Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Mar;80(3):1498–1506. doi: 10.1016/S0006-3495(01)76122-X

Time-resolved study of the inner space of lactose permease.

E Nachliel 1, N Pollak 1, D Huppert 1, M Gutman 1
PMCID: PMC1301341  PMID: 11222310

Abstract

Pyranine (8-hydroxy pyrene-1,3,6-trisulfonate) is a commonly used photoacid that discharges a proton when excited to its first electronic singlet state. Follow-up of its dissociation kinetics reveals the physicochemical properties of its most immediate environment. At vanishing ionic strength the dye adsorbs to the Escherichia coli lactose permease with stoichiometry of 1:1 and an association constant of 2.5 x 10(5) M(-1). The reversal of the binding at high ionic strength and the lower pK value of the bound dye imply that positive charge(s) stabilize the dye in its site. The fluorescence decay curve of the bound dye was measured by time-correlated single photon counting and the measured transient was subjected to kinetic analysis based on the geminate recombination model. The analysis indicated that the binding domain is a cleft (between 9 and 17 A deep) characterized by low activity of water (a((water)) = 0.71), reduced diffusivity of protons, and enhanced electrostatic potential. The binding of pyranine and a substrate are not mutually exclusive; however, when the substrate is added, the dye-binding environment is better solvated. These properties, if attributed to the substrate-conducting pathway, may explain some of the forces operating on the substrate in the cavity. The reduced activities of the water strips the substrate from some of its solvation water molecules and replace them by direct interaction with the protein. In parallel, the lower dielectric constant enhances the binding of the proton to the protein, thus keeping a tight seal that prevents protons from diffusing.

Full Text

The Full Text of this article is available as a PDF (120.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  2. Clement N. R., Gould J. M. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry. 1981 Mar 17;20(6):1534–1538. doi: 10.1021/bi00509a019. [DOI] [PubMed] [Google Scholar]
  3. Frillingos S., Sahin-Tóth M., Wu J., Kaback H. R. Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J. 1998 Oct;12(13):1281–1299. doi: 10.1096/fasebj.12.13.1281. [DOI] [PubMed] [Google Scholar]
  4. Gutman M., Huppert D., Nachliel E. Kinetic studies of proton transfer in the microenvironment of a binding site. Eur J Biochem. 1982 Jan;121(3):637–642. doi: 10.1111/j.1432-1033.1982.tb05833.x. [DOI] [PubMed] [Google Scholar]
  5. Gutman M., Nachliel E., Kiryati S. Dynamic studies of proton diffusion in mesoscopic heterogeneous matrix: II. The interbilayer space between phospholipid membranes. Biophys J. 1992 Jul;63(1):281–290. doi: 10.1016/S0006-3495(92)81585-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gutman M., Nachliel E. Time-resolved dynamics of proton transfer in proteinous systems. Annu Rev Phys Chem. 1997;48:329–356. doi: 10.1146/annurev.physchem.48.1.329. [DOI] [PubMed] [Google Scholar]
  7. Gutman M., Tsfadia Y., Masad A., Nachliel E. Quantitation of physical-chemical properties of the aqueous phase inside the phoE ionic channel. Biochim Biophys Acta. 1992 Aug 24;1109(2):141–148. doi: 10.1016/0005-2736(92)90077-y. [DOI] [PubMed] [Google Scholar]
  8. Jessen-Marshall A. E., Parker N. J., Brooker R. J. Suppressor analysis of mutations in the loop 2-3 motif of lactose permease: evidence that glycine-64 is an important residue for conformational changes. J Bacteriol. 1997 Apr;179(8):2616–2622. doi: 10.1128/jb.179.8.2616-2622.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson J. L., Brooker R. J. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose. Implications for a proposed mechanism of H+/lactose symport. J Biol Chem. 1999 Feb 12;274(7):4074–4081. doi: 10.1074/jbc.274.7.4074. [DOI] [PubMed] [Google Scholar]
  10. Kaback H. R. A molecular mechanism for energy coupling in a membrane transport protein, the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5539–5543. doi: 10.1073/pnas.94.11.5539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaback H. R., Voss J., Wu J. Helix packing in polytopic membrane proteins: the lactose permease of Escherichia coli. Curr Opin Struct Biol. 1997 Aug;7(4):537–542. doi: 10.1016/s0959-440x(97)80119-4. [DOI] [PubMed] [Google Scholar]
  12. Kaback H. R., Wu J. From membrane to molecule to the third amino acid from the left with a membrane transport protein. Q Rev Biophys. 1997 Nov;30(4):333–364. doi: 10.1017/s0033583597003387. [DOI] [PubMed] [Google Scholar]
  13. Patzlaff J. S., Moeller J. A., Barry B. A., Brooker R. J. Fourier transform infrared analysis of purified lactose permease: a monodisperse lactose permease preparation is stably folded, alpha-helical, and highly accessible to deuterium exchange. Biochemistry. 1998 Nov 3;37(44):15363–15375. doi: 10.1021/bi981142x. [DOI] [PubMed] [Google Scholar]
  14. Pazdernik N. J., Cain S. M., Brooker R. J. An analysis of suppressor mutations suggests that the two halves of the lactose permease function in a symmetrical manner. J Biol Chem. 1997 Oct 17;272(42):26110–26116. doi: 10.1074/jbc.272.42.26110. [DOI] [PubMed] [Google Scholar]
  15. Rochel S., Nachliel E., Huppert D., Gutman M. Proton dissociation dynamics in the aqueous layer of multilamellar phospholipid vesicles. J Membr Biol. 1990 Dec;118(3):225–232. doi: 10.1007/BF01868606. [DOI] [PubMed] [Google Scholar]
  16. Shimoni E., Tsfadia Y., Nachliel E., Gutman M. Gaugement of the inner space of the apomyoglobin's heme binding site by a single free diffusing proton. I. Proton in the cavity. Biophys J. 1993 Feb;64(2):472–479. doi: 10.1016/S0006-3495(93)81389-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Timasheff S. N. Water as ligand: preferential binding and exclusion of denaturants in protein unfolding. Biochemistry. 1992 Oct 20;31(41):9857–9864. doi: 10.1021/bi00156a001. [DOI] [PubMed] [Google Scholar]
  18. Viitanen P., Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol. 1986;125:429–452. doi: 10.1016/s0076-6879(86)25034-x. [DOI] [PubMed] [Google Scholar]
  19. Wu J., Hardy D., Kaback H. R. Site-directed chemical cross-linking demonstrates that helix IV is close to helices VII and XI in the lactose permease. Biochemistry. 1999 Feb 9;38(6):1715–1720. doi: 10.1021/bi982342b. [DOI] [PubMed] [Google Scholar]
  20. Wu J., Perrin D. M., Sigman D. S., Kaback H. R. Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9186–9190. doi: 10.1073/pnas.92.20.9186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yam R., Nachliel E., Kiryati S., Gutman M., Huppert D. Proton transfer dynamics in the nonhomogeneous electric field of a protein. Biophys J. 1991 Jan;59(1):4–11. doi: 10.1016/S0006-3495(91)82192-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES