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ABSTRACT In this paper, we consider the implications of the general theory developed in the accompanying paper, to
interpret experiments on DNA overstretching that involve variables such as solution temperature, pH, and ionic strength. We
find the DNA helix-coil phase boundary in the force-temperature space. At temperatures significantly below the regular (zero
force) DNA melting temperature, the overstretching force, fov(T), is predicted to decrease nearly linearly with temperature. We
calculate the slope of this dependence as a function of entropy and heat-capacity changes upon DNA melting. Fitting of the
experimental fov(T) dependence allows determination of both of these quantities in very good agreement with their calori-
metric values. At temperatures slightly above the regular DNA melting temperature, we predict stabilization of dsDNA by
moderate forces, and destabilization by higher forces. Thus the DNA stretching curves, f(b), should exhibit two rather than one
overstretching transitions: from single stranded (ss) to double stranded (ds) and then back at the higher force. We also predict
that any change in DNA solution conditions that affects its melting temperature should have a similar effect on DNA
overstretching force. This result is used to calculate the dependence of DNA overstretching force on solution pH, fov(pH), from
the known dependence of DNA melting temperature on pH. The calculated fov(pH) is in excellent agreement with its
experimental determination (M. C. Williams, J. R. Wenner, I. Rouzina, and V. A. Bloomfield, Biophys. J., accepted for
publication). Finally, we quantitatively explain the measured dependence of DNA overstretching force on solution ionic
strength for crosslinked and noncrosslinked DNA. The much stronger salt dependence of fov in noncrosslinked DNA results
from its lower linear charge density in the melted state, compared to crosslinked or double-stranded overstretched S-DNA.

INTRODUCTION

In this paper, we consider the implications of the general
theory developed in the previous paper (Rouzina and
Bloomfield, 2001), which equates DNA overstretching with
force-induced melting, to interpret experiments on DNA
overstretching that involve variables such as solution tem-
perature, pH, and ionic strength.

If DNA overstretching is equivalent to force-induced
melting, it should be sensitive to temperature. We therefore
begin by analyzing dsDNA stability as a function of both
force f and temperatureT. We find the helix-coil phase
boundary corresponding to the force at the midpoint of the
overstretching transition as a function ofT, fov(T), or, con-
versely, the temperature midpoint of the helix-coil transition
as a function of applied forceTm(f). At temperatures much
lower than the regular (zero force) DNA melting tempera-
ture Tm 5 Tm(f 5 0), fov(T) decreases almost linearly with
f. However, atT $ Tm, the dependence onfov(T) becomes
strongly nonlinear, and there are two, rather than one, crit-
ical forcesfss–ds(T) and fds–ss(T). The DNA double helix is
only stable under applied forces between these:fss–ds(T) ,
f , fds–ss(T). This range of forces becomes narrower asT is
raised, and the two forces finally converge atfcr asT reaches

a critical valueTcr. We calculatefcr andTcr and discuss their
physical meaning.

We then use this general theory to calculate thefov(T)
curve for l-DNA and for comparison with available data
(Clausen-Schaumann et al., 2000; M. C. Williams, J. R.
Wenner, I. Rouzina, and V. A. Bloomfield, submitted for
publication). The major conclusion is that the temperature-
dependence of the DNA overstretching force is in complete
agreement with its interpretation as force-induced melting.
The fit of the experimentalfov(T) curve not only yields a
reasonable value for the DNA melting entropy, but also
allows estimation of its temperature dependence,DS(T),
which in turn yields a heat capacity of DNA melting,DCp

in good agreement with DNA thermal melting studies
(Chalikian et al., 1999; Rouzina and Bloomfield, 1999a).

Finally, we show how changes in solution conditions that
change the melting temperature, such as pH and ionic
strength, will change the overstretching force in a predict-
able way, and compare theoretical predictions with avail-
able experimental data.

