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ABSTRACT Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged
deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with
nearby proteins. In contrast, to direct short-ranged interactions such as van der Waal’s, hydrophobic, or electrostatic
interactions, both local membrane Gaussian curvature and protein ellipticity can induce forces acting at distances of up to
a few times their typical radii. These forces can be attractive or repulsive, depending on the proteins’ shape, height, contact
angle with the bilayer, and a pre-existing local membrane curvature. Although interaction energies are not pairwise additive,
for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair
interaction potentials and entropic contributions to the two-dimensional osmotic pressure of a collection of noncircular
proteins. For flat membranes, bending rigidities of ;100kBT, moderate ellipticities, and large contact angle proteins, we find
thermally averaged attractive interactions of order kBT. These interactions may play an important role in the intermediate
stages of protein aggregation. Numerous biological processes where membrane bending-mediated interactions may be
relevant are cited, and possible experiments are discussed.

INTRODUCTION

Many cellular processes require the association or dissoci-
ation of membrane proteins, especially those involved in
cell signaling. Dimerization of receptors and their interac-
tions with G-proteins, often initiated by ligand binding,
require the building blocks to be in close proximity on the
cell membrane (Alberts et al., 1994). Proteins associated
with membrane fusion also act cooperatively (Stegmann et
al., 1989). Membrane-associated proteins interact directly
via screened electrostatic, van der Waal’s, and hydrophobic
forces. These are short ranged, operating typically over
distances of a few Angstroms. In this paper, we explore how
proteins can also interact indirectly via the bilayer in which
they are dissolved. In particular, a protein that is “geomet-
rically mismatched” to the bilayer will induce deformations
that affect neighboring proteins. These “solvent-induced
forces” (the membrane lipids being the solvent) are gener-
ated by bending deformations of the bilayer and typically
act over a few nanometers.

By “geometric mismatch,” we refer to any property of
membrane proteins, integral, or adsorbed, that causes local
bilayer bending. This effect may arise from wedge-shaped
integral membrane proteins, membrane partially wrapped
around adsorbed macromolecules (Koltover et al., 1999), or
integral membrane proteins with large floppy cytoplasmic
domains (Lipowsky et al., 1998). Provided that membrane-

associated proteins induce sufficient bilayer deformation,
they can aggregate. Membrane proteins involved in elec-
tronic energy transfer, such as photoreaction centers, appear
to be shaped in a way as to produce substantial membrane
deformations. Additional experimental examples include
aquaporin AQP1 and CD59, which aggregate to tips of
pipette-drawn lipid tubules (Cho et al., 1999; Discher and
Mohandas, 1996). Many membrane proteins are also non-
circular in the plane of the membrane, including adsorbed
polypeptides such as MARCKS (Myat et al., 1997), and
bacteriorhodopsin (Luecke et al., 1999), which consists of
seven transmembrane helices arranged in an elliptical con-
figuration. Small clusters of molecules themselves, such as
dimers or droplets of e.g., cholesterol or specific lipids, can,
themselves, behave effectively as membrane inclusions.
Droplets need not be rigid to induce membrane-mediated
forces among themselves.

Previous studies of protein–protein interactions found an
r24 repulsion between two identical inclusions (Goulian et
al., 1993; Kim et al., 1998; Park and Lubensky, 1996;
Dommersnes et al., 1998). Goulian et al. (1993) and Goles-
tanian et al. (1996) also found a weak attractive (2kBT/r4)
interaction arising from Casimir forces resulting from sup-
pressed thermodynamic fluctuations of the intervening
membrane. Dommersnes and Fournier (1999) have per-
formed Monte Carlo simulations to find possible aggrega-
tion structures. They assumed that each membrane protein
imposes a local curvature on the membrane. Here, we study
in detail a direct mechanical origin for protein–protein at-
tractive interactions. Although bending-induced forces be-
tween multiple inclusions are not pairwise additive, (Kim et
al., 1998, 1999; Park and Lubensky, 1996; Dommersnes et
al., 1998) we shall restrict ourselves to low protein densities

Received for publication 21 December 1999 and in final form 3 October
2000.

Address reprint requests to Tom Chou, Dept. of Biomathematics, AV-611/
CHS, UCLA School of Medicine, Los Angeles, CA 90095. Tel.: 310-206-
2787; Fax: 310-825-8685; E-mail: tomchou@ucla.edu.

© 2001 by the Biophysical Society

0006-3495/01/03/1075/13 $2.00

1075Biophysical Journal Volume 80 March 2001 1075–1087



where, statistically, only pairwise interactions are relevant.
We find that the interplay between protein shape (Kim et al.,
1999) and background Gaussian curvature dramatically af-
fect protein–protein attractions and thermodynamics. A
number of interesting features arise when we consider ther-
mal rotational averaging of the proteins, suggesting mech-
anisms of protein dimerization and function.

In the next section, we briefly review the mechanical
theory of inclusion-induced bilayer bending (Helfrich,
1973; Kim et al., 1998; Netz and Pincus, 1995). The lipid
membrane is approximated by a thin plate that resists out-
of-plane bending. Inclusions such as integral membrane
proteins, or surface adsorbed molecules, impose boundary
conditions along the contact line between the membrane and
the protein. Using elastic plate theory to describe the mem-
brane deformations, we derive the energy for two identical
inclusions as a function of their relative position within the
membrane surface.

In the following section, we show that the rotational and
translational time scales can be separated so that we can
thermally average out the fast rotational degrees of freedom.
The resulting effective potential between two proteins is
attractive, provided that the inclusions are sufficiently non-
circular. We use the effective potential to compute the
second virial coefficient and show how the attractive inter-
actions affect the two-dimensional (2D) protein osmotic
pressure. Finally, we discuss biological processes where
membrane-induced long-ranged protein–protein attrac-
tions may play an intermediate role, and propose possible
measurements.

MEMBRANE INCLUSIONS AND
HEIGHT DEFORMATION

Small membrane deformations (on the scale of the lipid or
protein molecules) can be accurately modeled using stan-
dard plate theory (Landau and Lifshitz, 1985; Helfrich,
1973)

Ẽ@H~S!, K~S!# 5 2bR dSH2~S! 1 bg R dSK~S!, (1)

where H(S) and K(S) are the local mean and Gaussian
curvatures, andb andbg are their associated elastic moduli.
We have assumed a symmetric bilayer and a vanishing
spontaneous mean curvature in the absence of the mem-
brane-deforming proteins. For uniformbg, the Gaussian
contribution (the second integral in Eq. 1), when integrated
over the entire surface, yields a constant that is independent
of the relative positions of the embedded proteins (Kim et
al., 1998; Struik, 1961). Thus, the Gaussian energy term can
be ignored when considering protein–protein interaction
energies.

Expanding the free energy about that of a flat interface,
H(S) . 1⁄2 ¹2h(x, y), where¹2 is the two-dimensional, in-
plane Laplacian, andh(x, y) is a small, slowly varying
height deformation from the flat state (cf., Fig. 1). Mini-
mizing Ẽ[h(S)] with respect toh(x, y [ S) yields the
biharmonic equation

¹4h~x, y! 5 2¹2H~r ! 5 0. (2)

First, consider membrane deformations about an isolated,
circularly symmetric inclusion of radiusa. If the bilayer
midplane contacts the protein perimeterC (see Fig. 1) at a
slope g, the appropriate solution to Eq. 2 ish(r) 5 2g
ln(r/a) for r . a. (The contact slopeg incorporates the
details of the molecular interactions between the included/
adsorbed protein with the lipid molecules. Molecular dy-
namics simulations of the local chemistry can quantitatively
determineg, but is beyond the scope of this paper. We will
estimateg from e.g., X-ray crystal structures.) In contrast to
lipid compression-mediated interactions (Nielsen et al.,
1998), the absence of an intrinsic length scale in Eq. 2 yields
the long-ranged (lnr) deformation necessary for nonpair-
wise interactions. We have excluded terms inh(r) of the
form r2ln r, r2, const. because they are unbounded in energy
(Eq. 1), or do not satisfy the contact angle boundary con-
dition at r 5 a. Because¹2ln(r/a) 5 2H(r) 5 0 for r . a,
there is no mean curvature bending energy (proportional to
b) residing in the bilayer. In the absence of spontaneous
curvature, the energy of inserting a membrane protein arises
only from the hydrophobic matching between the lateral
protein exterior and the aliphatic lipid tails of the bilayer
(Dan and Safran, 1995). Thus, large contact angles of inte-
gral membrane proteins can be supported because bending
induces no energy that would tend to eject the membrane
protein. However, when interfacial tension is included (for
nonflaccid membranes), the insertion of a tilted membrane

FIGURE 1 Schematic of a protein inclusion. The top figure is a cut-away
view of a membrane protein that contacts the continuum bilayer midplane
on curveC. The contact slope onC is denotedg 1 dg, whereas the bilayer
deviation from a reference flat state ish(r ). The bottom picture shows a
possible ellipticity« in the projection ofC onto the midplane.
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protein forces a deformation of the membrane against its
preferred flat state. Another force that may tend to eject
integral proteins arises from clamped boundary conditions
externally applied at some distance from the inclusion. To
match such a boundary condition, the termsr2ln r, r2 are
required as part of the solution forh(r), the mean curvature
no longer vanishes, and inserting an inclusion withg Þ 0
costs bending energy. We shall not consider these forces
here. Therefore, only tension or clamped boundary condi-
tions can destabilize and possibly eject integral proteins
against their hydrophobic solvation energy in bulk water.
Other effects, such as varying lipid thickness and lipid
mixtures, can also contribute to the effective hydrophobic
matching energy. Here, protein–membrane associations
need only last long enough for bending-mediated interac-
tions to be felt.

Next, we consider cases where more than one inclusion
are present, or where the contact angles, heights of contact,
or the shapes of the membrane-associated proteins are non-
circular. Three types of noncircularity can arise. The inclu-
sion itself may be noncircular (e.g., elliptical), the height of
the contact curve of the bilayer midplane to the inclusion
may vary along the perimeterC of the protein, and the
contact slope itself may vary alongC. These noncircular
boundary effects arise from the detailed microscopic nature
of the protein and its interaction with the lipid molecules.
When more than one protein is present, the deformations
surrounding each protein are not circularly symmetric. A non-
vanishing mean curvature,H(r), that gives bounded bending
energies can be represented by a multipole expansion,

H~r, u! 5 O
n52

`

r2n~ancosnu 1 bnsinnu!, (3)

where (r, u) is the radial and angular coordinate about an
arbitrary origin. Upon substitution of Eq. 3 into Eq. 1, we
find the bending energyẼ ; b (n52

` (an
2 1 bn

2). To deter-
mine an, bn, we solve ¹'

2 h(r, u) 5 H(r, u) and impose
boundary conditions (see Appendix A) onh(r, u) at C. In
the limit of small noncircularity or low protein concentra-
tions, the largest nondivergent terms are associated withn 5
2. Wiggly inclusion cross-sections or highly oscillating
boundary conditions only weakly affect membrane bending-
mediated protein–protein interactions vian . 2 terms. We
derive the full multibody, interaction energy in Appendix A.
The two-body interaction energy measured in units ofkBT is

E~R, u1, u2; D, Kb, V!

5 Ue22iV

R2 1 Kb 2
D

2
e22iu1U2

1 Ue22iV

R2 1 Kb 2
D

2
e22iu2U2

.

(4)

The dimensionless separation distanceR, protein ellipticity
D, and background curvatureKb are given by

R;
r

R0
, R0 ; aÎgB1/4, D ; «# ÎB,

Kb ; aÎBS­2hb~x1, x2!

­x1
2 D, (5)

whereB [ pb/kBT is the dimensionless bending stiffness,
and «# ; O(«) quantifies the noncircular nature (shape,
contact height, or contact angle ellipticity), of each inclu-
sion (see Appendix A). The angleV is measured between
the line joining the protein centers and the principle axis of
curvature defined by the background Gaussian curvature
(see Fig. 3). The anglesu1, u2 are measured between the
principle axes of proteins 1 and 2 and the same principle
axis. The quantityKb measures the local, externally induced
(via other distant proteins or external bending forces) back-
ground curvature in this principle axis direction. We show
in Appendix A that the dominant effect of distant proteins is
to induce mean curvature deformations that decay as 1/r2,
but constant negative Gaussian curvatures. The local curva-
tureKb arises only from deformations that are of zero mean
curvature. Our analyses will be applied to the pair interac-
tion energy given by Eq. 4 with the conventionD, Kb $ 0.

