Abstract
The electrical phenomena that occur at sympathetic varicosities due to the release of ATP include spontaneous and evoked excitatory junction potentials (SEJPs and EJPs; recorded with an intracellular electrode) as well as fast and slow excitatory junctional currents (EJCs; recorded with a loose-patch electrode placed over varicosities). The electrical analysis of these transients is hampered by lack of a detailed theory describing how current and potential fields are generated upon the release of a quantum of ATP. Here, we supply such a theory and develop a computational model for the electrical properties of a smooth muscle syncytium placed within a volume conductor, using a distributed representation for the individual muscle cells. The amplitudes and temporal characteristics of both SEJPs and fast EJCs are predicted by the theory, but those of the slow EJCs are not. It is shown that these slow components cannot arise as a consequence of propagation of fast quantal components from their site of origin in the muscle syncytium to the point of recording. The possibility that slow components arise by a mechanism of transmitter secretion that is different from quantal release is examined. Experiments that involve inserting peptide fragments of soluble N-ethylmaleimide-sensitive fusion attachment protein (alpha-SNAP) into varicosities, a procedure that is known to block quantal release, left the slow component of release unaffected. This work provides an internally consistent description of quantal potential and current fields about the varicosities of sympathetic nerve terminals and provides evidence for a non-quantal form of transmitter release.
Full Text
The Full Text of this article is available as a PDF (253.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Astrand P., Brock J. A., Cunnane T. C. Time course of transmitter action at the sympathetic neuroeffector junction in rodent vascular and non-vascular smooth muscle. J Physiol. 1988 Jul;401:657–670. doi: 10.1113/jphysiol.1988.sp017185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Astrand P., Stjärne L. On the secretory activity of single varicosities in the sympathetic nerves innervating the rat tail artery. J Physiol. 1989 Feb;409:207–220. doi: 10.1113/jphysiol.1989.sp017493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURNSTOCK G., HOLMAN M. E. The transmission of excitation from autonomic nerve to smooth muscle. J Physiol. 1961 Jan;155:115–133. doi: 10.1113/jphysiol.1961.sp006617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barden J. A., Cottee L. J., Bennett M. R. Vesicle-associated proteins and P2X receptor clusters at single sympathetic varicosities in mouse vas deferens. J Neurocytol. 1999 Jun;28(6):469–480. doi: 10.1023/a:1007053004771. [DOI] [PubMed] [Google Scholar]
- Bennett M. R. Autonomic neuromuscular transmission at a varicosity. Prog Neurobiol. 1996 Dec;50(5-6):505–532. doi: 10.1016/s0301-0082(96)00039-1. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., Cheung A., Brain K. L. Sympathetic neuromuscular transmission at a varicosity in a syncytium. Microsc Res Tech. 1998 Sep 15;42(6):433–450. doi: 10.1002/(SICI)1097-0029(19980915)42:6<433::AID-JEMT6>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., Farnell L., Gibson W. G., Karunanithi S. Quantal transmission at purinergic junctions: stochastic interaction between ATP and its receptors. Biophys J. 1995 Mar;68(3):925–935. doi: 10.1016/S0006-3495(95)80268-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Farnell L., Gibson W. G., Lavidis N. A. Synaptic transmission at visualized sympathetic boutons: stochastic interaction between acetylcholine and its receptors. Biophys J. 1997 Apr;72(4):1595–1606. doi: 10.1016/S0006-3495(97)78806-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Farnell L., Gibson W. G., Macleod G. T., Dickens P. Quantal potential fields around individual active zones of amphibian motor-nerve terminals. Biophys J. 2000 Mar;78(3):1106–1118. doi: 10.1016/S0006-3495(00)76669-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Gibson W. G. On the contribution of quantal secretion from close-contact and loose-contact varicosities to the synaptic potentials in the vas deferens. Philos Trans R Soc Lond B Biol Sci. 1995 Jan 30;347(1320):187–204. doi: 10.1098/rstb.1995.0021. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., Gibson W. G., Poznanski R. R. Extracellular current flow and potential during quantal transmission from varicosities in a smooth muscle syncytium. Philos Trans R Soc Lond B Biol Sci. 1993 Oct 29;342(1300):89–99. doi: 10.1098/rstb.1993.0140. [DOI] [PubMed] [Google Scholar]
- Bennett M. R., Merrillees N. C. An analysis of the transmission of excitation from autonomic nerves to smooth muscle. J Physiol. 1966 Aug;185(3):520–535. doi: 10.1113/jphysiol.1966.sp008000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Robinson J., Phipps M. C., Karunanithi S., Lin Y. Q., Cottee L. Quantal components of spontaneous excitatory junction potentials at visualised varicosities. J Auton Nerv Syst. 1996 Jan 5;56(3):161–174. doi: 10.1016/0165-1838(95)00086-0. [DOI] [PubMed] [Google Scholar]
- Bennett M. R. Structure and electrical properties of the autonomic neuromuscular junction. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):25–34. doi: 10.1098/rstb.1973.0006. [DOI] [PubMed] [Google Scholar]
- Bennett M. R. The origin of Gaussian distributions of synaptic potentials. Prog Neurobiol. 1995 Jul;46(4):331–350. doi: 10.1016/0301-0082(94)00061-l. [DOI] [PubMed] [Google Scholar]
- Blakeley A. G., Cunnane T. C. The packeted release of transmitter from the sympathetic nerves of the guinea-pig vas deferens: an electrophysiological study. J Physiol. 1979 Nov;296:85–96. doi: 10.1113/jphysiol.1979.sp012992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brink P. R. Gap junctions in vascular smooth muscle. Acta Physiol Scand. 1998 Dec;164(4):349–356. doi: 10.1046/j.1365-201X.1998.00439.x. [DOI] [PubMed] [Google Scholar]
- Brock J. A., Cunnane T. C. Electrical activity at the sympathetic neuroeffector junction in the guinea-pig vas deferens. J Physiol. 1988 May;399:607–632. doi: 10.1113/jphysiol.1988.sp017099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock J. A., Cunnane T. C. Relationship between the nerve action potential and transmitter release from sympathetic postganglionic nerve terminals. Nature. 1987 Apr 9;326(6113):605–607. doi: 10.1038/326605a0. [DOI] [PubMed] [Google Scholar]
- Cottee L. J., Lavidis N. A., Bennett M. R. Spatial relationships between sympathetic varicosities and smooth muscle cells in the longitudinal layer of the mouse vas deferens. J Neurocytol. 1996 Jun;25(6):413–425. doi: 10.1007/BF02284812. [DOI] [PubMed] [Google Scholar]
- Dan Y., Poo M. M. Quantal transmitter secretion from myocytes loaded with acetylcholine. Nature. 1992 Oct 22;359(6397):733–736. doi: 10.1038/359733a0. [DOI] [PubMed] [Google Scholar]
- DeBello W. M., O'Connor V., Dresbach T., Whiteheart S. W., Wang S. S., Schweizer F. E., Betz H., Rothman J. E., Augustine G. J. SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature. 1995 Feb 16;373(6515):626–630. doi: 10.1038/373626a0. [DOI] [PubMed] [Google Scholar]
- Fu W. M., Liou H. C., Chen Y. H., Wang S. M. Release of acetylcholine from embryonic myocytes in Xenopus cell cultures. J Physiol. 1998 Jun 1;509(Pt 2):497–506. doi: 10.1111/j.1469-7793.1998.497bn.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henery R. J., Robinson J., Bennett M. R. Methods for grouping shapes of synaptic currents recorded from sets of synapses. J Neurosci Methods. 1998 Dec 31;86(1):79–90. doi: 10.1016/s0165-0270(98)00148-4. [DOI] [PubMed] [Google Scholar]
- Henery R., Gibson W. G., Bennett M. R. Quantal currents and potential in the three-dimensional anisotropic bidomain model of smooth muscle. Bull Math Biol. 1997 Nov;59(6):1047–1075. doi: 10.1007/BF02460101. [DOI] [PubMed] [Google Scholar]
- Henriquez C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng. 1993;21(1):1–77. [PubMed] [Google Scholar]
