Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1617–1630. doi: 10.1016/S0006-3495(01)76134-6

Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor Q(A).

K Gibasiewicz 1, A Dobek 1, J Breton 1, W Leibl 1
PMCID: PMC1301353  PMID: 11259277

Abstract

Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation.

Full Text

The Full Text of this article is available as a PDF (149.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth P. J., Crystall B., Ahmad I., Barber J., Porter G., Klug D. R. Observation of multiple radical pair states in photosystem 2 reaction centers. Biochemistry. 1991 Jul 30;30(30):7573–7586. doi: 10.1021/bi00244a029. [DOI] [PubMed] [Google Scholar]
  2. Delosme R. Etude de l'induction de fluorescence des algues vertes et des chloroplastes au début d'une illumination intense. Biochim Biophys Acta. 1967 Jul 5;143(1):108–128. doi: 10.1016/0005-2728(67)90115-6. [DOI] [PubMed] [Google Scholar]
  3. Holzapfel W., Finkele U., Kaiser W., Oesterhelt D., Scheer H., Stilz H. U., Zinth W. Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5168–5172. doi: 10.1073/pnas.87.13.5168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Holzwarth A. R., Müller M. G. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry. 1996 Sep 10;35(36):11820–11831. doi: 10.1021/bi9607012. [DOI] [PubMed] [Google Scholar]
  5. Kramer H., Mathis P. Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures. Biochim Biophys Acta. 1980 Dec 3;593(2):319–329. doi: 10.1016/0005-2728(80)90069-9. [DOI] [PubMed] [Google Scholar]
  6. Peloquin J. M., Williams J. C., Lin X., Alden R. G., Taguchi A. K., Allen J. P., Woodbury N. W. Time-dependent thermodynamics during early electron transfer in reaction centers from Rhodobacter sphaeroides. Biochemistry. 1994 Jul 5;33(26):8089–8100. doi: 10.1021/bi00192a014. [DOI] [PubMed] [Google Scholar]
  7. Roelofs T. A., Holzwarth A. R. In search of a putative long-lived relaxed radical pair state in closed photosystem II: Kinetic modeling of picosecond fluorescence data. Biophys J. 1990 Jun;57(6):1141–1153. doi: 10.1016/S0006-3495(90)82634-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Roelofs T. A., Lee C. H., Holzwarth A. R. Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts: A new approach to the characterization of the primary processes in photosystem II alpha- and beta-units. Biophys J. 1992 May;61(5):1147–1163. doi: 10.1016/s0006-3495(92)81924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schatz G. H., Brock H., Holzwarth A. R. Kinetic and Energetic Model for the Primary Processes in Photosystem II. Biophys J. 1988 Sep;54(3):397–405. doi: 10.1016/S0006-3495(88)82973-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Schatz G. H., Brock H., Holzwarth A. R. Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8414–8418. doi: 10.1073/pnas.84.23.8414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Vass I., Styring S., Hundal T., Koivuniemi A., Aro E., Andersson B. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1408–1412. doi: 10.1073/pnas.89.4.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vernotte C., Etienne A. L., Briantais J. M. Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta. 1979 Mar 15;545(3):519–527. doi: 10.1016/0005-2728(79)90160-9. [DOI] [PubMed] [Google Scholar]
  13. Wasielewski M. R., Johnson D. G., Seibert M., Govindjee Determination of the primary charge separation rate in isolated photosystem II reaction centers with 500-fs time resolution. Proc Natl Acad Sci U S A. 1989 Jan;86(2):524–528. doi: 10.1073/pnas.86.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Woodbury N. W., Parson W. W. Nanosecond fluorescence from isolated photosynthetic reaction centers of Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1984 Nov 26;767(2):345–361. doi: 10.1016/0005-2728(84)90205-6. [DOI] [PubMed] [Google Scholar]
  15. Yruela I., Gatzen G., Picorel R., Holzwarth A. R. Cu(II)-inhibitory effect on photosystem II from higher plants. A picosecond time-resolved fluorescence study. Biochemistry. 1996 Jul 23;35(29):9469–9474. doi: 10.1021/bi951667e. [DOI] [PubMed] [Google Scholar]
  16. van Mieghem F., Brettel K., Hillmann B., Kamlowski A., Rutherford A. W., Schlodder E. Charge recombination reactions in photosystem II. I. Yields, recombination pathways, and kinetics of the primary pair. Biochemistry. 1995 Apr 11;34(14):4798–4813. doi: 10.1021/bi00014a038. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES