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ABSTRACT An electrochemical theory of the glycocalyx surface layer on capillary endothelial cells is developed as a model
to study the electrochemical dynamics of anionic molecular transport within capillaries. Combining a constitutive relationship
for electrochemical transport, derived from Fick’s and Ohm’s laws, with the conservation of mass and Gauss’s law from
electrostatics, a system of three nonlinear, coupled, second-order, partial, integro-differential equations is obtained for the
concentrations of the diffusing anionic molecules and the cations and anions in the blood. With the exception of small
departures from electroneutrality that arise locally near the apical region of the glycocalyx, the model assumes that cations
in the blood counterbalance the fixed negative charges bound to the macromolecular matrix of the glycocalyx in equilibrium.
In the presence of anionic molecular tracers injected into the capillary lumen, the model predicts the size- and charge-
dependent electrophoretic mobility of ions and tracers within the layer. In particular, the model predicts that anionic molecules
are excluded from the glycocalyx at equilibrium and that the extent of this exclusion, which increases with increasing tracer
and/or glycocalyx electronegativity, is a fundamental determinant of anionic molecular transport through the layer. The model
equations were integrated numerically using a Crank-Nicolson finite-difference scheme and Newton-Raphson iteration. When
the concentration of the anionic molecular tracer is small compared with the concentration of ions in the blood, a linearized
version of the model can be obtained and solved as an eigenvalue problem. The results of the linear and nonlinear models
were found to be in good agreement for this physiologically important case. Furthermore, if the fixed-charge density of the
glycocalyx is of the order of the concentration of ions in the blood, or larger, or if the magnitude of the anionic molecular
valence is large, a closed-form asymptotic solution for the diffusion time can be obtained from the eigenvalue problem that
compares favorably with the numerical solution. In either case, if leakage of anionic molecules out of the capillary occurs,
diffusion time is seen to vary exponentially with anionic valence and in inverse proportion to the steady-state anionic tracer
concentration in the layer relative to the lumen. These findings suggest several methods for obtaining an estimate of the
glycocalyx fixed-charge density in vivo.

INTRODUCTION

The surface glycocalyx on capillary endothelial cells has
been the subject of considerable controversy and conjecture
in the recent literature on the microcirculation. The focus of
much of this attention has been on the mechanical implica-
tions of the glycocalyx on microvascular rheology, specif-
ically in terms of its gross effect on capillary tube hemato-
crit and apparent viscosity (Klitzman and Duling, 1979;
Desjardins and Duling, 1990; Vink and Duling, 1996;
Damiano et al., 1996; Pries et al., 1997; Damiano, 1998;
Secomb et al., 1998). Very little emphasis, however, has
been placed on the possible role of the glycocalyx in deter-
mining the electrophoretic mobility of charged molecules
within capillaries. In light of recent experimental evidence
(Vink and Duling, 2000), it appears as if significant elec-
trostatic interactions arise between the glycocalyx and an-
ionic molecular tracers which dramatically influence trans-
port of the tracers. The potential significance of these

findings to microvascular permeability and exchange moti-
vates the present analysis of electrochemical molecular
transport through the capillary glycocalyx.

Although the composition and structure of the endothe-
lial-cell glycocalyx are not well characterized, insight into
its mechanical and electrochemical behavior can be gained
from what is known about some of its possible macromo-
lecular constituents. It appears that these constituents in-
clude, but are not limited to, heparan sulfate proteoglycan,
chondroitin sulfate proteoglycan, and hyaluronic acid (Des-
jardins and Duling, 1990; Henry and Duling, 1999). In this
way, the endothelial-cell glycocalyx is similar to mucopo-
lysaccharide structures arising in other systems (e.g., artic-
ular cartilage, tectorial membrane, etc.). This similarity es-
sentially pertains to the fact that these mucopolysaccharide
structures are highly hydrated in an electrolytic solution and
are rich in proteoglycan, glycoprotein, and glycosaminogly-
can (GAG) aggregates, which contain large numbers of
solid-bound fixed negative charges. It also appears likely
that the molecular composition of the glycocalyx varies
across its thickness, from the endothelial-cell surface to its
apical region within the capillary lumen. Henry and Duling
(1999) found, through enzymatic reduction of the capillary
glycocalyx with hyaluronidase, that hyaluronan (and per-
haps other constituents that are cleaved by hyaluronidase)
may contribute significantly to the apical glycocalyx. This
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finding was based on the fact the very large dextran mole-
cules, having molecular weights (MW).580, and red cells
remained excluded by the apical glycocalyx; yet smaller
dextran molecules,,145 kDa, permeated significantly into
the layer after enzymatic reduction with hyaluronidase.
They also reported a marked increase in capillary tube
hematocrit after hyaluronidase treatment, suggesting that
the permeability of the glycocalyx to blood plasma is
strongly dependent upon the presence of those constituents
that are cleaved by hyaluronidase (Damiano, 1998; Secomb
et al., 1998).

Combining intravital brightfield and fluorescence micros-
copy of the capillary glycocalyx, Duling and co-workers
(Vink and Duling, 1996, 2000; Henry and Duling, 1999)
have revealed its surprisingly large in vivo dimension, its
unexpected permeability properties, and the tenuous nature
of its structure. They have also shown that the illumination
used to visualize the layer also results in its eradication if
epifluorescent exposure is sustained for.3–5 min. Their
approach consists essentially of obtaining two images—one
brightfield image of a capillary using transillumination, and
one image of fluorescently labeled tracers in the capillary
lumen using epifluorescence illumination an instant later.
By subtracting the width of the fluorescent tracer column
from the anatomical diameter of the capillary imaged under
transillumination, one has a measure of either the instanta-
neous in vivo thickness of glycocalyx, if the tracers are
sufficiently large so as to be excluded by the layer, or the
extent of diffusion into the layer of tracers small enough to
penetrate the glycocalyx pores. Using this technique, Vink
and Duling (1996, 2000) concluded that the in vivo thick-
ness of the glycocalyx was;0.4–0.5mm. This represents a
much more substantial structure than previous estimates
derived from electron microscopy studies, which likely un-
derestimate the thickness due to dehydration of the extra-
cellular matrix that inevitably accompanies tissue fixation.
Consequently, on the basis of these electron microscopy
studies, estimates of the glycocalyx thickness on capillary
endothelial cells were on the order of only 50–100 nm. It is
for this reason, perhaps, more than any other, that the
glycocalyx has been almost entirely overlooked in matters
concerning microvascular rheology, permeability, and
exchange.

Because the capillary glycocalyx is at the interface be-
tween blood and the luminal endothelial-cell surface, it
represents the first barrier to transvascular exchange. It is
evident, therefore, that microvascular permeability is depen-
dent upon glycocalyx permeability. To probe this, Vink and
Duling (2000) conducted a series of experiments to study
glycocalyx permeability within capillaries. They observed
that dextran molecules.70 kDa remained excluded from
the glycocalyx by virtue of their size for over 3 h, regardless
of whether they were labeled with anionic or neutral fluo-
rescent dyes. However, smaller anionic dextrans between 4
and 40 kDa invaded the glycocalyx with size-dependent

half-times of between 12 and 60 min, respectively. Even
extremely small anionic dyes between 0.4 and 0.6 kDa
showed half-times of 11 min. Alternatively, neutral dyes of
;0.4 kDa and neutral dextrans of,40 kDa equilibrated
within one capillary transit time. For neutral dextran mole-
cules,40 kDa, the corresponding Fickian diffusion time in
plasma over the glycocalyx length scale of;0.4mm is,20
ms. Thus, diffusion times for charged molecules could
potentially be as much as five orders of magnitude longer
than their neutral counterparts. These results suggest an
important role for the solid-bound fixed charges of the
glycocalyx matrix in capillary permeability.

It is in the midst of this rather unsettled state of affairs
that we find ourselves without adequate quantitative expla-
nations for many of these recent experimental findings. In
an attempt to close this gap between experimental observa-
tion and theoretical understanding, we embark upon an
electrochemical analysis of the glycocalyx that is sophisti-
cated enough to address the salient physical phenomena
while avoiding contrived specificity. We seek to determine
whether a relatively simple electrochemical model of the
glycocalyx can account for the disparity in diffusion times
between anionic and neutral molecular tracers reported by
Vink and Duling (2000). The model assumes that the gly-
cocalyx consists of a multicomponent mixture that includes
a fluid constituent (blood plasma), mobile ions (cations and
anions), and a solid proteoglycan/glycoprotein/GAG matrix
containing fixed negative charges. The negative charges
bound to the solid matrix are assumed to have a fixed-
charge distribution in the reference configuration given by
uzFcF(x, t0)u, where zF and cF are, respectively, the mean
valence and concentration distribution associated with the
molecular constituents of the glycocalyx. In equilibrium, it
is expected that the mobile ions establish a distribution that
nearly counterbalances the fixed charges on the solid matrix
such that a state of electroneutrality exists throughout the
vessel, except for a slight departure localized near the apical
glycocalyx, i.e., near the interface between the glycocalyx
and vessel lumen. When integrated over the vessel cross
section, however, these local charge imbalances should can-
cel such that global space-charge neutrality exists within the
capillary. Therefore, throughout the vessel lumen where
there is no glycocalyx, the concentration distributions of
mobile anions and cations should be equal. The mobile ions
in this region can be thought of as a neutral salt (Lai et al.,
1991), which has no net effect on the total charge density
within the capillary. However, near the glycocalyx inter-
face, the mobile cation concentration is expected to increase
to nearly neutralize the fixed negative charges on the gly-
cocalyx, while the mobile anion concentration should de-
crease. These concentration gradients in the mobile ion
distributions must be supported in equilibrium by the elec-
tric field generated by the glycocalyx. As we shall see, this
electric field exerts its effect on the diffusing anionic mo-
lecular tracers by partially excluding them from the glyco-
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calyx. The degree to which this exclusion occurs is primar-
ily dependent upon the molecular tracer valence and
glycocalyx fixed-charge density.

In what follows, a constitutive relationship derived from
Fick’s and Ohm’s laws is proposed for the electrochemical
flux of an anionic molecular tracer. Together with the con-
servation of mass, Gauss’s law from electrostatics, and
appropriate boundary conditions, a closed model is obtained
for electrochemical transport through the capillary glycoca-
lyx. This model is solved numerically for the one-dimen-
sional, axisymmetric, spatiotemporal concentration distribu-
tions of the molecular tracer and mobile ions in the blood.
Furthermore, a linear analysis is developed which is valid
whenever the molecular tracer concentration is small com-
pared with the ion concentration in the blood. From this
analysis, a closed-form asymptotic expression is derived for
the molecular tracer diffusion time that is valid if either the
fixed-charge density is large compared with the ion concen-
tration in the blood or the electronegativity of the anionic
molecular tracer is large. Following this is a discussion of
analytical results where we consider specific parameter val-
ues (e.g., molecular tracer valence, glycocalyx fixed-charge
density, and glycocalyx distribution) required to reproduce
the recent experimental findings of Vink and Duling (2000).
We conclude with a discussion of the model’s implications
for the system in equilibrium and propose several alterna-
tive experimental approaches to finding the glycocalyx
fixed-charge density in vivo that are independent of molec-
ular diffusion times or the reaction-diffusion kinetics of the
system.

