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ABSTRACT An electrochemical theory of the glycocalyx surface layer on capillary endothelial cells is developed as a model
to study the electrochemical dynamics of anionic molecular transport within capillaries. Combining a constitutive relationship
for electrochemical transport, derived from Fick’s and Ohm’s laws, with the conservation of mass and Gauss’s law from
electrostatics, a system of three nonlinear, coupled, second-order, partial, integro-differential equations is obtained for the
concentrations of the diffusing anionic molecules and the cations and anions in the blood. With the exception of small
departures from electroneutrality that arise locally near the apical region of the glycocalyx, the model assumes that cations
in the blood counterbalance the fixed negative charges bound to the macromolecular matrix of the glycocalyx in equilibrium.
In the presence of anionic molecular tracers injected into the capillary lumen, the model predicts the size- and charge-
dependent electrophoretic mobility of ions and tracers within the layer. In particular, the model predicts that anionic molecules
are excluded from the glycocalyx at equilibrium and that the extent of this exclusion, which increases with increasing tracer
and/or glycocalyx electronegativity, is a fundamental determinant of anionic molecular transport through the layer. The model
equations were integrated numerically using a Crank-Nicolson finite-difference scheme and Newton-Raphson iteration. When
the concentration of the anionic molecular tracer is small compared with the concentration of ions in the blood, a linearized
version of the model can be obtained and solved as an eigenvalue problem. The results of the linear and nonlinear models
were found to be in good agreement for this physiologically important case. Furthermore, if the fixed-charge density of the
glycocalyx is of the order of the concentration of ions in the blood, or larger, or if the magnitude of the anionic molecular
valence is large, a closed-form asymptotic solution for the diffusion time can be obtained from the eigenvalue problem that
compares favorably with the numerical solution. In either case, if leakage of anionic molecules out of the capillary occurs,
diffusion time is seen to vary exponentially with anionic valence and in inverse proportion to the steady-state anionic tracer
concentration in the layer relative to the lumen. These findings suggest several methods for obtaining an estimate of the
glycocalyx fixed-charge density in vivo.

INTRODUCTION

The surface glycocalyx on capillary endothelial cells hasfindings to microvascular permeability and exchange moti-
been the subject of considerable controversy and conjectureates the present analysis of electrochemical molecular
in the recent literature on the microcirculation. The focus oftransport through the capillary glycocalyx.

much of this attention has been on the mechanical implica- Although the composition and structure of the endothe-
tions of the glycocalyx on microvascular rheology, specif-lial-cell glycocalyx are not well characterized, insight into
ically in terms of its gross effect on capillary tube hemato-its mechanical and electrochemical behavior can be gained
crit and apparent viscosity (Klitzman and Duling, 1979; from what is known about some of its possible macromo-
Desjardins and Duling, 1990; Vink and Duling, 1996; lecular constituents. It appears that these constituents in-
Damiano et al., 1996; Pries et al., 1997; Damiano, 1998¢lude, but are not limited to, heparan sulfate proteoglycan,
Secomb et al., 1998). Very little emphasis, however, haghondroitin sulfate proteoglycan, and hyaluronic acid (Des-
been placed on the possible role of the glycocalyx in deterjardins and Duling, 1990; Henry and Duling, 1999). In this
mining the electrophoretic mobility of charged moleculesway, the endothelial-cell glycocalyx is similar to mucopo-
within capillaries. In light of recent experimental evidence lysaccharide structures arising in other systems (e.g., artic-
(Vink and Duling, 2000), it appears as if significant elec- ular cartilage, tectorial membrane, etc.). This similarity es-
trostatic interactions arise between the glycocalyx and ansentially pertains to the fact that these mucopolysaccharide
ionic molecular tracers which dramatically influence trans-structures are highly hydrated in an electrolytic solution and
port of the tracers. The potential significance of theseare rich in proteoglycan, glycoprotein, and glycosaminogly-
can (GAG) aggregates, which contain large numbers of
solid-bound fixed negative charges. It also appears likely
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2001. . . . .
Add it s 10 Dr. E. R, Dami Deot. of Mechanical dacross its thickness, from the endothelial-cell surface to its

ress reprint requests 1o Lr. £. K. Damiano, bept. 0 echanical an . . aLt . .
Industrial Engineering, University of Illinois at Urbana-Champaign, 140 ap|cal region within the cap|llary lumen. Henry and Du“ng

Mechanical Engineering Bldg., 1206 West Green St., Urbana, IL 61801(1999) found,. through en?ymatic reduction of the capillary
Tel.: 217-333-6107; Fax: 217-244-6534; E-mail: damiano@uiuc.edu.  glycocalyx with hyaluronidase, that hyaluronan (and per-

© 2001 by the Biophysical Society haps other constituents that are cleaved by hyaluronidase)
0006-3495/01/04/1670/21  $2.00 may contribute significantly to the apical glycocalyx. This




Electrochemical Transport through the Glycocalyx 1671

finding was based on the fact the very large dextran molehalf-times of between 12 and 60 min, respectively. Even
cules, having molecular weights (MWH580, and red cells extremely small anionic dyes between 0.4 and 0.6 kDa
remained excluded by the apical glycocalyx; yet smallershowed half-times of 11 min. Alternatively, neutral dyes of
dextran moleculess<145 kDa, permeated significantly into ~0.4 kDa and neutral dextrans &f40 kDa equilibrated
the layer after enzymatic reduction with hyaluronidase.within one capillary transit time. For neutral dextran mole-
They also reported a marked increase in capillary tubeules<40 kDa, the corresponding Fickian diffusion time in
hematocrit after hyaluronidase treatment, suggesting thailasma over the glycocalyx length scale-e®.4 um is <20
the permeability of the glycocalyx to blood plasma isms. Thus, diffusion times for charged molecules could
strongly dependent upon the presence of those constituengetentially be as much as five orders of magnitude longer
that are cleaved by hyaluronidase (Damiano, 1998; Secomtihan their neutral counterparts. These results suggest an
et al., 1998). important role for the solid-bound fixed charges of the
Combining intravital brightfield and fluorescence micros- glycocalyx matrix in capillary permeability.
copy of the capillary glycocalyx, Duling and co-workers It is in the midst of this rather unsettled state of affairs
(Vink and Duling, 1996, 2000; Henry and Duling, 1999) that we find ourselves without adequate quantitative expla-
have revealed its surprisingly large in vivo dimension, itsnations for many of these recent experimental findings. In
unexpected permeability properties, and the tenuous natuen attempt to close this gap between experimental observa-
of its structure. They have also shown that the illuminationtion and theoretical understanding, we embark upon an
used to visualize the layer also results in its eradication iklectrochemical analysis of the glycocalyx that is sophisti-
epifluorescent exposure is sustained f88-5 min. Their cated enough to address the salient physical phenomena
approach consists essentially of obtaining two images— onehile avoiding contrived specificity. We seek to determine
brightfield image of a capillary using transillumination, and whether a relatively simple electrochemical model of the
one image of fluorescently labeled tracers in the capillaryglycocalyx can account for the disparity in diffusion times
lumen using epifluorescence illumination an instant laterbetween anionic and neutral molecular tracers reported by
By subtracting the width of the fluorescent tracer columnVink and Duling (2000). The model assumes that the gly-
from the anatomical diameter of the capillary imaged undercocalyx consists of a multicomponent mixture that includes
transillumination, one has a measure of either the instantaa fluid constituent (blood plasma), mobile ions (cations and
neous in vivo thickness of glycocalyx, if the tracers areanions), and a solid proteoglycan/glycoprotein/GAG matrix
sufficiently large so as to be excluded by the layer, or thecontaining fixed negative charges. The negative charges
extent of diffusion into the layer of tracers small enough tobound to the solid matrix are assumed to have a fixed-
penetrate the glycocalyx pores. Using this technique, Vinkcharge distribution in the reference configuration given by
and Duling (1996, 2000) concluded that the in vivo thick- |Z°cF(x, t,)|, whereZ and c" are, respectively, the mean
ness of the glycocalyx was0.4—0.5um. This represents a valence and concentration distribution associated with the
much more substantial structure than previous estimatasolecular constituents of the glycocalyx. In equilibrium, it
derived from electron microscopy studies, which likely un-is expected that the mobile ions establish a distribution that
derestimate the thickness due to dehydration of the extraaearly counterbalances the fixed charges on the solid matrix
cellular matrix that inevitably accompanies tissue fixation.such that a state of electroneutrality exists throughout the
Consequently, on the basis of these electron microscopyessel, except for a slight departure localized near the apical
studies, estimates of the glycocalyx thickness on capillanglycocalyx, i.e., near the interface between the glycocalyx
endothelial cells were on the order of only 50—100 nm. It isand vessel lumen. When integrated over the vessel cross
for this reason, perhaps, more than any other, that theection, however, these local charge imbalances should can-
glycocalyx has been almost entirely overlooked in mattersel such that global space-charge neutrality exists within the
concerning microvascular rheology, permeability, andcapillary. Therefore, throughout the vessel lumen where
exchange. there is no glycocalyx, the concentration distributions of
Because the capillary glycocalyx is at the interface be-mobile anions and cations should be equal. The mobile ions
tween blood and the luminal endothelial-cell surface, itin this region can be thought of as a neutral salt (Lai et al.,
represents the first barrier to transvascular exchange. It i$991), which has no net effect on the total charge density
evident, therefore, that microvascular permeability is depenwithin the capillary. However, near the glycocalyx inter-
dent upon glycocalyx permeability. To probe this, Vink andface, the mobile cation concentration is expected to increase
Duling (2000) conducted a series of experiments to studyo nearly neutralize the fixed negative charges on the gly-
glycocalyx permeability within capillaries. They observed cocalyx, while the mobile anion concentration should de-
that dextran molecules70 kDa remained excluded from crease. These concentration gradients in the mobile ion
the glycocalyx by virtue of their size for over 3 h, regardlessdistributions must be supported in equilibrium by the elec-
of whether they were labeled with anionic or neutral fluo- tric field generated by the glycocalyx. As we shall see, this
rescent dyes. However, smaller anionic dextrans between dectric field exerts its effect on the diffusing anionic mo-
and 40 kDa invaded the glycocalyx with size-dependentecular tracers by partially excluding them from the glyco-

Biophysical Journal 80(4) 1670-1690



1672 Stace and Damiano

calyx. The degree to which this exclusion occurs is primar-counter cations in the blood. At such high cation concen-
ily dependent upon the molecular tracer valence andrations relative tac’ the strength of the electric field, at a
glycocalyx fixed-charge density. distance of 1 nm or more from one of the fixed-charge
In what follows, a constitutive relationship derived from groups, would be reduced 1% of its maximum value if
Fick’'s and Ohm'’s laws is proposed for the electrochemicathe glycocalyx matrix were a static scaffold with fixed-
flux of an anionic molecular tracer. Together with the con-bound-negative charges. Indeed, if it were not for Brownian
servation of mass, Gauss’s law from electrostatics, andhotion of the glycocalyx matrix itself, the instantaneous
appropriate boundary conditions, a closed model is obtainedlectric field distribution in a system with such a low
for electrochemical transport through the capillary glycoca-solid-volume fraction and such a high cation concentration
lyx. This model is solved numerically for the one-dimen- would likely be extremely nonuniform. However, when one
sional, axisymmetric, spatiotemporal concentration distribuaccounts for Brownian motion of the proteoglycan/glycop-
tions of the molecular tracer and mobile ions in the blood.rotein/GAG aggregates at 310 K, the time-averaged spatio-
Furthermore, a linear analysis is developed which is validemporal distribution of the electric field would certainly be
whenever the molecular tracer concentration is small commore uniform than the instantaneous distribution, making
pared with the ion concentration in the blood. From thisthe continuum approach more reasonable. Therefore, we
analysis, a closed-form asymptotic expression is derived foassume that variations in the electric field arising from
the molecular tracer diffusion time that is valid if either the cationic charge shielding and sparsity of the individual fixed
fixed-charge density is large compared with the ion conceneharges bound to the glycocalyx matrix are offset, in a
tration in the blood or the electronegativity of the anionictime-averaged sense, by Brownian motion of the matrix. We
molecular tracer is large. Following this is a discussion oftherefore model the glycocalyx as having a continuous
analytical results where we consider specific parameter valeoncentration distribution and continuous fixed-charge den-
ues (e.g., molecular tracer valence, glycocalyx fixed-chargsity distribution (with at most a finite number of disconti-
density, and glycocalyx distribution) required to reproducenuities at interfaces) such that spatial variations in the
the recent experimental findings of Vink and Duling (2000). electric field are solely a result of spatial variations in the
We conclude with a discussion of the model’s implicationstime-averaged fixed-charge density distribution.
for the system in equilibrium and propose several alterna- By invoking the continuum approximation, we bring to
tive experimental approaches to finding the glycocalyxbear the classical theory of electrochemical ionic transport
fixed-charge density in vivo that are independent of molec-n solution, which has its origins in the Nernst-Planck equa-
ular diffusion times or the reaction-diffusion kinetics of the tion (Bockris and Reddy, 1970). In the context of this
system. theory, transport is driven principally by chemical gradients
and electrostatic forces. In the case of transport of anionic
THE MODEL \r?olecular tra_cers through the glycocalyx, the results of
ink and Duling (2000) suggest a strong dependence on
The glycocalyx is modeled here as a continuously distribtracer valence; thus, the important contributions to molec-
uted anionic matrix made up of proteoglycans, glycopro-ular transport that are considered here are derived from
teins, and GAGs containing fixed-bound negative chargeshemical and electrostatic potentials.
through which a solution of anionic molecular tracers in
blood plasma can diffuse. Of fundamental importance to the .
model is that it account for the presence of ionic salts'(Na Conservation of mass