TEMPERATURE DEPENDENCE OF
DNA OVERSTRETCHING

Phase diagram

The phase boundaryfov(T) between helical and coil states of DNA is
determined by the conditionDG(f, T) 5 0, or DF(f) 5 2DG0(T). Here
DF(f) is the force-dependent contribution to the Gibbs free energy of DNA
melting transition defined by Eq. 4 of Rouzina and Bloomfield (2001). The
slopefov/T can be calculated using the fact that, not only the transition
free energyDG(f, T), but also its total derivative should vanish at the
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T
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Db~f, T!
. (2)

Here we took into account that, in each stateG/T 5 2S(f, T), and
G/f 5 2b(f, T), according to Eq. 2 of Rouzina and Bloomfield (2001).
Both derivatives should be taken at the force and the temperature at the
midpoint of the transition.

To illustrate, we use, forDF(f), the value obtained from experimental
dsDNA and ssDNA stretching curves under standard conditions of room
temperatureTr 5 293 K and 150 mM NaCl. First, we take the transition
free energy without applied force,DG0(T), in the form of linear dependence
described by Eq. 24 of Rouzina and Bloomfield (2001) with the values
from thermal melting studies ofTm 5 360 K andDS 5 25 cal/mol-K
(Blake and Delcourt, 1998; Rouzina and Bloomfield, 1999; Santalucia,
1998).

We assume that the dependences ofDS on f and of Db(f) on T are
negligible. The first of these assumptions is justified by the fact that, as was
shown in Rouzina and Bloomfield (2001),DF(f)/T 5 2DS(f, T) ,, DS
at any reasonable force. The second assumption implies that flexibilities of
ds and ssDNA change insignificantly with temperature. This assumption
holds much better for the ds than for ssDNA in the range of experimental
temperature variation. Direct measurement of the ssDNA flexibility at
various temperatures would be needed to enable more accurate prediction
of fov(T). In any case, the effect of varying ssDNA flexibility with tem-
perature onfov(T) should be minor compared to the main effect described
below.

The calculatedfov(T) dependence (long dashed linein Fig. 1), captures
the main features of the effect. Its slope atT ,, Tm, is constant and equal

to fov/T 5 2DS/Dbmax ' 225 cal/mol-K/0.22 nm5 20.8 pN/K, where
Dbmax ' 0.22 nm is the maximum difference between the stretched-out
extension per base of ss and dsDNA. A similar fit of their experimental
fov(T) dependence was performed by Gaub et al. (Clausen-Schaumann et
al., 2000). Our procedure is different in that the DNA melting temperature
at zero force is required to equal the value determined from thermal
melting studies. Also we take into account the variation ofDb with force,
and the variation ofDSwith temperature, as described in the next subsection.

The slope offov(T) calculated assumingDS 5 25 cal/mol-K (long
dashed linein Fig. 1) apparently overestimates the experimental slope from
the data of Gaub et al. (Clausen-Schaumann et al., 2000). The best fit to all
data points is provided byDS5 20 cal/mol-K (short dashed linein Fig. 1),
rather thanDS 5 25 cal/mol-K. This lower value of the melting entropy
would explain why the DNA double helix is melted at room temperature by
fov 5 65 pN rather than about 80 pN as predicted by the long dashed line
in Fig. 1. In other words, analysis of the stretching experiment suggests that
dsDNA at room temperature is less stable than expected from the conven-
tional estimate according to Eq. 24 with the calorimetric value ofDS, as
discussed in Rouzina and Bloomfield (2001).

Heat capacity effects

It is possible to resolve this contradiction between the measured and fitted
values of the DNA melting entropy by taking into account its dependence
on temperature (Landau and Lifshitz, 1988),

DS5 DS~Tm! 1 DCp z lnS T

Tm
D. (3)

Here,DCp is the change of DNA heat capacity per basepair upon melting.
For a long time,DCp was considered negligible due to experimental
difficulties in its determination. Only recently was it directly measured to
beDCp 5 656 20 cal/mol-K (Chalikian et al., 1999; Holbrook et al., 1999;
Jelesarov et al., 1999), and its importance for DNA melting thermodynam-
ics realized (Rouzina and Bloomfield, 1999a,b).

In calorimetric experiments, it isDS(Tm) which is measured. However,
DNA melting by stretching can occur at much lower temperatures, which,
according to Eq. 3, should have much lower transition entropy. Thus, at the
room temperatureTr 5 293 K andDCp 5 65 cal/mol-K, DS(Tr) 5 11
cal/mol-K rather than 25 cal/mol-K.

The simplest way to calculate the dependence offov on (T), taking into
account the nonzeroDCp, is to solve the quadratic equationDF(f) 5
2DG0(T) with

DG0~T! 5 DS~Tm! z ~Tm 2 T! 2
DCp

2
z
~Tm 2 T!2

Tm
. (4)

This expression forDG0(T) can be obtained as its expansion to the second
order with respect to small parameter (T 2 Tm)/Tm ,, 1 using the standard
relation DG 5 DH 2 TDS, with DH 5 DH(Tm) 1 DCp z (T 2 Tm) and
DS(T) given by Eq. 3 (Rouzina and Bloomfield, 1999). The transition free
energy calculated according to Eq. 4 withDCp 5 65 cal/mol-K is presented
in Fig. 2 in comparison with the behavior ifDCp 5 0. The double helix
stability at room temperature in the former case is indeed smaller by
;0.5kBTr 5 0.3 kcal/mol. In other words, the actual DNA stability at room
temperature is about 30% smaller than conventionally thought, based on
the linear approximation to its temperature dependence, Eq. 24 of Rouzina
and Bloomfield (2001). We performed suchfov(T) calculation fixing
DS(Tm) 5 25 6 2 cal/mol-K and adjustingDCp; the best fit to experiment
was obtained withDCp 5 656 15 cal/mol-K, in very good agreement with
the calorimetric determination. More detailed discussion of the fitting
procedure applied to highly accurate datafov(T) can be found in a recent
paper from our laboratory (M. C. Williams, J. R. Wenner, I. Rouzina, and
V. A. Bloomfield, submitted for publication). There, we arrive at the
conclusion that the melting theory describes thefov(T) dependence very

FIGURE 1 The helix-coil phase boundary in (f, T) plane. Circles with
error bars are data points from Clausen-Schaumann et al. (2000).Long
dashed line: fov(T) calculated according to equationDF(f) 5 2DS z (T 2
Tm) with experimental valuesTm 5 87°C andDS(Tm) 5 25 cal/mol-K.
Short dashed line: the same but withDS 5 20 cal/mol-K. Solid line:
calculation assuming nonlinear dependence of transition free energy on the
temperature, Eq. 4, with the heat capacity of DNA melting per basepair of
DCp 5 65 cal/mol-K andDS(Tm) 5 25 cal/mol-K. In all calculations,
DF(f) was taken equal to its experimental room temperature value (Fig. 3A
of Rouzina and Bloomfield, 2001).
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well with the best fit valuesDCp 5 60 6 10 cal/mol-K andDS(Tm) 5
24.5 6 1 cal/mol-K, in perfect agreement with DNA thermal melting
studies.

High-temperature behavior

So far, we have discussed only the low-temperature end of thefov(T) curve,
where the DNA duplex is rather stable and the overstretching force is high.
Therefore, both dsDNA and ssDNA are almost fully stretched out, and
Db(f) is almost saturated. This results in nearly linearfov(T) dependence at
T ,, Tm. However, when the temperature approachesTm, dsDNA is
brought to the verge of its stability, so that only a very small force is needed
to melt it. The difference in extension per basepair between the ss and ds
forms of DNA decreases withf until it becomes zero at some forcefcr, i.e.,
Db(fcr) 5 0. At f , fcr, Db reverses sign (see Fig. 3B of Rouzina and
Bloomfield (2001)), which, in turn, causes reversal of the sign of the slope
fov/T (Fig. 1). The specific value offcr depends on the flexibility of ds
and ssDNA at the given conditions. If both DNA forms are described as
wormlike chains (WLC),fcr should lie between the two characteristic
stretching forceskBT/Ads , fcr # kBT/Ass. In our reference case ofl-DNA
in 0.15 M salt,fcr ' 7 pN.