THE MODEL

The glycocalyx is modeled here as a continuously distrib-
uted anionic matrix made up of proteoglycans, glycopro-
teins, and GAGs containing fixed-bound negative charges
through which a solution of anionic molecular tracers in
blood plasma can diffuse. Of fundamental importance to the
model is that it account for the presence of ionic salts (Na1,
Cl2, etc.) in the blood. The validity of the continuum
approximation used here for the glycocalyx matrix depends
not only upon the instantaneous spatial distributions of the
matrix and fixed charge groups, but also upon the temporal
variations in those distributions arising from Brownian mo-
tion of the matrix. In fact, if it were not for these temporal
variations, the continuum approximation might not be rea-
sonable. In particular, we assume that in its hydrated state,
the glycocalyx is extremely diffuse and resembles other
collagen-poor mucopolysaccharide extracellular matrix
structures with solid-volume fractions below 1% (Levick,
1987). The instantaneous fixed-charge distribution in such a
structure is therefore likely to be quite heterogeneous. Fur-
thermore, the Debye length in normal saline is,0.2 nm,
and thus the electric field induced by the fixed charges
bound to the glycocalyx is very efficiently shielded by the

counter cations in the blood. At such high cation concen-
trations relative tocf the strength of the electric field, at a
distance of 1 nm or more from one of the fixed-charge
groups, would be reduced to,1% of its maximum value if
the glycocalyx matrix were a static scaffold with fixed-
bound-negative charges. Indeed, if it were not for Brownian
motion of the glycocalyx matrix itself, the instantaneous
electric field distribution in a system with such a low
solid-volume fraction and such a high cation concentration
would likely be extremely nonuniform. However, when one
accounts for Brownian motion of the proteoglycan/glycop-
rotein/GAG aggregates at 310 K, the time-averaged spatio-
temporal distribution of the electric field would certainly be
more uniform than the instantaneous distribution, making
the continuum approach more reasonable. Therefore, we
assume that variations in the electric field arising from
cationic charge shielding and sparsity of the individual fixed
charges bound to the glycocalyx matrix are offset, in a
time-averaged sense, by Brownian motion of the matrix. We
therefore model the glycocalyx as having a continuous
concentration distribution and continuous fixed-charge den-
sity distribution (with at most a finite number of disconti-
nuities at interfaces) such that spatial variations in the
electric field are solely a result of spatial variations in the
time-averaged fixed-charge density distribution.

By invoking the continuum approximation, we bring to
bear the classical theory of electrochemical ionic transport
in solution, which has its origins in the Nernst-Planck equa-
tion (Bockris and Reddy, 1970). In the context of this
theory, transport is driven principally by chemical gradients
and electrostatic forces. In the case of transport of anionic
molecular tracers through the glycocalyx, the results of
Vink and Duling (2000) suggest a strong dependence on
tracer valence; thus, the important contributions to molec-
ular transport that are considered here are derived from
chemical and electrostatic potentials.

Conservation of mass

In the absence of chemical reactions, the time rate of change
of the concentration,cg, of speciesg is related to its flux,Jg,
relative to a quiescent solvent, by the conservation equation
given by

­cg

­t
5 2= ? Jg, (1)

The various flux contributions mentioned above must be
specified by appropriate constitutive relations.

Constitutive flux laws

For any mass transport problem there is a flux,Jchemical
g ,

associated with the chemical potential of the diffusing spe-
cies that is proportional to the concentration gradients of the
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speciesg. Typically, this is modeled using Fick’s law of
diffusion. To account for the strong charge dependence in
the results of Vink and Duling (2000), a flux,Jelectric

g , due to
electrostatic interactions of speciesg with the electric field
induced by the glycocalyx is also introduced. The constitu-
tive flux law for electrostatically driven transport is derived
from Ohm’s law, and is obtained by considering electro-
static and viscous forces that act on a diffusing particle in
suspension due to the effect of all charges in the system.
Thus, we model the total electrochemical flux,Jg, of species
g as the sum of Fick’s and Ohm’s laws given by

Jg 5 Jchemical
g 1 Jelectric

g , (2)

5 2Dg=cg 1
zgq

fd
g cgE, (3)

whereDg is the diffusion coefficient,zg is the ionic valence,
fd
g is the Stokes drag coefficient,q is the elementary charge,

andE is the electric field vector. This expression forms the
basis for the model presented here. It should be noted thatzg

represents the effective valence, which provides the correct
electrophoretic mobility of the charged molecule in solu-
tion. The effect of charge shielding is then accounted for in
the valence, which may take on noninteger values.

Electrochemical transport equations

The Stokes drag coefficient,fd
g, is related to the diffusion

coefficient according to the Einstein relation,Dg 5 kBT/fd
g,

where kB is Boltzmann’s constant andT is the absolute
temperature (Reif, 1965). Thus, the flux and species con-
servation equations become

Jg 5 2DgS=cg 2
zgq

kBT
cgED, (4)

­cg

­t
5 = ? SDg=cg 2 Dg

zgq

kBT
cgED. (5)

The indexg makes explicit the fact that there are differ-
ent diffusing species in the system. Namely,g may take
the values1, 2, andL, for the mobile cations (Na1), the
mobile anions (Cl2), and anionic molecular tracers,
respectively.

It remains now to determine the electric fieldE due to the
presence of charge imbalances in the system. From the
outset it should be noted that there will be global charge
balance, so that the total charge in the system is zero. There
may, however, be local charge imbalances due to gradients
in the concentrations of the various species. The electric
field due to a system of charges may be determined using
Gauss’s law from electrostatics. The divergence of the elec-

tric field depends on the local charge density,r, according to

= ? E 5
r

«
(6)

where « is the permittivity of the surrounding medium,
which is taken to be the same as that of water (1.573 10211

F/m).
At this point, the effect of the glycocalyx may be in-

cluded. The glycocalyx is assumed to be a charged porous
matrix of macromolecules, each with valencezF. The con-
centration of macromolecules in the glycocalyx is denoted
by cF, which varies over the cross section of the capillary.
The glycocalyx fixed-charge density is then denoted by
uzFcFu. In this analysis, deformations of the glycocalyx are
considered negligible, so the initially specified concentra-
tion, cF, does not vary with time. For convenience, we
introduce the quantityd 5 r/q, which represents the local
charge imbalance per unit charge and corresponds to the
valence-weighted sum of constituent concentrations given by

d 5 z1c1 1 z2c2 2 ncF 2 mcL, (7)

where, for convenience, we have introduced the parameters
m 5 2zL andn 5 2zF. Gauss’s law, given in terms ofd by
= z E 5 qd/«, taken together with the three second-order,
nonlinear, partial differential equations represented by Eq.
5, provide a system of four scalar equations in the four
unknowns,c1(x, t), c2(x, t), cL(x, t), andd(x, t).

Axisymmetric form of the equations

In all of what follows, axisymmetric conditions will be
imposed and axial variations in the field variables will be
neglected. With this approximation, all variables depend
only on the radial coordinate,r, and time. This simplifies the
governing equations substantially since Gauss’s law is then
integrable. Omitting uniform additive contributions to the
electric field in theêr, êw, andêz directions, Eq. 6 reduces to

1

r

­~rEr!

­r
5

qd

«
f Er 5

q

«rE
0

r

d~s, t!s ds (8)

where, by axisymmetry, the electric field has only a radial
component such thatE 5 Er(r t)êr. Furthermore, in the
axisymmetric case, the electric field must vanish atr 5 0. If
there is zero net charge in the system, the electric field must
also vanish at the system boundary atr 5 5. This global
electroneutrality condition requires that

Er~5! 5
q

«5E
0

5

d~s, t!s ds 5 0. (9)

The conservation equations contained in Eq. 5 may be
written in cylindrical coordinates, and upon substitution of
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Eq. 8 forEr, they become

­cg

­t
5

1

r

­

­rSDgr
­cg

­r
2

Dgzgq2

kBT«
cgE

0

r

d~s, t!s dsD (10)

for g 5 1, 2, andL. The fourth equation needed for closure
is just the definition ofd given by Eq. 7. Thus, substitution
of Eq. 7 into Eq. 10 provides a coupled system of three
scalar, second-order, nonlinear, partial integro-differential
equations in the three unknowns,c1, c2, andcL.

Boundary conditions

Because the equations represented by Eq. 10 have one time
derivative and two space derivatives, an initial condition
and two boundary conditions are needed. For a closed
system, the flux of any species across the system boundary
must vanish. In particular, if the closed boundary of the
system is atr 5 5, then the radial component of the flux
must satisfyJr

g(5, t) 5 0. Expressing Eq. 4 for the flux in
axisymmetric cylindrical coordinates, this boundary condi-
tion takes the form

Jr
g~5, t! 5 2DgS­cg

­r
U

r55
2

zgq

kBT
cgEr~5!D 5 0. (11)

Recalling the charge balance requirement of Eq. 9, this
boundary condition simplifies to

­cg

­r
U

r55
5 0. (12)

The second boundary condition arises from the geometry of
the problem. Because the system is presumed to be axisym-
metric, odd derivatives of the concentration vanish atr 5 0,
which provides the second boundary condition given by

­cg

­r
U

r50
5 0. (13)

Initial conditions

We assume a Gaussian radial distribution for the initial
concentration,cL(r, t0), of molecular tracers. As we will see,

the diffusion time is insensitive to the exact form of this
initial distribution. However, the initial distributions of the
mobile salt ions, Na1 and Cl2, present a more difficult
problem. Because it is assumed that salts in the blood
plasma are in equilibrium before molecular tracers are
added, the condition that determines the initialc1 and c2

distributions is that the flux vanish identically. Therefore,
we must solve Eq. 4 subject to the constraint thatJ6 [ 0.
The electric field for these equations is given by Eq. 8, but
with cL 5 0 in Eq. 7 definingd. In cylindrical coordinates,
the two zero-flux equations become

r
dc6

dr
2

z6q2c6

kBT« E
0

r

d~s!s ds 5 0, (14)

and the expression ford in equilibrium becomes

d~r! 5 z1c1~r! 1 z2c2~r! 2 ncF~r!. (15)

As for the unsteady case, the boundary conditions for Eq. 14
are given by Eqs. 12 and 13. From Eqs. 12–15, steady-state
solutions can be obtained that represent the equilibrium
configurations forc6(r, t0) immediately before molecular
tracers are added.

Nondimensional form of the equations

So that reasonable order-of-magnitude approximations can
be made, we make the relative size of each term in the
equations apparent by nondimensionalizing the variables
and equations. The parameters that characterize the problem
are given in Table 1. Using an asterisk to denote dimen-
sionless variables, the dependent and independent variables
are nondimensionalized as follows:

r 5 5r*, t 5
52

~D1DL!1/2 t*, (16)

c6 5 cbloodc
6*, cL 5 c0

LcL* , cF 5 c0
FcF*, d 5 c0

Ld*.
(17)

TABLE 1 Parameter values used in the model

Symbol Description Typical Value

c0
L Concentration of dextrans in blood 3.53 1025 mol/l*

cblood Concentration of salts (Na1, Cl2) in blood 0.14 mol/l
D6 Diffusion coefficient of Na1 and Cl2 in water 1029 m2/s
DL Diffusion coefficient of molecular tracer in water 2.43 10211 m2/s*
5 Radial dimension of entire system 32 10 mm
rec Radial location of endothelial-cell surface 2.52 3 mm
rec 2 rg Thickness of glycocalyx 0.42 0.5 mm

*Values are typical for 39 kDa FITC-dextran tracers, but vary with molecular weight (see Table 2).
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TakingDg to be constant, and assumingD1 ' D2, we have

­c6*

­t*
5 D

1

r*

­

­r*Sr* ­c6*

­r*
2zgQc6*E

0

r*

d* ~s* !s* ds*D,
(18)

­cL*

­t*
5

1

D

1

r*

­

­r*Sr* ­cL*

­r*
2zLQcL*E

0

r*

d* ~s* !s* ds*D,
(19)

d* 5 z1Bc1* 1 z2Bc2*2nFcF* 2 mcL* , (20)

where we have introduced the following dimensionless
groups:

Q 5
q2c0

L52

kBT«
, D 5 SD1

DLD1/2

, B 5
cblood

c0
L , F 5

c0
F

c0
L . (21)

Henceforth, the nondimensional form of the governing
equations will be used, and for convenience, the asterisks
will be dropped.

Glycocalyx distribution

The concentrations of proteoglycan, glycoprotein, and GAG
macromolecules in the glycocalyx are assumed to increase
continuously from zero in the lumen to a nearly constant
(but unknown) value near the endothelial-cell wall. Leakage
of the tracer molecules from the capillary into the extravas-
cular space might also play an important role in the elec-
trochemical dynamics. The glycocalyx distribution is thus
approximated by an expression of the form:

cF~r! 5
1

4S1 1 tanhS5.3

Drg
~r 2 rg!DD

z S1 1 tanhS 5.3

Drec
~2r 1 rec!DD†

. (22)

The dagger indicates that the distribution is symmetrized
aboutr 5 0; that is,p(r)† 5 p(r) 1 p(2r), and1 is a scaling
factor so that max{cF(r)} 5 1. The radii,rg andrec, denote
the locations of the lumen-glycocalyx and glycocalyx-en-
dothelial boundaries, respectively, and are known approxi-
mately from experimental results of Vink and Duling (1996,
2000). Nearrg, 99% of the rise incF occurs over a distance
Drg, while 99% of its fall occurs nearrec over a distance
Drec. Fig. 1 shows a schematic diagram of this distribution.
Setting bothDrg and Drec to zero results in a box-shaped
distribution, with discontinuities in glycocalyx concentra-
tion at rg and rec. In dimensional variables, the maximum
concentration of the glycocalyx corresponds toc0

F.

EQUILIBRIUM CONFIGURATION

A few observations can be made about the three equations
represented by Eqs. 18 and 19. They are clearly coupled
through Eq. 20 ford, and are nonlinear. The nonlinearity
appears in the flux contribution associated with the electric
potential, and is bilinear and quadratic. The integral term
complicates the problem considerably because it means that
local charge imbalances have global influence. Here we
derive some exact and asymptotic relations of the equilib-
rium solutions, including an asymptotic expression ford as
a function ofcF. These results are used in the next section to
derive a linearized set of equations.

Product of concentrations at equilibrium

For two different diffusing species at equilibrium, having
concentrationscu andcv and valenceszu andzv, the product
(cu)1/zu

(cv)21/zv

is constant over space. To see this, consider
the steady-state version of the flux equations given by

=cu 2 zuQcuE 5 0, (23)

=cv 2 zvQcvE 5 0. (24)

Dividing Eq. 23 byzucu and Eq. 24 byzvcv and subtracting,
we obtain

=cu

zucu 2
=cv

zvcv 5 0f = ln~~cu!1/zu
~cv!21/zv

! 5 0,

from which it follows that

~cu!1/zu
~cv!21/zv

5 const. (25)

For a salt solution withzu 5 11 andzv 5 21, this result
says that the productc1c2 is constant at equilibrium. In
dimensional variables, the constant is equal to unity; dimen-
sionally, it is given bycblood

2 . Furthermore, from Eq. 25 it
follows that at any two radial distances,r1 and r2,

cu~r1!
1/zu

cv~r1!
21/zv

5 cu~r2!
1/zu

cv~r2!
21/zv,

FIGURE 1 The assumed form of thecF distribution, as in Eq. 22,
showing the parametersrg, Drg, rec, andDrec. Not to scale.
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from which we conclude

Scu~r1!

cu~r2!
D1/zu

5 Scv~r1!

cv~r2!
D1/zv

. (26)

This result becomes useful when solving for the equilibrium
distribution of a species because it can be used to uncouple
the zero-flux equations.

Implication for tracer exclusion in equilibrium

The results of the previous section have important implica-
tions for the exclusion of molecular tracers from regions
where the glycocalyx fixed-charge density is large. To il-
lustrate this, we initially restrict consideration toz1 5 1 and
z2 5 21. Subsequently, we will give an argument to
generalize the results to arbitrary values ofz1 andz2.

Using Eq. 26, and lettingr1 5 0, r2 5 r, u 5 1, andv 5
L (so thatz1 5 1 andzL 5 2m), we obtain

cL~r!

cL~0!
5 Sc1~r!

c1~0!D
2m

. (27)

Similarly,

c1~0!c2~0! 5 c1~r!c2~r!. (28)

Recalling the definition ofd from Eq. 20, we note thatB '
4000 in blood plasma, and also thatnF is presumed to be
large compared withm, which is,;5 in the experiments of
Vink and Duling (2000). Because all concentrations are
nondimensional, they are of order unity somcL is negligible
compared with the other terms. Also, because modest
charge imbalances result in large forces,d is generally
assumed to be very small. Therefore,

z1Bc1~r! 1 z2Bc2~r! 2 nFcF~r! < 0. (29)

In the lumen,cF is also negligible because the glycocalyx is
assumed not to extend across the entire vessel (Vink and
Duling, 1996, 2000). SincecF(0) 5 0, then at the center of
the lumenz1c1(0) ' 2 z2c2(0). Using this in Eq. 28, and
recalling the assumptions thatz1 5 11 andz2 5 21, Eq.
29 becomes

c1~0!2 < c1~r!Sc1~r! 2
nF

B
cF~r!D (30)

from which it follows that the nonnegative value ofc1(r) is
given by

c1~r!

c1~0!
<

1

2SnF

B

cF~r!

c1~0!
1SSnF

B

cF~r!

c1~0!D
2

1 4D1/2D. (31)

Now, for convenience we define

j~r! ;
nF

z1B

cF~r!

c1~0!
(32)

and substitute Eq. 31 into Eq. 27 to obtain

cL~r!

cL~0!
5 ~1

2
@j~r! 1 ~j~r!2 1 r!1/2#!2m (33)

for z1 5 2z2 5 1. Because the concentrations are nondi-
mensional,c1(0) 5 1, and if r 5 r0 is chosen where the
glycocalyx is most concentrated, thencF(r0) 5 1. Thus,
j0 5 nF/(z1B) measures the ratio of the glycocalyx fixed-
charge density to the luminal concentration of free salts, and

cL~r0!

cL~0!
5 ~1

2
@j0 1 ~j0

2 1 r!1/2#!2m. (34)

This quantity will be referred to as the exclusion factor
because it gives the factor by which anionic molecular
tracers are suppressed within the glycocalyx compared with
the lumen. It is plotted againstj0 for several different values
of m in Fig. 2. If j0 and m are small, thencL(r0)/c

L(0)
approaches unity. Ifj0 and m are large, thencL(r0)/c

L(0)
approaches zero, implying that the molecular tracers are
excluded from the glycocalyx. Thus, if the fixed-charge
density of the glycocalyx is large compared with the con-
centration of free salts in the blood, or ifm is large, then
anionic tracers are excluded from the glycocalyx. This plays
a very important role in suppressing the flux of tracers
through the glycocalyx, and thereby lengthening the diffu-
sion time.

Equilibrium distribution for d

The equilibrium configuration ford can be determined from
the zero-flux equation forc1 corresponding to the dimen-
sionless form of Eq. 14 given by

r
dc1

dr
2 z1Qc1E

0

r

d~s!sds 5 0. (35)

FIGURE 2 The dependence of the exclusion factor, Eq. 34, onj0 for
several different values ofm.
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We divide the zero-flux equation byc1, which vanishes
nowhere, and differentiate with respect tor to find

d

drSr d

dr
ln~c1!D 2 z1Qrd 5 0. (36)

This immediately givesd in terms of the distribution ofc1

such that

d~r! 5
1

z1Qr

d

drSr d

dr
ln~c1~r!!D. (37)

Using Eq. 31, and recalling thatc1(0) 5 1, we substitute for
c1 in Eq. 37 to obtain

d~r! 5
1

z1Qr

d

drSr d

dr
lnSnF

2B
cF~r!1SSnF

2B
cF~r!D2

1 1D1/2DD
(38)

5
1

mQr

d

drSr d

dr
f~r!D, (39)

where

f~r! ;
m

z1 ln~c1~r!!

5 ln~1
2
@j0c

F~r! 1 ~~j0c
F~r!!2 1 4!1/2#!m/z1. (40)

Equation 38 shows thatd is related to the second derivative
of the glycocalyx distribution,cF. SinceQ 5 72300 for a
typical capillary,d is a small quantity, as assumed in the
derivation of Eq. 29, making the assumption self-consistent.
Based on dimensional considerations discussed earlier, this
estimate ford should be accurate to within one part in
z1cblood/(mc0

L) 5 B/m ' 1000 even during the diffusion
process. Next it will be shown thatf is closely related to the
voltage field induced in the neighborhood of the glycocalyx.

Induced voltage

Although electroneutrality has been imposed globally, con-
centration of the glycocalyx on the endothelial-cell wall
gives rise to small departures from electroneutrality near the
interface between the glycocalyx and the plasma in the
lumen. The resulting electric field that arises from these
charge imbalances can be calculated directly fromd using
Eq. 8. Substituting the approximate analytic expression for
d, given by Eq. 39, into Eq. 8, and redimensionalizing, gives
the electric field explicitly:

Er 5
kT

mq
f 9~r! 5 2V9~r!. (41)

The voltage is then given by:

V~r! 5 2
kT

mq
f~r! 1 V0, (42)

whereV0 is a constant of integration. Substituting forf in
this expression from Eq. 40 gives

V~r! 5 2
kT

z1q
ln~1

2
@j0c

F~r!1~~j0c
F~r!!2 1 4!1/2#!. (43)

The reference voltage has been chosen to make the voltage
zero within the lumen. This expression agrees with the
interface potential quoted by Masaki et al. (2000).

LINEARIZED SOLUTION

In this section we invoke the approximation thatB/m .. 1
and use the results of the previous section to decouple and
linearize the governing equations. This permits an eigen-
function solution to the problem. The value of the first
nonzero eigenvalue,l1, is shown to have important impli-
cations for the diffusion time, and an asymptotic expression
for l1 is found for a box-shaped distribution of the glyco-
calyx.

Quasi-static approximation for d

The key observation is that althoughmcL might signifi-
cantly exceedd throughout the system,d varies only slightly
ascL changes with time. The physical justification for this
is somewhat subtle. Before the addition of anionic molec-
ular tracers,c1 andc2 have been in the system sufficiently
long to attain equilibrium with the glycocalyx molecules.
This means that the electric field set up by the fixed charges
bound to the glycocalyx is already supporting concentration
gradients inc6 near the glycocalyx. When tracers are added,
they also diffuse through the glycocalyx; however, because
c0

L ,, cblood the presence of tracers introduces only a small
perturbation to the free salt ion concentration. Thus,c6 does
not change significantly, and neither does the electric field,
which continues to support concentration gradients inc6.
Therefore,d is perturbed only slightly around its equilib-
rium value and remains nearly unchanged throughout the
diffusion process. Essentially, the presence of anionic mo-
lecular tracers may only perturbd by around one part in
B/m ' 1000.

This result can be derived formally by considering Eq. 37
in conjunction with the requirement of global charge bal-
ance. Because the additional cations must globally balance
the charge on the anionic molecular tracers, we have

E
0

1

z1B~c1~r, t! 2 c1~r, t0!!rdr 5 E
0

1

mcL~r, t!rdr (44)

where c1(r, t0) is the equilibrium distribution of cations
before the tracers are added. Thus, the temporal variation of
c1 must be of orderm/B, so we writec1(r, tf) 5 c1(r, t0) 1
(m/B)Dc1(r), wherec1(r, tf) is the cation equilibrium dis-
tribution after the tracers have equilibrated, andDc1(r) is of

Electrochemical Transport through the Glycocalyx 1677

Biophysical Journal 80(4) 1670–1690



order unity (in the sense that its volumetric integral on 0#
r # 1 is unity). Substituting this expression into Eq. 37
gives

d~r, tf! 5
1

z1Qr

d

drSr d

dr
ln~c1~r, tf!!D, (45)

5
1

z1Qr

d

drSr d

dr
lnFc1~r, t0! 1

m

B
Dc1~r!GD, (46)

5 d~r, t0! 1
m

B

1

z1Qr

d

drSr d

dr

Dc1~r!

c1~r, tf!
D. (47)

Thus, consistent with the qualitative arguments made pre-
viously, the fractional variation ind is of order m/B '
1/1000, and is therefore negligible. Thus,d can be consid-
ered quasi-static, and is well-approximated by the steady-
state result given by Eq. 39.

Eigenvalue problem for static d

Using the quasi-static approximation ford in Eq. 39, the
governing equations can be linearized and decoupled. Re-
calling Eq. 19, the conservation of mass forcL is given by

D
­cL

­t
5

1

r

­

­rSr ­cL

­r
1 mQcLE

0

r

d~s!s dsD. (48)

Substituting Eq. 39 ford and integrating provide

D
­cL

­t
<

1

r

­

­rSr ­cL

­r
1 r

df

dr
cLD. (49)

This equation is linear incL and homogeneous, and is
uncoupled from the conservation equations governing the
other species. Separation of variables provides a series
solution in terms of orthogonal functions. Thus, we seek
multiplicatively separable solutions of the formR(r)T(t) that
satisfy Eq. 49 and the boundary conditions. Using standard
methods (Boyce and DiPrima, 1992), a linear superposition
of such solutions will provide an eigenfunction expansion
that will be made to satisfy the initial condition att 5 t0.
Substituting into Eq. 49 and separatingr and t dependence
we find

1

rR

d

dr
~rR9 1 rf 9R! 5 D

Ṫ

T
5 2l2 (50)

wherel is a real constant. In this form it is evident thatR(r)
depends only onl andf(r), which in turn depend only onm,
j0, andcF(r). Because Eq. 49 is homogeneous, we conclude
from the second of Eq. 50 thatT(t) 5 e2l2t/D.

Because the flux must vanish atr 5 0 and r 5 1,
according to Eqs. 12 and 13, the boundary conditions on
R(r) are simplyR9(0) 5 R9(1) 5 0. Imposing these bound-

ary conditions provides a denumerable infinite set of eig-
envalues, {ln} n50

` , corresponding to the set of eigenfunc-
tions, {Rn(r)} n50

` , where eachRn(r) must satisfy the
ordinary differential equation (ODE) given by the first of
Eq. 50. Forl0 5 0, an analytic expression forR0(r) is found
to within a multiplicative constant to be

R0~r! 5 e2f(r)

5 ~j0 cF~r! 1 ~~j0 cF~r!!2 1 4!1/2!2m. (51)

This corresponds to the equilibrium distribution forcL after
transients have decayed. To within a multiplicative constant
factor, it is the same as Eq. 33. For the remaining eigen-
functions,Rn(r), however, there is no analytic expression for
generalf(r).

Orthogonality of Rn(r)

To obtain the eigenvalues and their associated eigenfunc-
tions, the ODE given by the first of Eq. 50 must be solved
numerically forRn. An eigenfunction expansion, which is
formed by the linear superposition of eigenfunctions,Rn,
and which can be made to satisfy the initial condition,
provides the series solution given by

cL~r, t! 5 O
n50

`

cne
2(ln

2/D)tRn~r!. (52)

The coefficients,cn, are found by taking the inner product of
the corresponding eigenfunction,Rn(r), with the initial dis-
tribution,cL(r, t0). The inner product is defined by a weight
function, w(r), with respect to which all of the eigenfunc-
tions are orthogonal. If a linear ODE with variable coeffi-
cients can be written as a Sturm-Liouville boundary value
problem with separated boundary conditions, one can show
that the eigenfunctions of the ODE are orthogonal with
respect to the weight function,w(r) (Boyce and DiPrima,
1992). We therefore seek to transform the first of Eq. 50
into a Sturm-Liouville problem. The transformation must
preserve the linearity of the ODE and should not add inho-
mogeneities to the boundary conditions. Thus we define
y(r) 5 R(r)/a(r), wherea(r) is to be determined. Substitut-
ing y(r) into the left-hand side of Eq. 50 and equating
coefficients with those of the Sturm-Liouville operator, it is
easily shown thata(r) 5 e2f(r), and the ODE fory is then
given by

ry0 1 ~1 2 rf9!y9 5 2l2ry. (53)

The eigenfunctions,yn(r), of the transformed problem are
thus orthogonal with respect to the weight functionw(r) 5
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re2f(r) so that

*
0

1ym~r!yn~r!re
2f(r)dr

*
0

1yn~r!
2re2f(r)dr

5

*
0

1Rm~r!Rn~r!re
f(r)dr

*
0

1Rn~r!
2ref(r)dr

5 H 1 if m5 n
0 if mÞ n . (54)

Becausef(r) is real and bounded,w(r) is strictly positive.
For a given initial concentration distribution,cL(r, t0), of
molecular tracers, the coefficients,cn, are thus given by

cn 5

*
0

1cF~r, 0!Rn~r!re
f(r)dr

*
0

1Rn~r!
2ref(r)dr

. (55)

Analytic solution for a box-shaped
distribution in cF

An analytic solution can be obtained ifcF has a box-shaped
distribution of the form

cF~r! 5 H 0 if 0 # r , rg

1 if rg # r , rec

0 if rec # r # 1
.

This is the limiting case asDrg3 0 andDrec3 0. For this
distribution,f becomes (settingz1 5 1 for simplicity)

f~r! 5 5
0 if 0 # r , rg

ln~1
2
@j0 1 ~j0

2 1 4!1/2#!m if rg # r , rec

0 if rec # r , 1

. (56)

In this case,f 9(r) is just a linear combination of two Dirac
delta functions given by

f 9~r! 5 ln~1
2
@j0 1 ~j0

2 1 4!1/2#!m

z ~d̂~r 2 rg! 2 d̂~r 2 rec!!. (57)

Away from rg andrec, f 9(r) is identically zero, so the ODE
given by Eq. 53 becomes

ry0 1 y9 1 l2ry 5 0, (58)

the solution of which can be written as a piecewise linear
combination of Bessel functions of the form

y~r! 5 H J0~lr! if 0 # r , rg

!J0~lr! 1 @Y0~lr! if rg # r , rec

#J0~lr! 1 $Y0~lr! if rec # r , 1
. (59)

In the first interval, 0# r , rg, Y0(lr) is omitted because it
is unbounded asr3 0, and the coefficient ofJ0(lr) is taken
as unity because the ODE is linear.

Near rg and rec, a careful limiting process needs to be
made to account for the Dirac delta function. The ODE
given by Eq. 53 can be written as

y0

y9
1

~1 2 rf 9!

r
1 l2

y

y9
5 0. (60)

We first deal with the behavior nearrg. We assume thaty9
is nonzero aroundrg (which will be checked for consistency
below) and integrate over a small interval (rg 2 e, rg 1 e)
containingrg to obtain

ln~y9!urg2e
rg1e 1 ln~r!urg2e

rg1e 2 f urg2e
rg1e 1 l2E

rg2e

rg1e y

y9
dr 5 0, (61)

wheree . 0. Becausey9 is assumed not to vanish on the
interval, y/y9 is bounded over the region of integration.
Taking the limit ase 3 01 yields

lnSy9~rg1!

y9~rg2!D 2 ~f~rg1! 2 f~rg2!! 5 0. (62)

Defining Df [ f(rg1) 2 f(rg2) and using Eq. 56, we obtain

Df 5 ln~1
2
@j0 1 ~j0

2 1 4!1/2#!m. (63)

Rearranging and taking the exponential of both sides of Eq.
62 yields

y9~rg1!

y9~rg2!
5 eDf. (64)

This implies that as long asy9(rg1) Þ 0 (an assumption
made above), the first derivative is discontinuous atrg, with
y91(rg) 5 eDfy92(rg). For nonzeroDf, the magnitude of the
slope ofy increases discontinuously atrg. A similar result
holds atrec, with Df replaced by2Df, so thaty91(rec) 5
e2Dfy92(rec).

Another condition ony is that its first derivative be
bounded for allr; otherwise, an unphysical infinite flux
would result. Therefore,y must be continuous at all points,
and atrg and rec in particular. It should be noted that this
does not imply thatR is continuous, asf is discontinuous for
a box-shaped distribution.

The coefficients!, @, #, and$ are determined by the
continuity requirement ofy at rg and at rec, the jump
condition relating the first derivative ofy at rg and atrec, and
the boundary condition,y9(0) 5 y9(1) 5 0. In fact, the
boundary condition atr 5 0 is already met in the assumed
form of the solution in Eq. 59, so only the boundary con-
dition atr 5 1 remains to be satisfied. These five constraints
are expressed by the relations

J0~lrg! 5 !J0~lrg! 1 @Y0~lrg!, (65)

J1~lrg! 5 e2Df~!J1~lrg! 1 @Y1~lrg!!,
(66)
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!J0~lrec! 1 @Y0~lrec! 5 #J0~lrec! 1 $Y0~lrec!, (67)

!J1~lrec! 1 @Y1~lrec! 5 eDf~#J1~lrec! 1 $Y1~lrec!!,
(68)

#J1~l! 1 $Y1~l! 5 0. (69)

Throughout, the identitiesJ90(lr) 5 2lJ1(lr) andY90(lr) 5
2lY1(lr) have been used. There are five unknown param-
eters,!, @, #, $, andl, and five equations, so there should
be a solution as long as the equations are linearly indepen-
dent. The equations are linear in!, @, #, and$, so any
four of the five equations may be used to write the coeffi-
cients explicitly in terms ofl. The coefficients may be
substituted into the remaining expression, resulting in a
characteristic equation, denotedY(l) 5 0, that involvesl as
the only unknown. Coefficients! and@ may be written in
a fairly compact form; however, the expressions for#, $,
and Y(l) are lengthy and are not explicitly shown here.
They are, however, easily obtained using symbolic algebra
software.

In any case, using numerical methods, the zeros ofY(l)
can be found that determine the denumerable infinite set of
eigenvalues, {ln} n50

` , that satisfy the constraints. A corre-
sponding set of coefficients, {!n, @n, #n, $n} n50

` , can then
be found by direct substitution of eachln into the charac-
teristic equation, and then the eigensolutions for the box-
shaped distribution are found. This solution requires the use
of numerical techniques only to find the roots of an alge-
braic equation, so may be considered fully analytic.

Asymptotic approximation of l1 for monovalent
mobile ions

Because the first nonzero eigenvalue,l1, determines the
slowest transient in the solution, its value is a fundamental
determinant of the electrochemical diffusion time scale. In
particular, the dimensionless characteristic time scale asso-
ciated with the first nonzero eigenvalue is given byt1 5
D/l1

2, and thus a long diffusion time is associated with a
small value ofl1. From the solution to the box-shaped
distribution for cF found above, it is possible to obtain a
closed-form asymptotic approximation tol1 if either m is
large or the fixed-charge density,nc0

F, of the glycocalyx is
large compared to the concentration of ions in the blood,
i.e., if j0 .. 1 for m. 0. The characteristic equation for the
eigenvalues of the box-shaped distribution,Y(l) 5 0, can
be expanded in a Taylor series aboutl 5 0. It is known that
Y has a root atl 5 0, so the Taylor series is taken toO(l5).
The truncated Taylor expansion is cubic and has real roots
at l̃ 5 0 and6l̃1. If l1 is sufficiently small, the truncated
Taylor series of the characteristic equation should be a good
approximation to the original characteristic equation at least
up to l1, that is, l̃1 5 l1 1 O(l5). Although lengthy,l̃1

may be determined analytically. However, if we make the
assumption thatM [ eDf .. 1, which is true if eitherm is

large compared with unity, ornF is large compared with
z1B (j0 .. 1) andm. 0, we obtain a simple expression for
l̃1. The Taylor expansion forl̃1 about 1/M 5 0 (i.e., about
M 3 `) is found to be

l1 < l̃1 5 S 2~1 2 rec
2 1 rg

2!

ln~rec/rg!~1 2 rec
2 !rg

2D1/2

z M21/2 1 O~M23/2!.

(70)

Recalling the definition ofDf andM, and discarding higher-
order terms in 1/M, we find the asymptotic solution forl1

asDf 3 `, for the box-shaped distribution ofcF, given by

l1 < S 2~1 2 rec
2 1 rg

2!

ln~rec/rg!~1 2 rec
2 !rg

2D1/2

e2Df/2, (71)

5 S 2~1 2 rec
2 1 rg

2!

ln~rec/rg!~1 2 rec
2 !rg

2D1/2

z ~1
2
@j0 1 ~j0

2 1 4!1/2#!2m/2. (72)

This expression is extremely valuable for estimatingl1.
Comparison with numerically computed values ofl1 re-
veals good agreement with the asymptotic form forl1 ,
;2 (e.g., whenj0 . ;10 andm 5 1, or whenj0 . ;2 and
m 5 3, or whenj0 . ;0.06 andm 5 100). Although Eq.
72 was derived using the analytic solution for the box-
shaped distribution, it does reveal the dependence ofl1 on
the parameters. The first factor on the right-hand side of Eq.
72 accounts for the geometry ofcF, while the second ac-
counts for the role ofF and m. Recalling the relationship
betweenl1 and the characteristic diffusion time,t1, it is
evident that

t1 } D@j0 1 ~j0
2 1 4!1/2#m. (73)

For j0 .. 1, t1 } Dj0
m. This result illustrates the important

influence ofm andF on the electrochemical diffusion time
of anionic molecular tracers. A more general asymptotic
approximation ofl1 for multivalent mobile ions is given in
the Appendix.

NUMERICAL METHODS

The eigenvalue equation, given by Eq. 53, that arises from
the linearized problem is solved numerically using a shoot-
ing method in conjunction with a commercial ODE solver
(Mathematica). To validate the analysis of the previous
section, numerical solutions of the coupled, nonlinear, par-
tial, integro-differential equations in Eqs. 18 and 19 have
also been obtained (with no asymptotic approximations)
using a flux-conservative, Crank-Nicolson, finite-difference
approach on an irregular grid. This numerical scheme han-
dles the stiffness of the system and limits global error
accumulation associated with the integral term. Details of
the finite-difference methods used are discussed more fully
in Stace (1999).
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RESULTS

In this section, the results of the finite-difference solutions
and analytical solutions are presented. The generality of the
finite-difference scheme is shown to extend to cases where
d varies significantly with time. Through several tests, the
scheme showed no numerical instabilities and achieved
iteration convergence at each time step. Also, the accuracy
of the staticd approximation is demonstrated when the
assumptions of the derivation are met. Next, the results of
the finite-difference and eigenvalue solutions are compared
for a continuous glycocalyx distribution, establishing the
validity of the latter for the case of staticd. Finally, the
variation of the first nonzero eigenvalue with different gly-
cocalyx distributions is explored. Unless otherwise stated,
times given are nondimensional.

Finite difference scheme

WhenB/m or F/m is near unity, the staticd approximation
is not valid. The finite-difference scheme is certainly capa-
ble of dealing with this situation, however. In Fig. 3,a and
b, c2 is zero, so thatc1 just balances the charges on the
glycocalyx and diffusing anionic molecules, makingB/m 5
1. Clearly, d varies with time, decreasing in amplitude
where the glycocalyx concentration varies most. WhenB/m
.. 1 or F/m .. 1, the staticd approximation is seen to
hold. For Fig. 3,c andd, F/m 5 285 andB/m 5 800. With
this choice of parameters, temporal variation ind is insig-

nificant. In fact, near the glycocalyx boundary,d changes by
,0.25%. The upper panels of Fig. 3 were initialized with a
cL distribution that followed a hyperbolic tangent distribu-
tion, while the lower panels were initialized with a Gaussian
distribution of cL. The diffusion times were found to be
extremely insensitive to the initialcL distribution.

The finite-difference scheme was checked for consis-
tency using several methods. Most importantly, at each time
step, the Newton-Raphson algorithm reduced the magnitude
of the absolute residual of the coupled nonlinear difference
equations to,5 3 1028. Second, whenm 5 0, the coupled
nonlinear equations are uncoupled and linear, and the re-
sulting spatial eigenvalue problem may be written in terms
of Bessel functions. Takingm 5 0, the solutions obtained
using this analytic method were compared with those ob-
tained using the finite-difference approach on a nonuniform
grid, and the relative pointwise difference between the two
was ,1% at each time step. Third, for nonzerom, the
finite-difference code was run until variations were insig-
nificant, and the resulting product of concentrations was
seen to be constant over space, in agreement with Eq. 25.
Finally, numerical solutions computed at two different (but
small) time steps agreed within 0.5%.

Comparison between results of numerical
solution and eigenfunction expansion

The eigenvalue problem formulated above is now com-
pared, for a particular case, with the solution obtained using

FIGURE 3 (a) Time variation of anionic molecular tracer concentration,cL(r, t), for F/m5 1 andB/m5 1. Note that the initial distribution forcL follows
a hyperbolic tangent. (b) Time variation ofd(r, t) corresponding to the instantaneouscL distributions shown in (a). Note thatd varies significantly with time.
(c) Time variation of anionic molecular tracer concentration forF/m 5 285 andB/m 5 800. In this case, the initialcL distribution follows a Gaussian. (d)
Time variation ofd(r, t) corresponding to the instantaneouscL distributions shown in (c). Note that the instantaneousd distributions are indistinguishable,
which is consistent with a quasi-static approximation ford. In all panels,m 5 5, Q 5 72314, and the geometric parameters arerg 5 0.86,Drg 5 0.02,
and rec 5 1 such that there is no leakage into the extravascular space.
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the finite-difference scheme. In the results shown in Fig. 3,
the system boundary, where the flux of anionic tracers
vanishes, was chosen as the endothelial-cell wall. All sub-
sequent results account for leakage of tracers into the ex-
travascular space. This is simulated by including a region
past the endothelial-cell wall into which anionic molecular
tracers can diffuse. Thus, for the results shown below, thecF

distribution is assumed to follow the form shown in Fig. 1,
whererec , 1.

To find the eigenvalues,Rn is computed for different
values ofl. The derivative,R9n(1; l), evaluated at the sys-
tem boundary, is plotted againstl and shown in Fig. 4a.
The eigenvalues correspond to the roots of the characteristic
equation,R9n(1; l) 5 0. In this case, the first three eigen-

FIGURE 4 (a) Graphical representation ofR9(1; l), corresponding to the left-hand side of the characteristic equation associated with the eigenvalue
problem. Asl varies, so doesR9(1; l). The eigenvalues, corresponding to the roots of the characteristic equation (dots), occur whereR9(1; l) vanishes. (b)
The first five eigenfunctions,Rn(r). To within a constant multiplicative factor, the eigenfunction,R0(r), corresponds to the equilibrium distribution ofcL.
(c) Comparison of the solutions obtained by the finite-difference method versus the eigenfunction expansion (truncated after the first 15 terms);cF is also
shown. For all panels,F 5 4744,B 5 4000,Q 5 200871,m 5 5, rg 5 0.52,Drg 5 0.2, rec 5 0.6, andDrec 5 0.03.
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values are 0, 2.19, and 7.78. Each eigenvalue has a corre-
sponding eigenfunction, and Fig. 4b shows the first five
eigenfunctions,R0, . . . , R4, corresponding tol0, . . . , l4.

For F 5 4744,B 5 4000, andm 5 5, the instantaneous
distributions ofcL, computed from the eigenfunction expan-
sion truncated after 15 terms, are shown in Fig. 4c at
various times. Also shown are the corresponding results
found using the finite-difference scheme. The agreement
between the two methods is excellent, differing most (al-
though not apparent from the figure) wherecF is large.

Time variation of cL for box-shaped distribution

For F 5 235200,B 5 4000, andm 5 3, Fig. 5 shows the
distribution of cL computed for a box-shaped distribution
using the first 10 terms of the fully analytic eigenfunction
expansion derived previously. The diffusion process has
two characteristic time scales. In a short time,cL reaches
pseudo-equilibrium, with imperceptible concentration gra-
dients over each region. For the parameters used in the
results shown in Fig. 5, it takes;105 times longer for the
anionic molecules to leak through the glycocalyx and es-
tablish equilibrium. This illustrates the stiffness of this
problem, as mentioned in the previous section. Note also
that the shape of the concentration distribution forr , rg

(wherecF is negligible) is very similar to what would be
expected for diffusion driven solely by chemical potential
gradients.

Variation of l1

While l0 5 0 is associated with the equilibrium configura-
tion, the nonzero eigenvalues,ln, are associated with the

transient dynamics, and are related to the nondimensional
characteristic diffusion times according totn 5 D/ln

2. Be-
cause transients corresponding toln decay faster with in-
creasingn, the slowest time constant is associated with the
first nonzero eigenvalue,l1. Whereast1 depends on the
dimensionless diffusion coefficient ratio,D, l1 does not,
and results are therefore more generally expressed in terms
of the latter. Asl1 depends onf, it varies with m, j0 5
nF/(z1B), and the geometric parametersrg, rec, Drg, and
Drec appearing in Eq. 22. In what follows, the dependence
of l1 on these parameters will be examined.

Dependence on j0

The variation ofl1 with j0 is shown in Fig. 6 for several
values of the valence magnitude,m. Sincej0 represents the
glycocalyx fixed-charge density relative to the valence-
weighted concentration of ions in the blood, Fig. 6 reveals
the influence of the fixed charges on the diffusion time. The
solid curves correspond to a smoothly varyingcF distribu-
tion, for which rg 5 0.4, Drg 5 0.1, rec 5 0.5, andDrec 5
0.03. For all positive values ofm, as j0 3 0 (i.e., as the
exclusion factor approaches unity),l1 asymptotes to 3.8317
for the solid and dotted curves. This is precisely the first
nonzero root ofJ1(r) 5 0, which corresponds to the first
nonzero eigenvalue if diffusion were driven by chemical
gradients alone. Asj03 `, l1 decreases monotonically for
all values ofm according to the power-law relationship,l1

} j0
2q, whereq, which depends uponm, is the slope of the

log-log plot shown in Fig. 6. Results for the box-shaped
distribution, corresponding to the dotted curves in Fig. 6,
show thatl1 is consistently lower than for the smooth

FIGURE 5 Plots ofcL(r, t) at various times assuming a box-shaped distribution forcF with F 5 235,200,B 5 4000, andm 5 3. ThecF distribution is
shown (dot-dash) as the rectangle extending fromrg 5 0.42 torec 5 0.5.
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distribution, indicating that the gradients incF do have some
effect onl1. The solution for the box-shaped distribution
does capture the important trends inl1, however, and dif-
fers from the smooth distribution for the cases shown by,
;15% forl1 , ;2. The dashed curves show the variation
in l1 calculated using the asymptotic approximation given
by Eq. 72. The box-shaped distribution clearly converges to
the asymptotic expression asj0 3 `, which gives a very
good approximation tol1 for the box-shaped distribution
when l1 , ;2. The asymptotic formula given by Eq. 72
indicates that the slope of the log-log plot should beq 5
2m/2, which is clearly seen for each of the sets of curves in
Fig. 6.

Dependence on m

The solid curves in Fig. 7 show howl1 varies withm for a
smoothly varyingcF distribution taking geometric parame-
ters rg 5 0.4, Drg 5 0.1, rec 5 0.5, andDrec 5 0.03. The
value ofl1 is calculated for values ofm ranging from 0 to
6. Although noninteger values of the valence magnitude,m,
may seem unphysical, due to charge shielding, the effective
valence of anionic molecular tracers is typically not integer-
valued. Results clearly show a strong dependence onm. In
particular, form . 1 it appears that this dependence has an
exponential character of the forml1 ' u2m, whereu, which
depends uponj0, is the slope of the log-linear plot shown in
Fig. 7. The dotted curves are calculated for the box-shaped

distribution, and the dashed curves correspond to the as-
ymptotic approximation forl1 given by Eq. 72. Agreement
between the asymptotic expression and the eigenfunction
expansion is good forl1 , ;2. The exponential relation-
ship betweenl1 and m is predicted by Eq. 72, which
indicates that for largej0, l1 is proportional toj0

2m/2. For a
log-linear plot ofl1 versusm, the slope of this relation will
be u 5 1/2 ln(j0). The asymptotic slope of the log-linear
curve corresponding toj0 5 119 is predicted to beu 5 1.04,
which is in good agreement with the results shown in Fig. 7.
Also of note is that asm3 0, l13 3.8317 for the solid and
dotted curves at all values ofj0. Thus, the eigenvalue
problem certainly reduces to that of Bessel’s equation as
m3 0.

Dependence on system geometry

The geometry of the axisymmetric model is determined by
the parametersrg, Drg, rec, and Drec. Varying rec while
holding all other parameters constant corresponds to vary-
ing the radius of the extravascular cavity relative to the
luminal radius. Fig. 8a shows the relationship betweenl1

andrec for j0 5 11.9 andm5 5. The value ofrecwas varied
from 0.02 to 1, while the dimensions of the glycocalyx were
kept constant relative torec. In particular,rg 5 0.75 rec,
Drg 5 0.5 rec, andDrec 5 0.05rec. An important feature to
note is thatl1 is inversely proportional torec (indicated by
the 21 slope in the log-log plot), ifcF(r) is small nearr 5

FIGURE 6 Dependence ofl1 onj0 for different values of anionic molecular valence magnitude,m. The solid lines correspond tol1 found by numerically
solving the eigenvalue problem forrg 5 0.4, Drg 5 0.1, rec 5 0.5, andDrec 5 0.03. The dashed lines are the results for the corresponding box-shaped
distribution, and the dotted lines show the asymptotic approximation ofl1 for the box-shaped distribution. Agreement for the last two is excellent forl1 ,
2. It should be noted that the asymptotic approximations in all cases converge tol1 5 8.244 asj03 0, whereas the correct limit isl1 5 3.8317, as can
be seen from the solutions to the eigenvalue problem. Thus the asymptotic formula given by Eq. 72 is not valid forl1 . ;2. The two right-hand axes show
the exclusion factor given by Eq. 34 and the diffusion time,t1, given by Eq. 74. Whereasl1 and the exclusion factor are independent of either the diffusion
coefficient or the geometric parameters of the system,t1 depends on both. In computingt1, the diffusion coefficient,DL, was taken to be 2.43 10211 m2/s
and the system radius,5, was taken to be 5mm.
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1. As can be seen from Eq. 72, this arises because all
geometric terms in Fig. 8a are proportional torec. When
rec ' 1, the boundary of the system is near the capillary
wall, resulting in very little leakage into the extravascular
space. In this case,l1 jumps sharply to;6.7 for the smooth
cF, and becomes infinitely large for the box-shaped distri-
bution. Both reveal the same qualitative dependence onrec,
with l1 for the box-shaped distribution being;50% of its
value for the smooth distribution at a given value ofrec.

Varying rg while holding all other parameters constant
corresponds to changing the thickness of the glycocalyx
relative to the luminal space. Fig. 8b shows the variation of
l1 with rg for j0 5 11.9, andm 5 5. The value ofrg was

varied between 0.1 and 0.595 while all other dimensions of
the glycocalyx were kept constant relative torg. In partic-
ular,Drg 5 0.1,rec5 0.6, andDrec5 0.03. The solid curve,
corresponding to the smoothly varyingcF, shows a qualita-
tively different behavior asrg approachesrec. This arises
due to the fact that, whenrec 2 rg , Drg/2 5 0.05, the
general form of thecF distribution near the endothelial-cell
wall transitions from having a very sharp peak to having a
rather flat distribution.

Varying Drg or Drec changes the range over whichcF

increases or decreases nearrg or rec, respectively. Results
showed thatl1 is relatively insensitive to both of these
parameters. For one computation, parameters were fixed at

FIGURE 7 Dependence ofl1 on the valence magnitude,m, of the anionic molecular tracer for different values ofj0. The solid lines correspond tol1

found by numerically solving the eigenvalue problem for a smoothly varyingcF distribution with rg 5 0.4, Drg 5 0.1, rec 5 0.5, andDrec 5 0.03. The
dotted lines are the results for the corresponding box-shaped distribution and the dashed lines show the asymptotic approximation ofl1 for the box-shaped
distribution. Agreement is excellent forl1 , 2. The linearity of the results on the log-linear plot illustrates well the exponential dependence ofl1 on the
valence magnitude,m, for l1 , 2. It should be noted that, as in Fig. 6, the asymptotic approximations in all cases converge tol1 5 8.244 asj03 0, whereas
the correct limit isl1 5 3.8317. The two right-hand axes show the exclusion factor given by Eq. 34 and the diffusion time,t1, given by Eq. 74. In computing
t1, the parameters used were the same as in Fig. 6.

FIGURE 8 (a) Dependence ofl1 on rec for j0 5 11.9 andm 5 5. The geometric parameters are fixed relative torec such thatrg 5 0.75rec, Drg 5 0.5
rec 5 0.03, andDrec 5 0.5 rec. This result may be interpreted as the variation ofl1 with changing cavity size, but fixed capillary diameter and glycocalyx
shape. The solid curve is calculated for a smoothly varyingcF, while the dashed curve is the corresponding solution for the box-shaped distribution. (b)
Dependence ofl1 on rg for a smooth distribution ofcF (solid curve), and for the box-shaped distribution (dotted curve). Other parameters are fixed atj0 5
11.9,m 5 5, rec 5 0.6, andDrec 5 0.03. The unusual behavior of the solid curve for smallrec 2 rg occurs because the value ofDrg is large enough relative
to rec 2 rg to cause the distribution to be sharply peaked, rather than flat near the endothelial-cell wall.
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j0 5 11.9,m 5 5, rg 5 0.45, andrec 5 0.6. SettingDrec 5
0.03, and varyingDrg by a factor of 10, from 0.05 to 0.5, the
computed value ofl1 showed an approximately twofold
variation, increasing nearly linearly from 0.015 to 0.03. For
these same parameters, the corresponding solution for the
box-shaped distribution, which is independent ofDrg and
Drec, is l1 ; 0.014. This value corresponds to the limit for
the solution to the smooth distribution asDrg 3 0. It was
found thatl1 was even less sensitive to the value ofDrec

than it was toDrg. SettingDrg 5 0.2, and varyingDrec by
a factor of 20, from 0.02 to 0.4, the computed value ofl1

varied only by ;18%, increasing nearly linearly from
;0.017 to 0.02.