ROTATIONALLY AVERAGED INTERACTIONS

Proteins that are not attached to the cytoskeleton are free to
rotate and diffuse within the membrane. The interaction
potential between two membrane-deforming inclusions is a
complicated function of their relative angles and separation
distance (cf. Eq. 4). Although the energy is a function of the
specific separations and angles between two membrane-
associated proteins, their rotational time scales are less than,
or comparable to their translational diffusion time scales so
that one can average over the rotational degrees of freedom,
as the following argument demonstrates.

A small solvent molecule in solution has a rotational
correlation time of the ordertrot & 1 ns, while its transla-
tional diffusion constant isDtrans; 1026 cm2/s. Therefore,
in the time it takes for a small solvent molecule to lose
rotational correlation,trot, it would have translated

dr , ÎtrotDtrans& 0.1 nm. (6)

Similarly, for membrane constituents, such as bilayer lipid
molecules and small membrane proteins,trot ; 1–5 ns, and
Dtrans ; 1028–1027 cm2/s, wheretrot corresponds to rota-
tion about the molecular axis parallel to the normal vector of
the membrane (Marsh, 1990). As with small molecules in
bulk solution, membrane-bound lipid molecules also move
dR ; 0.1 nm during a rotational correlation time. Protein
rotational correlation times increase asa3, whereasDtrans

decreases witha. Membrane proteins that are not too large
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may only diffusedr ; 1 nm during the time over which it
has lost rotational correlation. Therefore, in the time it takes
for a typical inclusion to rotate about its axis, it has diffused
no more than its own diameter. This estimate is consistent
with fluorescence measurements that findtrot ; 0.1–1 ms
(Yamada et al., 1999). However, rotational time scales for
larger proteins may not be much faster than translational
motions; therefore, our approach of averaging rotational
degrees of freedom is still valid only if we interpret the
resulting effective pair interaction as a statistical weight,
determining expected protein separations foranygiven rel-
ative orientationu1 2 u2.

Rotational effects are implemented by statistically aver-
aging over the principle axis angles of the two inclusions
while keeping the distanceR and angleV between them
fixed. We weight the exact two particle energy over its own
Boltzmann weight according to

Eeff~R; D, Kb, V!

5 Z21E
0

2p

E~R; D, Kb, u1, u2!e
2E(R,u1,u2;D,Kb,V) du1 du2,

(7)

where the rotational partition function

Z ; E
0

2p

e2E(R,u1,u2;D,Kb,V) du1du2. (8)

Upon substitution of Eq. 4 into Eqs. 7 and 8, and performing
the integration (see Appendix B),

Eeff~R; Kb, V! 5
2j2

D2 1
D2

2
2 2j

I1~j!

I0~j!
, (9)

where

j 5 DÎ1

R4 1
2Kb

R2 cos 2V 1 Kb
2 . (10)

The effective interaction of two inclusions is defined by the
difference between the membrane-bending energies of two
inclusions separated at distanceR and at infinite separation,

Ueff~R; D, Kb, V!
(11)

5 Eeff~R; D, Kb, V! 2 Eeff~`!

[
2j2

D2 2
2jI1~j!

I0~j!
2 F2Kb

2 2 2DKb

I1~DKb!

I0~DKb!
G.

For fixed ellipticity D, the set of parametersKb, V, andR
that gives rise to a minimum atR* , `, if it exists, is

implicitly determined by

S­Ueff

­R D
R*

5 0, (12)

for sufficiently small R, Ueff . 2/R4, as in the circular
protein case.

Zero background curvature

First, consider the case of two isolated proteins embedded in
a flat membrane. In the absence of external mechanical
forces that impose background membrane deformations,
and with other inclusions sufficiently far away,Hb 5 Kb 5
0, andj 5 uDu/R2. The effective potential (Eq. 11) becomes

Ueff~R; D, Kb 5 0! 5
2

R4 2 S2D

R2D I1~D/R2!

I0~D/R2!
. (13)

Without background curvature (Kb 5 0), there are no
defining principle axes, andUeff is independent angle. From
Eq. 13, we see that an effective attractive interaction can
arise for D/R2 .. 1, when I1(D/R2)/I0(D/R2) ; 1, and
Ueff(R; D, Kb 5 0) ; 1/R4 2 D/R2. Although the interaction
(Eq. 4) yields both repulsive and attractive forces, the Boltz-
mann thermal average in Eq. 7 favors the lower energy
configurations ofu1, u2. Hence the pair of inclusions spends
more time in attractive configurations, resulting in a residual
attraction in Ueff(R). In the Kb 5 0 limit, the large R
behavior of Eq. 13 is

Ueff~R! 5
2 2 D2

R4 1 O~R26!. (14)

Because the potential becomes repulsive at short distances,
an effective ellipticityD . D* [ =2 is necessary for the
existence of a minimum inUeff(R).

Figure 2A shows theu-independent effective interaction
potential as a function ofR for various effective ellipticities
D. As D is increased fromD* 5 =2, the minimum radius
R* determined by Eq. 12, decreases rapidly fromR* ; `.
TheD . D* dependence ofR* is plotted in Figure 2B. Also
shown are the corresponding magnitudes of the global min-
ima of Ueff(R; D, Kb 5 0) as a function ofD.

We now estimate the numerical values of the parameters
by considering specific, physiological membrane protein
systems. Figure 3,A andB shows two views of the photo-
reaction center membrane protein fromRhodopseudomonas
viridus (Deisenhofer et al., 1999). The wedge angle, and
hence the contact slope,g 5 tan(0.38)' 0.4 is estimated by
considering the coordinates of the hydrophobic, transmem-
brane fragments (Fig. 3C). Adsorbed proteins, or tilted
peptides can even induce larger slopesg * 2 (correspond-
ing to* 60°) (Brasseur, 2000). In what follows, we will use
g . 0.4 as a value representative of certain highly asym-
metric membrane proteins. The ellipticity«/a ; 0.5 of the
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photoreaction center is also estimated by comparing Fig. 2,
A andB. (A more precise interpretation of Fig. 3,A andB,
and Eq. 24 isg ' 0.2, dg ' 0.4, and«/a ' 0.5; however
Fig. 3 serves only to provide approximate values forD.)
Numerous mechanical measurements have been performed
to obtain the lipid bilayer bending stiffness,b. Song and
Waugh (1993) mechanically measuredb ' 3.3 3 10219 J
for cholesterol-loaded stearoyl-oleoyl-phosphatidyl-etha-
nolamine (SOPC) bilayers, whereas Strey and Peterson
(1995) studied thermal fluctuations of erythrocyte mem-
branes to deduceb . 4 3 10219 J. Thus, forT 5 300°K,
typical values areB 5 pb/kBT ' 300.

Assuming a protein-induced perturbation of the bilayer
membrane arising only from the nonzero contact slopeg,
«# ' («/a)g. Using the values associated with the photore-
action center (Fig. 3),D ' «#g=B 5 (0.5)(0.4)=300' 3.5,
R* ' 0.8, andUeff(R*) ; 24.5(kBT). Figure 2,A and B,
also show that such appreciable attractive wells typically
occur at distancesR ; 0.7–0.8, which corresponds to (cf.
Eq. 5) r*/a . 2. Therefore, elastically coupled interactions
can give rise to attractive potentials with minima compara-
ble to those deriving from short-ranged, direct forces such
as van der Waals and screened electrostatic interactions.
Although elastic deformations of the bilayer around a mem-

brane protein are long-ranged, extending as ln(r), the pro-
tein–protein interactions become short-ranged when rota-
tional degrees of freedom are averaged out. This short-
ranged elastic interaction can complement, or compete with,
other direct molecular interactions. We conclude that ther-
mally averaged noncircular membrane deformations can
modify direct molecular interactions by at least a fewkBT at
distances of;1–2 protein radii.

Effect of local Gaussian curvature, Hb 5 0, Kb Þ 0

Background curvature can arise due to a nonuniform distri-
bution of distant membrane proteins or an externally im-
posed deformation. For example, in the experiments of Cho
et al. (1999) and Discher and Mohandas (1996), a lipid neck
is drawn into a pipette, creating a region near the base of the
neck with a large negative Gaussian curvature. Similarly,
membrane fusion and fission processes in endo/exocytosis
involves intermediate shapes with constricted necks con-
taining Gaussian curvature. These regions may be “exter-
nally” imposed by proteins involved in vesiculation (e.g.,
dynamin or motor proteins). The Gaussian curvature in this
case may also result from lipid structural or composition
changes (Schmidt et al., 1999). Therefore, curvature can
couple to membrane protein or lipid shapes. Localization of

FIGURE 2 (A) Rotationally averaged effective potential (Eq. 13) as a
function of protein separation in a flat membrane (Hb 5 Kb 5 0). (B) The
minimum effective energy and its associated radiusR*. The minimum of
the potential is plotted as1⁄10uUeff(R*) u. Note thatR* quickly decreases
whenD increases aboveD* 5 =2. For largeD .. 1, R* ; =2/D and
uUeff(R*) u ; D2/2.

FIGURE 3 Approximate geometry of the photoreaction center ofRho-
dopseudomonas viridis(from x-ray crystal structure, (Deisenhofer et al.,
1999)). The molecular coordinates of the transmembrane motifs indicate
contact angles as large as 0.38, resulting ing 5 tan(0.38)' 0.4.
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lipids with specific shapes to vesicle neck regions have been
implicated in the membrane budding (Schmidt et al., 1999).

The Gaussian curvature of the membrane between the
two proteins establishes local axes of principle curvature
such thata­x1

2 h(x1, x2) 5 2a­x2

2 h(x1, x2) [ hb } Kb . 0.
Because we assumeHb 5 0, the background deformation
between the two proteins will resemble a saddle with prin-
ciple curvatures of equal magnitudes (cf. Fig. 4). The rota-
tionally averaged effective interaction,Ueff(R; D, Kb, V)
will generate attractions at specific orientation anglesV
even ifD , D*. This can be most easily seen by expanding
Eq. 11 in powers of 1/R for largeR:

Ueff~R 3 `; D, Kb, V!

.
A2

R2 cos 2V 1
A4

R4 1 O~R26!. (15)

Explicit forms for A2, A4 are given in Appendix A. The
appearance ofA2 Þ 0 whenKb . 0 immediately generates
a minimum. Even when ellipticity vanishes (D 5 0), A2 }
Kbcos 2V , 0 for appropriateV.

The physical origin of attractions in the presence of
background curvature can be readily seen by considering
Fig. 4. Circular proteins situated at low regions of the saddle
(V ; p/2) develop attractive interactions, whereas those
with V ; 0 always repel. Recall from previous studies that
two circular proteins repel with aR24 potential (Goulian,
1993; Kim et al., 1998; Park and Lubensky, 1996; Dom-
mersnes, 1998). This is a direct consequence of placing a
second protein in the Gaussian curvature created by the first
one. When the background curvature of the membrane in
the region between two proteins augments the individual
Gaussian curvatures around the first protein (nearV 5 0),
the R24 repulsion is also enhanced. Conversely, if the

background curvature mitigates the saddle induced by an
individual inclusion (nearV 5 p/2), the other inclusion sees
not only a diminished repulsion, but a mutual attraction at
large enough distances. This is because the individual
Gaussian curvature around a protein (arising fromh(r) '
2g ln(r/a)) decays as 1/r4 and eventually becomes smaller
than the imposed constant background Gaussian curvature
associated withKb. Attractive effects of the background
curvature eventually manifest themselves whenV ; p/2.

Figure 5A shows the effects of a small amount of local
background curvature on the effective interaction potential.
For small ellipticity,D ,, D*, minima can still appear for
large enough anglesV (approximately forV . p/4). Even
for a modest value ofD 5 0.3, corresponding to say,«/a ;
0.2, g ; 58 5 0.087, small attractive interactions can exist
providedV ' p/2. For similar background curvatures but
much larger ellipticities, the potential develops a repulsive
barrier before becoming attractive for certainV. This sig-

FIGURE 4 Two inclusions embedded in a local saddle deformation. The
1/2 correspond to raised/depressed regions of the membrane. The prin-
ciple axis is aligned with the path joining the two raised regions (east–
west). The principle axes of the inclusions (u1, u2) and the centerline
joining their centers (V) are measured with respect to this principle axis.

FIGURE 5 Effective potentials between two inclusions embedded in an
Hb 5 0 and constantKb membrane. (A) D 5 0.3; Kb 5 0.3 for variousV.
(B) D 5 2.5; Kb 5 0.3. (C) D 5 2.5; Kb 5 2. This latter case, although
extreme under physiological conditions, yields two energy minima which
are physical manifestations of the qualitatively different minima depicted
in (A) and (B).
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nals thatA4 , 0 for large enoughD and is depicted in Fig.
5 B for D 5 2.5. In the limit of smallKb, A4 , 0 when

D . D* 1
Kb

2

8 S3 1
Î2

2
~3 1 sin22V!D 1 O~Kb

4!. (16)

Figure 5C shows that there is yet an additional, qualita-
tively different feature ofUeff(R; D, Kb, V) when bothD and
Kb are large. Although typical values ofKb (see Eq. 5) in
biological settings isKb ,, 1, we find that large values of
Kb and D give rise to double minima in the interaction
potential, especially nearV . p/2. Figure 5C shows double
minima forV 5 7p/16, p/2. Additional higher-order coef-
ficients such asA6/R

6, etc. are required to quantitatively
describe multiple minima. The two minima are a conse-
quence of the two independent physical effects that prefer
energy minima; local Gaussian curvature associated withKb

and effective ellipticityD. Typically, the weaker, longer-
ranged minimum is predominantly the signature of a large
Kb, whereas the deeper, shorter-ranged minimum (such as
that shown in Figs. 2A and 5B) is a feature of ellipticity
D . D*. Saddles of orderKb . 1 correspond to principle
radii of curvature on the order of;10 times the protein size
a, and are thus regions of extreme Gaussian deformations.
Regions of such warp may only exist in transient, small
systems such as fusion necks. Henceforth, we will restrict
ourselves toKb small enough to only induce one minimum.

Angles V, which yield attractive interactions, can be
estimated by consideringA2, A4. AssumingA4 . 0, values
of A2 , 0 give attractive interactions when2p/4 , V ,
p/4. WhenA2 . 0, proteins with orientationp/4 , uVu ,
3p/4 will experience attractive forces. However, these con-
ditions are modified ifA4 , 0, when some angles within
2p/4 , V , p/4 can yield attraction even ifA2 . 0. This
case corresponds to Fig. 5B, where a repulsive barrier at
R . R* arises. A minimum can still arise even at angles
whereA2cos 2V . 0 due to the2R24 behavior. The match-
ing to repulsive behavior at smallerR requires consideration
of 1R26 terms.

The top panel of Fig. 6 shows the radius corresponding to
the only minimum of the effective potentialUeff as a func-
tion of Kb, for D 5 0.5, 2, and 4. Both east–west and
north–south configurations are shown, with intermediate
anglesV interpolating between the curves. For small ellip-
ticity, the local principle curvatureKb is the predominant
source of attraction at larger distances, shown by the thick
dashed curve. IncreasingKb destabilizes the effective en-
ergy minima nearV 5 0. Above a certain background
Gaussian curvature intensity, the effective potential mini-
mum evaporates toR* 3 ` for proteins situated atV 5 0
(solid curves), and the attraction is washed out. For small
Kb, the two effects, ellipticity and background Gaussian
curvature, complement each other nearV 5 p/2 in rein-
forcing an energy minimum. Consistent with Fig. 2A for

D . =2, R* in Fig. 6 (thick curves) is smaller for largerD.
The bottom panel plots the corresponding minimum energies.

The V-dependence ofR* and the minimum energy is
shown in Fig. 7. As expected, for largeD .. =2, bothR*
andUeff(R*, V) are fairly insensitive toV. WhenD is small,
the energy minima and their associated radiiR*, caused
predominantly byKb, are very sensitive to orientationV.
These behaviors are consistent with the energy profiles
shown in Fig. 5B. In fact, for small enoughD, the minima
nearV ' 0 are annihilated, independent ofKb. Thus, we see
a qualitative difference between attractive potentials gen-
erated by intrinsic ellipticity and background Gaussian
curvature.

THE SECOND VIRIAL COEFFICIENT

We now consider the influence of the effective protein–
protein attractions on a low density ensemble of inclusions.
By analogy with the molecular origins of the osmotic sec-
ond virial coefficients of proteins in solution (Neal et al.,

FIGURE 6 (A) The radii corresponding to interaction potential minima
as a function ofKb for D 5 0.5, 2, 4 andV 5 0, p/2. Curves that diverge
signal a loss of the minimum (minimum radiusR* 3 `) for parameters
beyond those indicated. (B) The corresponding potential energy well
depths atR*. The energies associated withD 5 2; V 5 0 andD 5 2; V 5
p/2 separate atKb ' 1.1 when theV 5 0 energy well disappears. The
minimum energies associated with largeD andV 5 p/2 is still increasing
for Kb * 1.1.
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1998), we will consider the bending energy contributions to
the second virial coefficient for a 2D protein equation of
state. The membrane-mediated interactions are, however,
much longer-ranged than those in solution (Neal et al.,
1998). Consider the thermodynamic limit and times long
enough such that

t ..
,2

Dtrans
* trot, (17)

whereDtrans is the protein translational diffusion constant.
On the time scalet, the inclusions are relatively free to
diffuse about the bilayer. They interact among themselves
via the rotationally averaged potentialUeff that manifests
itself on time scales*trot. For very low protein densities
(large protein separation,), the 2D protein osmotic pressure
will be nearly that of an ideal gas, analogous to a low-
density gaseous-phase surfactant monolayer at the air–water
interface. Finite protein sizea, and longer-ranged elastically
coupled interactions will give nonideal properties. The first
correction to ideality in the equation of state is given by the
second virial coefficient (McQuarrie, 1976),

P

kBT
5 G 1 B2G

2 1 O~B3G
3!, (18)

whereG is the surface concentration of protein andB2 is
computed using the formulaB2(D, Kb) [ 2(1/2AT)(Z2 2
Z1

2) whereAT is the total area, andZ1, Z2 are the one- and
two-particle partition functions, including all internal de-
grees of freedom (i.e.,u1, u2), respectively. The derivation
of B2 is outlined in Appendix C.

The second virial,B2, represents the small fraction of
pairwise interacting proteins. Here, we do not consider how
integrating out the rotational degrees of freedom affect the
fixed translational degree of freedom. Instead, we are con-
sidering times long enough for equilibration of both degrees
of freedom, and their combined contribution to the equation
of state viaB2.

The physical origin and value ofKb used in computing
particle–particle interactions and henceB2 (Eq. C1) is as
follows. The local curvature felt by the interacting pair
represents an interaction between this pair and some other
distant proteins. However, the virial equation of state (Eq.
18) is a systematic expansion in surface density expanded
about an ideal, noninteracting ensemble. Because mem-
brane bending-mediated interactions are not pairwise addi-
tive (Kim et al., 1998), one might be tempted to assume that
the presence of other proteins would modify the interaction
energyE used in the expression forB2. However, these
more complicated interactions would depend upon the con-
centration of the other background proteins, and would
generate terms of higher order inG. In other words, we start
at densities so low that the protein ensemble is completely
noninteracting. As the density is slightly increased, a pair of
protein molecules occasionally interacts and perhaps forms
dimers, with each pair ignorant of any other protein. At this
still rather low density, the probability that three or more
proteins approach each other is negligible. When the density
is further increased, one needs to consider the higher-order
virial terms. Therefore, to second order inG, the deviation
of the equation of state from ideality is completely deter-
mined by the two-body interactionE(R, u1, u2; D, K# b, V)
and is independent of nonpairwise effects (McQuarrie,
1976). Note however, that the two-body interaction will
depend only onK# b associated with externally forced, zero
mean curvature membrane deformations. Therefore, for the
expansion Eq. 18 to be consistent, the value ofKb 5 K# b to
be used in Eq. C1 is that owing solely to external force-
generated Gaussian curvatures, independent of the protein
density.

Figure 8A shows the numerically computed second virial
coefficient as a function of inclusion ellipticity for various
K# b. As expected for smallK# b, the virial coefficient becomes
increasingly negative as the ellipticity increases. The value
for circular inclusionsB2(D 5 0, K# b 5 0) 5 p3/2/=2
corresponds to purely repulsive disks with mutual interac-
tion U(R) 5 2/R4. At ellipticity D . 2.35, B2(2.35, K# b 5
0) . 0 corresponding to a protein solution that is ideal to
second order in surface density. Although, whenD .
2.35 . D* 5 =2, Ueff has an attractive minimum, its

FIGURE 7 Angular dependence of (A) R, and (B) Ueff(R*, V) as func-
tions of pair orientation angleV. Minima arising mainly from background
saddle (sensitive toV) and ellipticity (insensitive toV) are shown.
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effects are statistically washed out by the repulsiveR24 part
of the interaction such that the overall, effective contribu-
tion to B2 vanishes. ForD . 2.35, the effective attraction
between membrane proteins begins to manifest itself in
terms of the 2D protein osmotic pressure. The second virial
is modified by externally imposed Gaussian curvature. Re-
call that, whenK# b Þ 0, certain anglesV lead to attractive
interactions, even for smallD , D*. Because we are now
thermodynamically averaging over protein positions andV
in addition tou1, u2, the inclusions will spend more time at
attractive, lower energy anglesV, hence loweringB2. Con-
sistent with Fig. 5, larger values ofK# b for D . D* lead to
stronger repulsions at smallV, which average intoB2,
making it less negative.

The dependence ofB2 on K# b is indicated in Fig. 8B. For
D . 0, B2, found from numerical integration of the full
expression Eq. C1, are also shown in Fig. 8B. For K# b 5 0,
increasing ellipticity decreases inclusion repulsions andB2.
As in Fig. 8A, largeK# b andD tend to increaseB2.

Equation 4 was used in Eq. C1 to compute the curves
shown in Fig. 8; thus, the protein–protein interaction was

assumed to consist of contributions only from membrane
bending. The hard core, excluded area of each protein,
;pa2, can be included by modifyingUeff(R) by setting
Ueff(R # a/R0) 5 `. Although we expect this additional
repulsive term to further reduce the effective sampling area
of the inclusions and increase the second virial coefficient,
we find that, for all reasonable values ofR0, B2 does not
change noticeably from those shown in Fig. 8. The hard
core part of the potential, due to e.g., close-ranged van der
Waals repulsion, is not statistically sampled by the inclu-
sions because the membrane bending-induced interactions
(;1/R4) already keeps them far apart.

Because nonpairwise interactions manifest themselves
only at third and higher order inG, we can estimate their
importance by comparingB2G

2 with B3G
3. For nonpairwise

interactions to be thermodynamically relevant, it is neces-
sary but not sufficient that the surface density

G * UB2

B3
U. (19)

Although multibody interactions may be important micro-
scopically, their effects on the low-density equation of state,
cannot be resolved. Even if the density is high enough for
B3G

3 to be measurable, the value ofB3 is found via a
four-dimensional integral over configurations of three mem-
brane proteins. All orientations and distances will be aver-
aged and all components of their interactions, repulsive,
attractive, pairwise, and nonpairwise will be included. In
other words, one cannot uniquely determine the potentialU
from a measurement ofBn.

DISCUSSION AND CONCLUSIONS

Proteins slightly beyond the range of screened electrostatic
or van der Waals molecular forces can exert forces on one
another by virtue of the deformation they impose on the
lipid bilayer. These interactions can be attractive if the
proteins have a noncircular cross-sectional shape or if the
local membrane deformation is saddle shaped (negative
Gaussian curvature). For bending rigiditiesb ' 100kBT, and
protein shape ellipticities«/a ; 0.3–0.5, we find attractive
interactions of a fewkBT acting at a range of;2–3 protein
radii, augmenting shorter-ranged forces such as direct van
der Waal’s or screened electrostatic interactions. On a flat
membrane (Hb 5 Kb 5 0), an effective ellipticity«# .
(2kBT/pb)1/2 is necessary for a potential minimum to
emerge between a pair of proteins. We also considered an
ensemble of surface proteins elastically coupled by mem-
brane deformation and computed the deviation of its equa-
tion of state from that of an ideal solute. Although mem-
brane-mediated protein–protein interactions are
nonpairwise additive (Kim et al., 1998), only the two-
particle interaction is relevant for sparsely distributed pro-
teins. On a flat membrane, the second virial coefficient

FIGURE 8 (A) Second virial coefficientB2(D, K# b 5 0, 0.5, 0.75, 1). A
negative virial coefficient is indicative of an overall attractive interaction
such that the osmotic pressure is reduced from that expected in ideal
solutions. The valueB2(0, 0) 5 p3/2/=2 . 0 corresponds to the virial
coefficient of circular, repulsive (U 5 2/R4) inclusions. (B) B2 as a function
of background saddle for various ellipticity parametersD.
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B2 , 0 when«# * 1.32=kBT/b (D ' 2.35). At this ellip-
ticity, the elastically induced 1/r4 repulsive interactions just
compensate for the rotationally averaged attractions. This
dependence onb/kBT suggests that the cell can regulate
protein–protein interactions by varying the lipid composi-
tion and hence the bending rigidity of the bilayer, with
larger bending moduli enhancing the probability of attrac-
tive interactions.