Because an applied force always preferentially stabilizes the longer
molecular form, atf . fcr, it drives equilibrium toward ssDNA, while at
f , fcr, it stabilizes dsDNA. At the same time, raising the temperature
promotes the first transition and opposes the second. This is the physical
meaning of the sign reversal offov/T.

At T . Tm, when DNA is single-stranded without force, application of
moderate forcef , fcr should promote its transition to the double-stranded
form. When the force is raised further, the reverse transition to ssDNA
occurs. This behavior is illustrated in Fig. 3A, which presents DNA
stretching profilesf(b) for several different temperatures nearTm 5 87°C,
calculated using Eq. 3 of Rouzina and Bloomfield (2001) for experimental
DF(f) andDG0(T) given by Eq. 4. We see that the curve atT 5 88°C is
calculated to have two overstretching transitions: one atfss3ds ; 3 pN and
the other atfds3ss; 12 pN. Neither transition is very cooperative, because
the extensions of ss and dsDNA are not very different at such forces, and
strongly depend on the force. RaisingT beyondTm increasesfss3ds and
decreasesfds3ss, until they finally converge at the critical point (fcr, Tcr).
Beyond this point, no dsDNA can exist.Tcr can be interpreted as the

maximum melting temperature of dsDNA, due to its additional stabiliza-
tion by force. It can be found from the conditionDG0(Tcr) 5 2DF(fcr),

Tcr 5 Tm 1
DF~fcr!

DS
. (5)

Reading the maximum value ofDF(fcr) ' 0.2kBTr from the solid curve in
Fig. 3A of Rouzina and Bloomfield (2001), and usingDS5 25 cal/mol-K,
we arrive at a maximum melting temperature increase of about 5 K, as
shown in Fig. 1 of this paper.

MELTING FORCE DEPENDENCE ON OTHER
SOLUTION CONDITIONS

General theory

If DNA overstretching is due to force-induced melting, then any solution
changes that affect double-helix stability should have an effect on the
overstretching force. For an arbitrary parameterY, the fm(Y) dependence
can be described by analogy to Eq. 2,

f

Y
5 2

~DG/Y!T,f

~DG~T, f, Y!/f!T,Y
. (6)

The derivativesDG/YandDG/f should be taken at the transition point.
If DG(f, T, Y) is known, thenfm(Y) can be found explicitly from Eq. 6. This
will be done below whenY is ionic strength.

For most solution variables, however, it is their effect onTm rather than
DG that is known. If the dependence ofTm on Y is available, it is possible
to make an approximate prediction offm(Y):

fov~Y! 2 fov~Y
0! 5 ~Tm~Y! 2 Tm~Y0!! z

DS*

Db
, (7)

wherefov(Y
0) andTm(Y0) are the melting force and melting temperature at

some reference valueY0. The coefficient of proportionalityDS*/Db, where
DS* is some average measure of the transition entropy, can be approxi-
mated as independent ofT, f, andY.

Then, in analogy to Eq. 1 one can write

SDG

Y D
Tm,f50

2 ~DS!Tm,f50

Tm

Y
5 0

and (8)

SDG

Y D
T,f

2 ~Db!T,f z
fm
Y

5 0.

Therefore

fm
Y

5
DSTm

Db
z
Tm

Y
1

1

Db
z
@DG~T, f! 2 DG~Tm, f 5 0!#

Y
.

(9)

The difference between the two transition energies in brackets can be
approximated as2DS z (T 2 Tm) 2 Db z f. Therefore, ifDSandDb are not
very sensitive toY, we arrive at the result given by Eq. 7, withDS* the
transition entropy averaged betweenT andTm.

pH Dependence

Under normal solution conditions, the range of interesting temperatures,
Tm , T , Tcr, is too narrow and the temperatures are too high for direct

FIGURE 2 Temperature effect onDG0(T), the free energy of DNA
melting in the absence of applied force, calculated with (solid curve: Eq. 4),
and without, (dashed curve: Eq. 24 of Rouzina and Bloomfield, 2001) heat
capacity change. In the former case, we tookDCp 5 65 cal/mol-K; whereas
DS(Tm) 5 25 cal/mol-K for both curves.
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observation. However, if the double helix is destabilized by other solution
conditions, so thatTm is lowered into an experimentally accessible range,
one might be able to observe both predicted DNA stretching transitions at
the same temperatureT $ Tm. This strategy was used in our study of the
effect of pH on DNA overstretching force (Williams et al., 2001), where
we made parallel measurements offov(pH) andTm(pH) in the range 3,
pH , 11. fov remains unchanged at the 65-pN value typical of neutral pH
in the interval 4, pH , 9.5, but drops abruptly at higher and lower pH.
The overallfov(pH) dependence can be nicely predicted fromTm(pH) using
Eq. 7 with DS* 5 10 cal/mol-K. This value is close to the average
transition entropy determined calorimetrically in Privalov et al. (1969),
DS 5 12 cal/mol-K. It also agrees with the value ofDS(T 5 20°C) 5 11
cal/mol-K calculated according to Eq. 3, withDCp 5 65 cal/mol-K. A
similar value,DS(T 5 20°C) ' 10 cal/mol-K, was estimated from the
temperature dependence of overstretching force in M. C. Williams, J. R.
Wenner, I. Rouzina, and V. A. Bloomfield, submitted for publication. This
striking result argues strongly in favor of the melting nature of the over-
stretching transition. It also essentially rules out the existence of over-
stretched double-stranded S-DNA with intact hydrogen bonds, because
strong destabilization of B-DNA duplex at low and high pH occurs spe-
cifically due to protonation and deprotonation at the sites of broken
interbase hydrogen bonds only on single-stranded DNA.

At pH 3.1, dsDNA is on the verge of stability at room temperature, and
a stretching force can easily shift the equilibrium between double- and
single-stranded forms. Single-stranded DNA appears to become more
flexible at low pH, because of charge neutralization by protonation. This
increased flexibility of ssDNA, in turn, results in a higherfcr, and stronger
stabilization of dsDNA by the crossover force. Thus, the DNA stretching
profile at low pH andT slightly aboveTm should have two overstretching
transitions. Such a stretching curve obtained with DNA parameters at pH
3.1 taken from Williams et al. (2001) is presented in Fig. 3B. Here,f(b)
was calculated according to Eqs. 4, 25, and 26 of Rouzina and Bloomfield
(2001) with the total transition free energyDG(f, pH,T) 5 DG0(T) 1
DF(f, pH) obtained from experimental stretching curve at pH5 3.1,
presented in Fig. 3C.

Ionic strength dependence

The effect of ionic strength on stability of the DNA double helix is well
known. The salt-dependent part of the helix-coil transition free energy,
DGel, can be adequately described by polyelectrolyte theory in low salt,
(I ,, I0, I0 ' 1 M) by (Bond et al., 1994; Frank-Kamenetskii et al., 1987)

DGel 5 kBT z S 1

jss
2

1

jds
D ln~I/I0!, (10)

wherej is the dimensionless linear charge density,

j 5
lB
h

where lB 5
e2

ekBT
. (11)

Hereh is the length per unit chargee, e is the dielectric constant of water,
andlB is the Bjerrum length. In water at room temperature,e 5 78 andlB 5
0.71 nm.

Long and short dashed lines are ss and ds stretching curves, respectively.
(C) Total melting transition free energy at pH5 3.1, DG(f) 5 dF(f) 1
DG0, from experimental data of (M. C. Williams, J. R. Wenner, I. Rouzina,
and V. A. Bloomfield, submitted for publication) and used for calculation
of stretching curve in Fig. 3B. The crossover force,fcr, and maximum
dsDNA stabilizationDFcr 5 DG(fcr) 2 DG(f 5 0) 5 0.72kBTr, are much
larger under these conditions compared to neutral pH.

FIGURE 3 (A) Calculated DNA stretching curves at different tempera-
tures around original melting temperature without forceTm 5 87°C. The
temperature corresponding to each curve is indicated. All curves atT , Tm

have one ds–ss transition. The curve corresponding toT 5 88°C just above
Tm has two overstretching transitions, whereas the curve atT 5 92°C is
single stranded at any force. AtT 5 84°C , Tm, there is a single
overstretching transition from ds to ssDNA at'25 pN. (B) The same but
for pH 5 3.1 and temperature slightly above room temperature. The solid
line is a stretching curve with two well-defined overstretching transitions.
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Dependence of the overstretching force on solution ionic strength can be
calculated by substituting lnI for the solution variableY in Eq. 6:

fov

 ln~I!
5 2

DG~f!/ ln~I!

DG~f!/f
5

DGel/ ln~I! 1 DF/ ln~I!

Db~f!
,

(12)

where, as usual, the free-energy derivatives should be taken at the transi-
tion point. The second equality in Eq. 12 was obtained by taking into
account that the total transition free energy is a sum of three components:
DG(f, T, I) 5 DG0(T) 1 DF 1 DGel, of which onlyDF(f) depends on the
force, so thatDG(f)/f ' 2Db(f). Of the two terms in the numerator of Eq.
12, it is the first that is significant. It is shown in the Appendix that the
second term, which takes into account the variation of dsDNA and ssDNA
flexibility with salt, is negligible compared to the first term. Taking into
account Eq. 10, we calculate the slope as

fov

 ln~I!
5

kBT

lB
z n, (13)

where

n 5
hss2 hds

bss2 bds
(14)

is the ratio of the difference in the length per unit charge,hss2 hds, and the
difference in length per basepair projected on the direction of the force,
bss 2 bds. At the high forces typical of the overstretching transition,
stretching of both DNA forms is almost complete, sobss/bds ' 1.7.

In the fully stretched double-helical state, the length per unit charge is
always half the rise per basepair,hds 5 1⁄2 bds. In the coil state, the length
per unit charge depends on the details of the state, and is less well
determined. As discussed in Rouzina and Bloomfield (2001), there are two
possibilities: either both strands are under tension when melted, or one is
relaxed. In the first case, the length per unit charge is determined by the
proximity of the two melted strands to each other. When the tension is
high, both melted strands are almost completely extended, and therefore
are close to each other. Electrostatically, two such strands are equivalent to
a single strand with double charge. In this case,hss 5 1⁄2 bss. Then

n 5
1

2

bss2 bds

bss2 bds
5 0.5. (15)

This approximation will be justified if the average distance between the
strands is much smaller than the Debye screening length,rDH 5 1/=4plBI.
This condition will always be satisfied for two intact strands under high
enough tension. If this condition does not hold, then two melted strands are
separate polyelectrolyte chains, andhss 5 bss, so

n 5
bss2 bds/2

bss2 bds
5 1.7. (16)

In the second case, when one strand is nicked or unattached while the
other is under tension, the length per unit charge in the coiled state should
be an average of its value in the stretched strandhss ' bss and its value in
the melted relaxed single strandhss' bds. The latter relation follows from
studies of the salt dependence of the thermal melting of DNA (Bond et al.,
1994; Frank-Kamenetskii et al., 1987). The averagehss value between the
two strands then ishss 5 (bss 1 bds)/2, and

n 5
~bss1 bds!/2 2 bds/2

bss2 bds
5

bss

2~bss2 bds!
< 1.2. (17)

Recently, Stigter (1998) considered this very problem, trying to distin-
guish between double-stranded S-DNA and melted single-strand models of

overstretched DNA. He modeled melted DNA strands as distant, and
S-DNA as a single rod with twice the linear charge density. Comparison of
the calculatedDGel(I) for both models with that derived from the experi-
mental fov(I) behavior obtained in Smith et al. (1996) clearly favors the
double-stranded model of overstretched DNA. The experimental (Smith et
al., 1996) slope isfov/ log(I) 5 8.5 pN (Fig. 4), equal to the value given
by Eq. 13 withn 5 0.64. This is close to the valuen ' 0.5 expected for
a transition into a state with two close parallel strands.

However, in this experiment (Smith et al., 1996),l-DNA was
crosslinked with psoralen at every 20th base pair. The overstretching
transition still occurred in this crosslinked DNA, but it was much broader
than without crosslinking. This is easy to understand, taking into account
that the size of the cooperatively melting unit was reduced from;100 bp
to ;20 bp as fixed by the crosslinking frequency. The melted state of two
strands in such crosslinked DNA is, perforce, electrostatically similar to
that of S-DNA.

We now have additional experimental information, summarized in Fig.
4, on the salt dependence of the overstretching transition in noncrosslinked
DNA (C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante,
manuscript in preparation; Clausen-Schaumann et al., 2000; Williams,
private communication). At high salt,I $ 0.2 M, f0 saturates at the same
value 65–67 pN. But the overstretching force decays much faster with salt
in the noncrosslinked DNA. Thus, the slope at lower salt (C. G. Baumann,
S. B. Smith, V. A. Bloomfield, and C. Bustamante, manuscript in prepa-
ration), fov/ log(I) 5 14.4 pN, is almost twice as large. It corresponds,
according to Eq. 13, ton ' 1.1. This result agrees with a picture in which
about 30% of the DNA length has two strands under tension, with only one
strand under tension along the rest of the length. The particular state of
melted DNA under tension depends on the DNA sequence and location of
single-strand nicks. Thus, in Fig. 4, there are slightly different data on the
salt dependence offov from a recent atomic force microscopy study on a
l-DNA digest (Clausen-Schaumann et al., 2000). It is incontestable, re-
gardless of these details, that the noncrosslinked form of overstretched
DNA has a significantly lower linear charge density than the crosslinked
form. It is very difficult to rationalize the strong effect of crosslinking on
DNA overstretching in lower salt if it were a transition to a double-stranded
S-DNA form.

FIGURE 4 DNA overstretching force as a function of solution ionic
strength.Filled circles: data for crosslinked DNA from (Smith et al., 1996).
Squares: data from C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C.
Bustamante, manuscript in preparation).Open circles: data for non-
crosslinked DNA from (Clausen-Schaumann et al., 2000). Lines are linear
fits of fov(ln(I)) according to Eq. 13, withn 5 0.6 for crosslinked DNA and
n 5 1.1 for noncrosslinked DNA, as discussed in the text.
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Another effect, which should make the dependence offov on I weaker
in crosslinked DNA, thus enhancing its difference from noncrosslinked
DNA in low salt, is the increasing stiffness of single-stranded DNA in low
salt (Tinland et al., 1997). When the persistence length of ssDNA reaches
the distance between crosslinks, the entropic advantage of DNA melting
will be strongly reduced and the melting force should increase. This effect
is analytically tractable and will be treated elsewhere, but there is not yet
enough experimental information for quantitative comparison.

In Fig. 4, the data points at low salt for noncrosslinked DNA have large
error bars. This is due to the intrinsic problems with DNA overstretching
in low salt, which originally prompted the authors (Smith et al., 1996) to
crosslink it. The force versus extension profiles become quite jagged and
exhibit strong hysteresis in the relaxation part of the stretch–relax cycle.
We believe both of these features are related to the slow kinetics of strand
recombination in low salt (Rouzina and Bloomfield, manuscript in prepa-
ration). Also, the DNA becomes more fragile in low salt. This can be
related to significantly higher cooperativity of DNA melting in lower salt
(Kozyavkin et al., 1987). This, in turn, leads to a much larger size of the
cooperatively melting fragments (see Eq. 30 of Rouzina and Bloomfield,
2001), which can become equal to the distance between nicks, and lead
to frequent DNA breakage at the very beginning of the overstretching
transition.

DISCUSSION AND CONCLUSIONS

In this paper, we have explored some of the implications of
our general theory of force-induced DNA melting (Rouzina
and Bloomfield, 2001) with regard to the effects of solution
temperature, pH, and ionic strength. The model predicts that
the DNA overstretching force should be a decreasing func-
tion of temperature, and, conversely, that the melting tem-
perature should be a decreasing function of applied force.
This should not be the case if the transition is into some
double-stranded DNA form such as S-DNA. Indeed, any
double-stranded B-to-S transition in DNA would involve
only restructuring of primarily enthalpic bonds, which
should not be temperature sensitive. Although available
data for comparison are still limited, the force-induced
melting model is consistent with most of the observations.
This is particularly true of the effect of pH on the over-
stretching force (Williams et al., 2001), in whichfov follows
the changes inTm as pH is varied.

The force-induced melting model also quantitatively ex-
plains the observation that crosslinking the dsDNA makes
little difference to its stretching behavior in high salt, (ex-
cept for lower cooperativity), but significantly raisesfov in
lower salt, compared to noncrosslinked DNA.

The model makes numerous testable predictions. Most
generally, changes in the overstretching force should follow
changes in melting temperature with DNA composition and
varying solution conditions such as different salts, cosol-
vents, and ligands.

Precise measurement of DNA stretching curves in vari-
ous solutions offers new possibilities for studying DNA
duplex stability. An advantage of force-induced melting
over thermal melting is that it is isothermal, thereby avoid-
ing poorly characterized thermal contributions to the tran-
sition enthalpy and entropy. The resulting data can be used

for independent verification of current ideas about DNA
melting thermodynamics, including the issue of the heat
capacity increment in DNA melting (Chalikian et al., 1999;
Holbrook et al., 1999; Jelesarov et al., 1999; Rouzina and
Bloomfield, 1999a,b). Deeper insight can be obtained into
basic aspects of the helix-coil transition, such as boundary
energies, sequence heterogeneity effects, loop entropy fac-
tors, and elastic behavior of single-stranded DNA. Under-
standing the single-stranded nature of overstretched DNA
can affect interpretation of some experimental data on RecA
(Hegner et al., 1999) and polymerase (Wuite et al., 2000)
proteins binding to DNA.

The force-induced melting model can account for the
jagged stretching curves and pronounced relaxation hyster-
esis observed in many overstretching experiments (Clausen-
Schaumann et al., 2000). More systematic study of the
effects of varying stretching and relaxation rates should give
insight into the kinetics of melting and strand recombina-
tion, and should aid understanding of the rate-dependent
unbinding of oligomeric DNA (Strunz et al., 1999). Theo-
retical work on the kinetics of DNA force-induced melting
is in preparation.

APPENDIX

Here we show that the second term in Eq. 12 makes an insignificant
contribution to the slopefov/ ln(I). The derivativeDF/ ln(I) reflects
changes in the work of stretching ds and ssDNA (the Helmholtz free
energy as defined in Eq. 1 of Rouzina and Bloomfield, 2001), due to
changes in their flexibility with solution ionic strength. According to
(Skolnick and Fixman, 1977), the dependence of the persistence length of
a polyelectrolyte on ionic strength has the form

A~I! 5 A~I0! 1 dA where dA~I! 5
1

16plB
2I

. (A1)

Therefore,

DG

 ln~I!
5

A

 ln~I!
z
DG

A
< 2

dA

A 1 dA
z

kBTb

A 1 dA
, (A2)

where we took into account thatA/ ln(I) 5 2dA and DG/A 5
2(1/A)(DF 2 Db z f) ' kBTb/A2. Expression A2 is small in high salt,
becausedA/(A 1 dA) ,, 1. It is also small in low salt, because then,b/(A 1
dA) ,, 1. Therefore, it is always true thatDF/ ln(I) ,, DGel/ ln(I).

We thank C. Baumann, A. Grosberg, A. Halperin, S. Smith, A. Vologod-
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