DISCUSSION

Figs. 4c and 5 reveal the transient electrochemical dynam-
ics of anionic molecular transport through the layer. Owing
to the solid-bound fixed charges on the glycocalyx, the
model predicts that negative ions in the blood and diffusing
anionic molecular tracers are partially excluded from the
glycocalyx in equilibrium. These concentration gradients
are supported by the electric field that is set up by the
negative charges bound to the glycocalyx. A gradient-in-
duced diffusion of anionic molecules from the capillary
lumen into the glycocalyx is then limited by this electro-
static exclusion. If leakage of anionic molecules out of the
capillary occurs, the concentration gradient begins to de-
crease between the lumen and the glycocalyx and increase
between the glycocalyx and extravascular space. Because
the levels of anionic molecular tracers remain suppressed
within the glycocalyx throughout the diffusion process,
tracers are passively transported against a concentration
gradient as they diffuse into the extravascular space. These
electrochemical dynamics drive the system to a new equi-
librium state. Results indicate that a significant departure
from Fickian diffusion occurs particularly if the valence
magnitude of the diffusing anionic molecule is large and/or
the fixed-charge density of the glycocalyx is large compared
with the concentration of ions in the blood.

The close agreement between the results of the finite-
difference solution and the eigenfunction expansion lends
strong support to the accuracy of both in solving the gov-
erning equations, as long as the approximationsB/m .. 1
and nF/m .. 1 are met. The eigenfunction expansion is
much easier to implement and is much faster computation-
ally. As long as the charge concentration of molecular
tracers is small compared to the ion concentration in blood
and tonc0

F, it is much simpler to discuss the diffusion time
in terms of the solution to the eigenvalues of the linear
problem. However, even ifB/m and nF/m are not large
compared with unity, such that the quasi-static approxima-
tion for d may not be valid, the finite-difference solution can
still be used to examine the electrochemical transport of
anionic molecular tracers through the layer.

Asymptotic diffusion time

The most important result of the previous section is that, for
large m or j0 .. 1, l1 is much smaller than its value of
;3.8317 forj0 5 m 5 0, when only chemical diffusion
exists. Figs. 6 and 7 clearly show reductions of two orders
of magnitude inl1 for moderate values ofm. Recalling the
relationship,t*1 5 D/l1

2, between the dimensionless charac-
teristic diffusion time, t*1, and l1, it is obvious that a
two-order-of-magnitude reduction inl1 leads to an increase
in the diffusion time of four orders of magnitude. The
reduction ofl1 by such an enormous amount rests on two
requirements examined throughout the development of the
previous sections. First, it requires the presence of a fixed,
anionically charged glycocalyx, so thatnF Þ 0 with either
m is large orj0 .. 1. Second, tracers need to leak from the
lumen into extravascular space, or the system will equili-
brate in about one (Fickian) characteristic time constant. If
either requirement is not met, then the governing equations
will not predict the prolonged diffusion times observed by
Vink and Duling (2000).

The physical reason for the reduction inl1 is not imme-
diately obvious. Essentially, the near balance between the
chemical and electrostatic potentials causes the anionic mo-
lecular tracers to be excluded from the glycocalyx; this, in
turn, causes a retardation in transport through the layer
because the flux scales according to the reduction in tracer
concentration in the layer. The presence of free salt ions is
important, as these set up the electrostatic potential against
which the anionic tracers must move.

From the asymptotic formula forl1, given by Eq. 72, we
obtain an expression for the dimensional diffusion time of
molecular tracers given by

t1 <
rg

2

2DL lnSrec

rg
DS 52 2 rec

2

52 2 rec
2 1 rg

2D z ~1
2
@j0 1 ~j0

2 1 4!1/2#!m.

(74)

In the previous section, it was noted that the dimensional
diffusion time is nearly independent of the system radius,
5, when the extravascular space is large compared to the
capillary. This follows from Eq. 74, where it may be seen
that if 5 .. rec . rg, then the third factor on the right-hand
side is nearly unity, and the diffusion time becomes inde-
pendent of5. Invoking this approximation, Eq. 74 reduces
to

t1 <
rg

2

2DL lnSrec

rg
D~1

2
@j0 1 ~j0

2 1 4!1/2#!m. (75)

This approximate form of the diffusion time differs from the
exact value by,10% whenrec 5 0.3 5, which seems
reasonable for microvascular networks of mammalian skel-
etal muscle as long as the capillary density is low enough to
allow a mean center-to-center intercapillary separation of
;20 mm or more.
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Some physically significant insights into the diffusion
time can be had from Eq. 75. The first factor in the product
on the right-hand side of Eq. 75 is one-half of a character-
istic transit time, from the center of the capillary to the
glycocalyx interface. The geometric factors in the middle
reveal the dependence of the diffusion time on the thickness
of the glycocalyx. In particular, becauserec/rg is near unity,
the diffusion time scales approximately linearly with gly-
cocalyx thickness. The last factor in the product represents
the ratio of the molecular tracer concentration in the blood
to that in the glycocalyx, as can be seen by comparison to
Eq. 33. Thus, the diffusion time, which increases exponen-
tially with the magnitude of the tracer valence, varies in
inverse proportion to the anionic molecular exclusion factor.

Parameter values

On the basis of erythrocyte and macromolecular exclusion
zones observed by Vink and Duling (1996, 2000), we as-
sume the in vivo thickness of the glycocalyx to be;0.4mm.
The other geometric parameters used in the model depend
upon capillary diameter and capillary density in the tissue
and are given in Table 1. As we have seen, however,
predicted diffusion times depend weakly on the geometric
parameters.

The luminal concentration of Na1 and Cl2 ions in blood
is known to be;0.14 mol/l, and the luminal concentration
of the molecular tracer is;3.5 3 1025 mol/l for 39 kDa
FITC-dextran tracers, but varies with molecular weight.
Because it is thought that the glycocalyx is extremely dif-
fuse, it will be assumed that the diffusion coefficients,D6,
associated with the mobile ions, andDL, associated with the
smaller molecular tracers used by Vink and Duling (2000),
are nearly the same in the glycocalyx as they are in water.
Furthermore, for tracers,39 kDa, the diffusion coefficient
is assumed to vary with the square root of the molecular
weight of the diffusing species. For Na1, the diffusion
coefficient,D1, in water is known to be;1029 m2/s. The
diffusion coefficient,DL, is then estimated by reducingD1

by the square root of the relative molecular weights of Na1

and the molecular tracer. This estimate yields values con-
sistent with those estimated from intravital microscopy
measurements of interstitial FITC-dextran concentrations
(Fox and Wayland, 1979; Ley and Arfors, 1986). For ex-
ample, for a 39-kDa FITC-dextran tracer,DL ' (MW(Na1)/

MW(tracer))1/2 D1 ' 2.43 10211 m2/s. Because interstitial
and free diffusion coefficients are reported to differ only by
about a factor of four for 3-kDa FITC-dextran tracers (Ley
and Arfors, 1986), we assumeDL to be constant throughout
the system, including the extravascular space. It seems
likely, however, that for dextran tracers.40 kDa, the
glycocalyx and interstitium offer increasing steric hindrance
with increasing molecular weight, and completely exclude
dextrans larger than 70 kDa (Vink and Duling, 1996, 2000).
The applicability of the model, therefore, to dextran tracers
in excess of 40 kDa is uncertain because the idealized model
of Brownian motion through the glycocalyx is not likely to
be valid. Furthermore, no account is taken of macromolec-
ular reflection in the extravascular space, and because the
reflection coefficients become appreciable for FITC-dextran
molecules in excess of 40 kDa (Curry, 1984), we limit
attention to the smaller tracers used in the experiments of
Vink and Duling (2000).

The most significant uncertainty in all of the parameters
used in the model lies in our estimation of the magnitude,m,
of the molecular tracer valence. In the experiments of Vink
and Duling (2000), anionic fluorescent tracers are conju-
gated to macromolecules, such as dextran, so the valence of
the conjugated molecular tracers is determined by the num-
ber of tracers that bind to the macromolecule. There may be
some variation in this number, making the valence uncer-
tain. Also, because some of the molecular tracer conjugates
are very large molecules, some charge shielding may take
place, making the valence magnitude,m, nonintegral. The
range ofm, corresponding to the valence magnitude asso-
ciated with each of the anionic FITC-dextran conjugates, is
listed in Table 2 in order of increasing molecular weight
(Molecular Probes Inc., Eugene, OR).

Comparison with experimental findings

For the diffusion experiments reported by Vink and Duling
(2000), 4-, 17-, and 39-kDa FITC-dextran molecules were
used. The corresponding half lives,t1/2, were reported to be
12, 22, and 90 min, respectively (Vink and Duling, 2000).
The diffusion time,t1, of Eq. 75 is the 1/e diffusion time,
which is related to the half-life byt1 5 ln(2) t1/2. Using the
parameter values listed in Table 1 and the diffusion half-
lives reported by Vink and Duling (2000), the value ofj0 5
nF/B 5 nc0

F/cblood can be inferred from Eq. 75. For each

TABLE 2 Range of j0 predicted by Eq. 75 that is necessary to account for the prolonged dextran diffusion times (t1/2) reported
by Vink and Duling (2000)

MW DL (m2/s) t1/2 (s) t1 (s) Valence Magnitude,m Fixed-Charge Density

4 7.63 10211 720 504 0.5# m # 2 290# j0 # 7.4 3 109

17 3.73 10211 1320 924 1# m # 2 270# j0 # 7.7 3 104

39 2.43 10211 5400 3780 3# m # 7 5.5 # j0 # 58.8

Each range ofj0 shown corresponds to the given range ofm associated with each of the three dextran tracers listed (Molecular Probes Inc., Eugene, OR).
The geometric parameters were chosen such thatrg 5 2 mm andrec 5 2.5 mm (Vink and Duling, 1996, 2000).
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dextran fraction used in the experiment, the range ofj0

corresponding to the range ofm is presented in Table 2.
It is evident from Table 2 that there is no single value of

j0 that provides a consistent explanation for all of the
diffusion times reported by Vink and Duling (2000). In fact,
the ranges forj0 corresponding to the two smaller dextran
tracers do not overlap with the range corresponding to the
39-kDa tracer. Furthermore, considering the fixed-charge
density of other mucopolysaccharide gels, the smallest
value ofj0 that is able to reproduce the prolonged diffusion
times reported by Vink and Duling (2000) for the smaller
two tracers listed in Table 2 is several orders of magnitude
larger than physiologically plausible. For example, the
fixed-charge density of the tectorial membrane in the co-
chlea is reported to be;0.02 Eq/l on the basis of its
composition. A recent estimate based on direct voltage
measurements of the membrane places the estimate closer to
0.15 Eq/l (Masaki et al., 2000). An upper bound on the
fixed-charge density of articular cartilage is reported as
being;0.18 Eq/l (Maroudas, 1975). However, the presence
of collagen in cartilage constrains the expansion of the
proteoglycan and GAG aggregates, which results in a swell-
ing pressure in the matrix at equilibrium. In free solution
without collagen, it is estimated that the proteoglycan and
GAG aggregates would expand to approximately five times
their constrained volume in cartilage (Muir, 1983; Lai et al.,
1991). Because it is unlikely that the glycocalyx contains
collagen or any other constituent that could limit expansion
of the matrix, such a high fixed-charge density as that found
in cartilage would not be expected. Therefore, forcblood 5
0.14 mol/l, a physiological upper bound onj0 consistent
with other mucopolysaccharide structures isj0 , ;1.

Clearly, this falls well below the range in whichj0 would
need to be to account for the prolonged diffusion times of
anionic molecular tracers reported by Vink and Duling
(2000). In addition, there is another difficulty in reconciling
the results of Vink and Duling (2000) with those of the
analysis presented here. For even ifj0 .. 1, the model
predicts the existence of a dark band in fluorescence inten-
sity where the glycocalyx is located by virtue of the exclu-
sion of the anionic tracers by the layer. In contrast, the
results of Vink and Duling (2000) seem to imply that as the
diffusion of molecular tracers progresses, the concentration
distribution advances through the glycocalyx as a front. If
their observation of a front is valid, then it is very likely that
the process is highly nonlinear. This is in contrast to the
weak nonlinearity of the present model, which was well-
approximated by a linearized model. A possible source of
nonlinearity may arise if reaction-diffusion kinetics, not
accounted for in this model, are superimposed on the rela-
tively simple electrochemical dynamics described here and
mediate interactions between anionic molecular tracers and
the glycocalyx. One speculation is the possibility that the
anionic molecular tracers bind nonspecifically with cationic
sites on albumin and other plasma proteins adsorbed to the

glycocalyx, and/or that the tracers compete for those sites
with the proteoglycan and GAG aggregates constituting the
glycocalyx.

Experimental implications of the model

In light of the foregoing discussion, it seems unlikely that
the glycocalyx fixed-charge density can be inferred from
diffusion experiments involving anionic molecular tracers
such as those performed by Vink and Duling (2000). How-
ever, the model does suggest an alternative approach to
experimentally extracting material properties of the layer. In
particular, the voltage gradients induced by the charge im-
balances near the apical end of the glycocalyx suggest
useful experiments along the lines of those done by Masaki
et al. (2000). Even for a relatively low fixed-charge density,
Eq. 43 predicts the existence of a maximum equilibrium
voltage difference between the lumen and the glycocalyx
ranging between 0.134 and 1.34 mV at 37°C, for 0.01#
j0 # 0.1. The presence of such an electric field suggests a
method for directly probing the electromechanical proper-
ties of the layer. Although it is technically feasible to
measure voltages of this magnitude, the practical limitations
of using a microelectrode to obtain accurate in vivo mea-
surements of voltage gradients in a 400-nm-thick hydrated
gel may be prohibitive. However, modulation of an exter-
nally applied electric field might be more plausible, and
might offer the possibility of varying the dimension of the
glycocalyx in vivo. Because the equations used to derive
Eq. 43 are obtained for steady-state conditions, voltage
measurements are not subject to uncertainties in the mea-
surements of diffusion times. Furthermore, voltage mea-
surements do not require the use of molecular probes be-
cause the voltage depends only on the valence of the free
salt and the glycocalyx fixed-charge density. Despite poten-
tial technical difficulties, Eq. 43 provides a great incentive
to devise such experiments, which would in turn allow
direct measurement of the local glycocalyx fixed-charge
density without calibration. Finally, Eq. 43 does not depend
upon the existence of the extravascular space, so that the
geometric assumptions used to derive the diffusion times
are unnecessary.

The model suggests yet another approach to estimating
the fixed-charge density distribution of the glycocalyx that
does not depend upon the transient electrochemical dynam-
ics of the system. The equilibrium distribution of the anionic
molecular tracer, given by Eq. 33, or equivalently, by Eq.
51, depends uponj0 and the magnitude,m, of the tracer
valence. As we have demonstrated, even ifj0 is small, the
exclusion factor, given by Eq. 34, can be large ifm is
sufficiently large (see Figs. 2 and 6). For example, Eq. 34
predicts that ifj0 5 0.01, a 40% reduction in tracer con-
centration within the glycocalyx can be achieved ifm 5
100. Thus, if the fluorescence varies linearly with tracer
concentration, then the intensity profile from very nega-
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tively charged tracers at equilibrium will produce a direct
image ofnc0

F(r), according to Eq. 51. Although this does
require knowledge ofm, it provides an easy way to physi-
cally view and quantify the glycocalyx fixed-charge density
in vivo.

SUMMARY

A dynamical model of the electrochemical transport of
anionic molecules through the capillary glycocalyx has been
presented that details the spatiotemporal variations in the
concentration field of the diffusing molecules for the axi-
symmetric case. Numerical and analytical solutions were
obtained including a fully analytic eigenfunction expansion
that satisfied the linearized equations for a box-shaped
distribution of the glycocalyx fixed-charge density. From
this solution, closed-form asymptotic expressions were ob-
tained for the first nonzero eigenvalue and the anionic
diffusion time that were closely related to the anionic mo-
lecular exclusion factor at equilibrium. From the asymptotic
analysis, which applies if eitherj0 .. 1 or m is large,
prolonged diffusion times are predicted that are limited by
the degree of exclusion of anions from the layer. In either
case, if leakage of anionic molecules out of the capillary
occurs, diffusion time is seen to vary exponentially withm
and in inverse proportion to the anionic molecular exclusion
factor. It was also found that the diffusion time was nearly
independent of the extravascular cavity size, but the elec-
trochemical dynamics and transient response of the system
were critically dependent on the presence of such a cavity.
Generally, results were found to be relatively insensitive to
the precise shape of the glycocalyx fixed-charge density
distribution and to the layer thickness.

One of the most important findings of the present study
pertains to the electrochemical equilibrium configuration of
the glycocalyx and its implications for anionic molecular
exclusion. In particular, the analytical work suggests a num-
ber of experiments that would offer useful tests of theoret-
ical predictions made by the model under steady-state con-
ditions and provides a means for obtaining an estimate of
the glycocalyx fixed-charge density in vivo. Another im-
portant implication of the model pertains to the interpreta-
tion of recent in vivo findings of Vink and Duling (2000). In
particular, the model shows definitively that, for physiolog-
ical values of glycocalyx fixed-charge density, diffusion
times for anionic molecular tracers withm , 10 are not
significantly influenced by the electrostatic field induced by
the glycocalyx; this finding thus eliminates the possibility
that such a field is strong enough to account for the ob-
served behavior of anionic molecular transport through the
layer reported by Vink and Duling (2000). It seems likely,
therefore, that in addition to the electrochemical dynamics
described here, more complicated rate-limiting interactions
between the anionic tracers and the glycocalyx occur simul-
taneously, which might take the form of unknown reaction-

diffusion kinetics associated with tracer transport through
the layer.
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APPENDIX

Asymptotic approximation of l1 for multivalent
mobile ions

In deriving Eq. 72, it was assumed that the free salt ions were monovalent,
i.e., z1 5 2z2 5 1. This assumption led to the quadratic equation inc1

given by Eq. 30. For arbitrary free-ion valences, this equation becomes

c1~0!1/z121/z2
5 c1~r!1/z1Sc1~r! 2

nF

z1B
cF~r!D21/z2

, (76)

wherec1(0) 5 1. The root of Eq. 30 was used in Eq. 37 (which is general)
to expressd in terms ofcF(r). For arbitrary values ofz1 andz2, the more
general equation will still have a positive real root,c1(r), depending on
cF(r). Thus, the exclusion factor is a function of the glycocalyx concen-
tration distribution and the ion valences. For convenience, we definef as in
the first of Eq. 40, without specifying the functional form ofc1(r) in terms
of cF(r). In general, then,

f~r! ;
m

z1 ln~c1~r!! (77)

where it is understood thatf ultimately depends only on the concentration
distributioncF(r), becausec1(r) is derived from the root of Eq. 76, which
depends only oncF(r). Using this definition off, Eq. 39 becomes general.
As such, all the analytic work that follows it is still completely valid. In
particular, the definition ofDf [ f(rg1) 2 f(rg2) may be used, and the
results of the asymptotic analysis up to Eq. 71 are true for arbitrary
valences. Of course,Df may be calculated directly from the root of Eq. 76.
Indeed,Df may be evaluated explicitly in terms ofc1(rg1). WherecF(r) is
insignificant, i.e., wherej(r) 5 0, Eq. 76 has the solutionc1(r) 5 c1(0) 5
1, and it again follows thatf(rg2) 5 0. According to Eq. 77, we then have
Df 5 f(rg1) 2 f(rg2) 5 m/z1 ln(c1(rg1)).

Roots of Eq. 76 were presented earlier for the case of monovalent
cations and anions. They can be found analytically for three more cases:
whenz1 5 2, z1 5 3 (both forz2 5 21 and arbitraryj0), or whenj0 ..
1 for arbitraryz6. Again, these can be used to write an analytic expression
for l1. For z1 5 2 or 3 (andz2 5 21), Eq. 76 can be written as a cubic
or quartic polynomial, respectively, each of which has roots expressible in
terms of algebraic numbers. We do not give them explicitly here. Forj0 ..
1, it is possible to derive a general closed-form asymptotic expression for
l1, valid for arbitraryz1 andz2. If we rewrite Eq. 76 as

Sc1~r!

c1~0!
2 j0

cF~r!

c1~0!D
2z1/z2Sc1~r!

c1~0!D 5 1, (78)

we note that, because2z1/z2 is strictly positive, the first bracket on the
left-hand side must nearly vanish wherevercF(r) is significant andj0 ..
1. In this case (recalling thatc1(0) 5 1), c1(r) ' j0c

F(r) 5 j(r), so
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f(rg1) 5 (m/z1)ln j0. Thus,Df 5 ln j0
m/z1

, and so Eq. 71 becomes

l1 < S 2~1 2 rec
2 1 rg

2!

ln~rec/rg!~1 2 rec
2 !rg

2D1/2

j0
2m/2z1

. (79)

It should be noted that Eqs. 72 and 79 agree whenz1 5 1 andj0 .. 1. It
should further be noted that this asymptotic result is independent of the
anionic valence,z2. Although the physiological relevance of the case
wherej0 .. 1 is somewhat dubious, the simplicity and generality of Eq.
79 are attractive and might be applicable to in vitro studies at significantly
reduced plasma ionic strength.
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