In addition to the photoreaction center, many membrane-
associated proteins are composed of certain peptides that
interact strongly, and are oriented in highly tilted configu-
rations with respect to the lipid bilayer normal. Examples
include the glycophorin A dimer, and numerous viral enve-
lope proteins implicated in inducing membrane fusion. Spe-
cific residues of the Newcastle Disease Virus have hydro-
phobic characteristics that give rise to tilted insertion into
lipid bilayers and have estimated tilt angles as high as 70°
(Brasseur, 2000). Recall that the stability of highly tilted
integral membranes depends only on their hydrophobic
matching area, a clamped boundary condition near the pro-
tein, and membrane tension (which we do not consider).

Macromolecular dimerization is ubiquitous in cell func-
tion. We theorize that bending-mediated attractions can
manifest themselves in numerous aggregation/dimerization
processes. If circular proteins overcome short-ranged repul-
sions and dimerize due to short-ranged attractions such as
van der Waals interactions, barriers to further aggregation of
these elliptical dimers are reduced by dimer–dimer attrac-
tions described by Eq. 11. If the inclusions are themselves
dimers or higher aggregates that persist on the time scale of
rotation, bending-mediated attraction would enhance further
aggregation. Moreover, G-protein-linked receptors must ac-
tivate nearby membrane-associated G-proteins, which
themselves may dissociate after activation (Alberts et al.,
1994; Iniguez-Lluhi et al., 1993). A membrane-mediated
elastic interaction, especially one with two minima (in the
presence of external Gaussian curvature) may keep the
necessary signaling components in close proximity. Our
results in the presence of background curvature (Kb Þ 0)
also suggest that receptor activity may depend on its spatial
location with respect to regions of local Gaussian curvature,
such as fusion necks.

Our results suggest potential experiments in artificial
membrane systems where intrinsic parameters can be con-
trolled and surface density can be made small enough for a
virial expansion to be valid. Although the 2D osmotic
pressure would be difficult to measure accurately, measure-
ments of the association time between dimerized proteins
are feasible. Measurements have been made of the lifetimes
of gramicidin A channels composed of dimers of barrels in
opposite bilayer leaflets as a function of bilayer thickness
(Kolb and Bamberg, 1977; Elliot et al., 1983). Measure-
ments of dimer lifetimes as a function of lipid tail lengthd/2
(the bending modulusb } d3), as well as externally imposed
Gaussian deformations, may reveal the dependence of the

attractive interactions outlined in this paper. Even though an
imposed Gaussian curvature increases the interaction well
depth atV ' p/2, and destroys the attractions for proteins
near V ' 0, the overall statistical effect, is to enhance
binding, as is evident from Fig. 8. Therefore, we expect that
dimer lifetimes can be enhanced for proteins residing in
regions of large magnitudes of Gaussian curvature such as
the base of extruded tubules. This may be instrumental in
recruiting fusagens to the correct location for membrane
budding. Finally, we remark that numerous experiments use
immuno-gold particles to track membrane proteins such as
coagulation enzymes (McGee and Teuschler, 1999) and
synaptic junctiong-amino butyric acid (GABA) receptors
(Nusser et al., 1998). The dimerization/aggregation fre-
quently observed may be a consequence of bilayer defor-
mations induced by the membrane-bound gold colloids, as
demonstrated in the experiments of Koltover et al. (1999).

APPENDIX A: INTERACTION ENERGY AMONG
NONCIRCULAR INCLUSIONS

We consider the boundary conditions that the height,h(r, u), must satisfy
and the effects of noncircular proteins on the interaction energies (Kim et
al., 1999). Consider proteins with chemistry that changes the cross-sec-
tional protein shape from circularity by an amount«. The concomitant
changes in lipid contact height and angle are also assumed to be modified
by O(«). As shown in Fig. 1, the protein perimeter, measured from the
protein center is, to orderO(«),

C . ~a 1 « cos 2~u 2 ui!!n, (A1)

wheren is the unit normal vector to the curveC projected onto the bilayer
midplane, and« cos 2(u 2 ui) is a small, angle-dependent perturbation
measuring the deviation from circularity of proteini. Upon expanding the
general boundary conditionsh(C) 5 dh(u) andn z ¹h(C) 5 2g 2 dg(u)
to lowest order in«, we arrive at effective boundary conditions,

h~a! . dh~u 2 ui! 1 g« cos 2~u 2 ui! 1 O~«2!,

­rh~a! . 2gS1 1
«

a
cos 2~u 2 ui!D

2 dg~u 2 ui! 1 O~«2!,

(A2)

where we have for simplicity also assumed the variationsdh(C) anddg(C)
to be also of order«.

In the limit of small noncircularity or low protein concentrations, the
dominant nondivergent contribution ofH(r ) to the energyẼ is a2

2 1 b2
2. The

deformationh(r, u) that satisfies¹2h(r, u) 5 2H(r, u) and Eqs. A2 can be
written in the form

h~r, u! . 2g lnSr

aD 1 O
n52

`

~fn~r!cosnu 1 gn~r!sinnu!,

(A3)

and determinea2, b2. When the proteins have intrinsic noncircularity (« Þ
0), a2

2 1 b2
2 turns out to be the magnitude of the local Gaussian curvature

(sinceHb 5 0), modified by additionalui-dependent terms (Kim et al.,
1999). The local Gaussian curvature due to the otherj far field proteins, in
either case, is calculated using the leading order termh(rW) ' 2g lnurW 2 rWju,
which is simply a superposition of the longest-ranged lnr terms about each
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inclusion. The total bending energyẼ[H(r, u)] for an ensemble ofN
inclusions can be written in the complex form (Kim et al., 1999),

Ẽ 5 pbg2O
j
UO

iÞj

a2

~zi 2 zj!
2 2

«#

2g
e22iujU2

, (A4)

wherezi 5 xi 1 iyi is the position of theith protein in the complex plane,
and

«# ; S«

aDSg 1 2
dh

a
2 dgD (A5)

measures the effective ellipticity of the identical proteins. Now consider
two relatively isolated, identical proteinsi, j 5 1, 2. The effects of proteins
far away are felt via a local Gaussian curvature emanating from these
background proteins. Upon explicitly separating these contributions, the
pair interaction energy becomes

Ẽ~r, u1, u2; hb, V!