- Jeftinija S. D., Jeftinija K. V. ATP stimulates release of excitatory amino acids from cultured Schwann cells. Neuroscience. 1998 Feb;82(3):927–934. doi: 10.1016/s0306-4522(97)00310-2. [DOI] [PubMed] [Google Scholar]
- Karunanithi S., Phipps M. C., Robinson J., Bennett M. R. Statistics of quantal secretion during long trains of sympathetic nerve impulses in mouse vas deferens. J Physiol. 1995 Nov 15;489(Pt 1):171–181. doi: 10.1113/jphysiol.1995.sp021039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krassowska W., Neu J. C. Effective boundary conditions for syncytial tissues. IEEE Trans Biomed Eng. 1994 Feb;41(2):143–150. doi: 10.1109/10.284925. [DOI] [PubMed] [Google Scholar]
- Langley K., Grant N. J. Are exocytosis mechanisms neurotransmitter specific? Neurochem Int. 1997 Dec;31(6):739–757. doi: 10.1016/s0197-0186(97)00040-5. [DOI] [PubMed] [Google Scholar]
- Lavidis N. A., Bennett M. R. Probabilistic secretion of quanta from successive sets of visualized varicosities along single sympathetic nerve terminals. J Auton Nerv Syst. 1993 Apr;43(1):41–50. doi: 10.1016/0165-1838(93)90320-t. [DOI] [PubMed] [Google Scholar]
- Lavidis N. A., Bennett M. R. Probabilistic secretion of quanta from visualized sympathetic nerve varicosities in mouse vas deferens. J Physiol. 1992 Aug;454:9–26. doi: 10.1113/jphysiol.1992.sp019252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macleod G. T., Lavidis N. A., Bennett M. R. Calcium dependence of quantal secretion from visualized sympathetic nerve varicosities on the mouse vas deferens. J Physiol. 1994 Oct 1;480(Pt 1):61–70. doi: 10.1113/jphysiol.1994.sp020340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manchanda R., Venkateswarlu K. Quantal evoked depolarizations underlying the excitatory junction potential of the guinea-pig isolated vas deferens. J Physiol. 1999 Oct 15;520(Pt 2):527–537. doi: 10.1111/j.1469-7793.1999.00527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulryan K., Gitterman D. P., Lewis C. J., Vial C., Leckie B. J., Cobb A. L., Brown J. E., Conley E. C., Buell G., Pritchard C. A. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature. 2000 Jan 6;403(6765):86–89. doi: 10.1038/47495. [DOI] [PubMed] [Google Scholar]
- O'Malley D. M., Sandell J. H., Masland R. H. Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci. 1992 Apr;12(4):1394–1408. doi: 10.1523/JNEUROSCI.12-04-01394.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prochiantz A. Homeodomain-derived peptides. In and out of the cells. Ann N Y Acad Sci. 1999;886:172–179. doi: 10.1111/j.1749-6632.1999.tb09410.x. [DOI] [PubMed] [Google Scholar]
- Purves R. D. Current flow and potential in a three-dimensional syncytium. J Theor Biol. 1976 Jul 21;60(01):147–162. doi: 10.1016/0022-5193(76)90160-0. [DOI] [PubMed] [Google Scholar]
- Rall W., Burke R. E., Holmes W. R., Jack J. J., Redman S. J., Segev I. Matching dendritic neuron models to experimental data. Physiol Rev. 1992 Oct;72(4 Suppl):S159–S186. doi: 10.1152/physrev.1992.72.suppl_4.S159. [DOI] [PubMed] [Google Scholar]
- Roth B. J. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol. 1992;30(6):633–646. [PubMed] [Google Scholar]
- Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
- Schwartz E. A. Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science. 1987 Oct 16;238(4825):350–355. doi: 10.1126/science.2443977. [DOI] [PubMed] [Google Scholar]
- Sneddon P., Westfall D. P. Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol. 1984 Feb;347:561–580. doi: 10.1113/jphysiol.1984.sp015083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens B., Fields R. D. Response of Schwann cells to action potentials in development. Science. 2000 Mar 24;287(5461):2267–2271. doi: 10.1126/science.287.5461.2267. [DOI] [PubMed] [Google Scholar]
- Südhof T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995 Jun 22;375(6533):645–653. doi: 10.1038/375645a0. [DOI] [PubMed] [Google Scholar]
- Zimmermann H. Are mechanisms of exocytosis neurotransmitter specific? Neurochem Int. 1997 Dec;31(6):759–761. doi: 10.1016/s0197-0186(97)00045-4. [DOI] [PubMed] [Google Scholar]
