels are constitutively
active and no longer require G proteins (Slesinger et al.,
1995). The lack of inhibition by intracellular QX-314 could
be therefore related to the loss of G-protein-gating in
I1G1(M). Consistent with this conclusion, a recent study
with membrane-permeant local anesthetics indicated that
local anesthetics inhibit GIRK channels but not other in-
wardly rectifying K1 channels by interfering with the gating
underlying G protein or ethanol activation of GIRK chan-
nels (Zhou and Slesinger, 2000). The mechanism underly-
ing inhibition of nonselective GIRK channels with extracel-
lular QX-314, therefore, appears to be different from that
governing inhibition of wild-type GIRK channels with in-
tracellular QX-314.
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