5pbFUa2ge22iV

r2 1 hb 2
«#

2
e22iu1U2

1Ua2ge22iV

r2 1 hb 2
«#

2
e22iu2U2G, (A6)

where

hb ; a
­2hb~S!

­x1
2 5 2a

­2hb~S!

­x2
2 (A7)

is the curvature in thex1 principle direction due to far-field background
inclusions or externally induced deformationshb ' 2g lnuz 2 zju, j $ 3.
The mean curvature expanded about a noncircular protein (Eq. 3) results in
a deformationh(r, u) with terms proportional tor2cos 2u, r2sin 2u (Kim et
al., 1998). These terms carry zero mean curvature, but constant negative
Gaussian curvature. From the expansion Eq. 3, the only mean curvature
contributions decay asr22, which we neglect. A further contribution to the
local saddle curvature,hb

2, felt by the two proteins, can arise from exter-
nally applied mechanical forces that deform the bilayer in an appropriate
way. The anglesu1, u2 are the angles of the principle axes of the inclusion
shape (or the height or contact angle slope functionsdh, dg) measured from
the principle background curvature axisx1. The angleV measures the
angle between the principle background curvature axis and the segment
joining the centers of the two inclusions. Upon rescaling according to Eq.
5, we arrive at the energy given in Eq. 4.

APPENDIX B: ROTATIONAL AVERAGING

The integrals

E
0

2p

E~R, u1, u2; Kb, V!e2E du1 du2

and

Z ; E
0

2p

e2E du1 du2 (B1)

used to compute the rotationally averaged, effective protein–protein inter-
action involve integration of

E
0

2p

~a cos 2u 1 b sin 2u!exp~a cos 2u 1 b sin 2u! du

and

E
0

2p

exp~a cos 2u 1 b sin 2u! du, (B2)

respectively. The first integral in Eq. B2 can be computed in closed form
by substituting the exponents with their Bessel function expansions,

ea cos 2u 5 I0~a! 1 2 O
n51

`

inIn~a!cos 2nu

eb sin 2u 5 I0~b! 1 2 O
n51

`

~21!nI2n~b!cos 4nu

22 O
n51

`

i2n11I2n11~b!sin 2~2n 1 1!u,

(B3)

and integrating term by term. The cross-terms of the product of the two
equations in Eq. B3 involve single powers of cos and sin and vanish upon
integration. We are left with

Z1/2 5 2pI0~a!I0~b! 1 4p O
n51

`

~21!nI2n~a!I2n~b!. (B4)

An analytic continuation of the sum formula,

J0~Îa2 1 b2 2 2ab cosw!

5J0~a!J0~b! 1 2 O
n51

`

Jn~a!Jn~b!cosnw, (B5)

at w 5 p/2 simplifies Eq. B4 to,

Z1/2 5 2pI0~j!, j ; Îa2 1 b2. (B6)

Finally, the second integral in Eq. B2 can be computed by taking
derivatives ofZ1/2,

E
0

2p

~a cos 2u 1 b sin 2u!exp~a cos 2u 1 b sin 2u! du

5Sa
­

­a
1 b

­

­bDZ1/2. (B7)

Using these results, we arrive at the rotationally averaged energyEeff given
by Eq. 9. For large separation distancesR, the effective interaction
Ueff(R) [ Eeff(R) 2 Eeff(`) defined in Eq. 11 can be expanded as in Eq. 15
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where the coefficients are given by

A2 ; 4Kb 2 2D2Kb

­

­j SI1~j!

I0~j!D
DKb

22D
I1~DKb!

I0~DKb!
(B8)

and

A4 ; 2 2 D2
­

­j SI1~j!

I0~j!D
DKb

2
D

Kb

I1~DKb!

I0~DKb!
sin2 2V

2D2FKb

­2

­j2 1
­

­jGSI1~j!

I0~j!D
DKb

cos2 2V. (B9)

APPENDIX C: CALCULATION OF B2

Because we wish to determine the second virial coefficient and how it is
manifested in the lateral pressure of a low density collection of proteins, we
choose the zero of energy such that theu1, u2-averaged, infinite separation
two-particle energy vanishes. The second virial coefficient can be found
from

B2~T; D, Kb!

; 2
1

2AT
~Z2 2 Z1

2!

; 2
1

2AT
Ed2rW1 d2rW2 du1 du2exp~2@E~rW1, rW2, u1, u2! 2 E# #!

1
1

2AT
Ed2rW1 d2rW2 du1 du2exp

~2@E~urW1 2 rW2u 5 `, u1, u2! 2 E# #!,
(C1)

where the separation between proteins at positionsrW1 andrW2 is R [ urW1 2
rW2u. Eqs. 18 and C1 are nondimensionalized such that the surface density
G ,, 1 is measured by the number of proteins in areaR0

2 (see Eq. 5) and
the protein osmotic pressureP is measured in units ofkBT/R0

2. Eq. C1 is
exact and does not require the separation of rotational and translational
diffusion times needed for the derivation ofUeff(R; D, Kb, V).

The zero of energy is defined by

eE# ; Edu1 du2exp~2E~urW1 2 rW2u 5 `, u1, u2!!

5 4p2I0
2~DKb!exp~22Kb

2 2 D2/2!. (C2)

Hence, the second virial coefficient becomes

B2~T; D, Kb!

5 2
1

2E
0

`

RdRE
0

2p

dV

3F I0
2~j!

I0
2~DKb!

exp~22R24 2 4R22Kb cos 2V! 2 1G.
(C3)

In the limits of vanishing ellipticity or background Gaussian curvature, we
can perform theV integration,

B2~T; D 5 0, Kb Þ 0! 5 2pE
0

`

RdR@e22/R4
I0~4Kb/R

2! 2 1#,

B2~T; D Þ 0, Kb 5 0! 5 2pE
0

`

RdR@e22/R4
I0
2~D/R2! 2 1#.

(C4)

Notice that the bracketed integrands in Eq. C3 and limiting forms Eqs. C4
vanish asymptotically at large separationR:

lim
R3`

F I0
2~j!

I0
2~DKb!

exp~22R24 2 4R22Kb cos 2V! 2 1G
5S1 1 2D

I1~DKb!

I0~DKb!R
2 1 O~1/R4!D

3S1 2
4Kb cos 2V

R2 1 O~1/R4!D 2 1

5S2D
I1~DKb!

I0~DKb!
2 4Kb cos 2VD 1

R2 1 O~1/R4!. (C5)
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