Cl", etc.) in the blood. The validity of the continuum |n the absence of chemical reactions, the time rate of change
approximation used here for the glycocalyx matrix dependsf the concentratiorg?, of speciesy is related to its flux,)?,

not only upon the instantaneous spatial distributions of theelative to a quiescent solvent, by the conservation equation
matrix and fixed charge groups, but also upon the temporajiven by

variations in those distributions arising from Brownian mo-

tion of the matrix. In fact, if it were not for these temporal ac’ V. 1
variations, the continuum approximation might not be rea- ot Y ()
sonable. In particular, we assume that in its hydrated state, ] o ]

the glycocalyx is extremely diffuse and resembles other! N€ various flux contributions mentioned above must be
collagen-poor mucopolysaccharide extracellular matrixSPecified by appropriate constitutive relations.

structures with solid-volume fractions below 1% (Levick,

1987). The instantaneous fixed-charge distribution in such %onstitutive flux laws

structure is therefore likely to be quite heterogeneous. Fur-

thermore, the Debye length in normal saline<i®.2 nm,  For any mass transport problem there is a flo¥,cmica
and thus the electric field induced by the fixed chargesassociated with the chemical potential of the diffusing spe-
bound to the glycocalyx is very efficiently shielded by the cies that is proportional to the concentration gradients of the
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speciesy. Typically, this is modeled using Fick's law of tric field depends on the local charge densityaccording to
diffusion. To account for the strong charge dependence in

the results of Vink and Duling (2000), a flud\ccic due to V-E= [4 (6)
electrostatic interactions of specigwith the electric field

induced by the glycocalyx is also introduced. The constitu-

tive flux law for electrostatically driven transport is derived miirr? i‘; tzkéietopgg?r:t:\;gngfatshﬁaiuorfr S\far;glrn(ig]}(e)}g |11£m
from Ohm’s law, and is obtained by considering electro-

. . e - FIm).
static and viscous forces that act on a diffusing particle in At this point, the effect of the glycocalyx may be in-

suspension due to the effect of all charges in the SyStemc'Iuded The alvcocalvx is assumed o be a charaed Dorous
Thus, we model the total electrochemical fldX, of species ' gy Y ged p

v as the sum of Fick's and Ohm's laws given by matrix pf macromolecules, eac_h with valerde The con-
centration of macromolecules in the glycocalyx is denoted
by ¢, which varies over the cross section of the capillary.
The glycocalyx fixed-charge density is then denoted by
|Z°c™|. In this analysis, deformations of the glycocalyx are
- _D'Ve + ZLqCVE 3) considered negligible, so the initially specified concentra-
Y ) . F o )
d tion, ¢c”, does not vary with time. For convenience, we
introduce the quantity = p/q, which represents the local
whereD? is the diffusion coefficientz” is the ionic valence, charge imbalance per unit charge and corresponds to the
f} is the Stokes drag coefficiery,is the elementary charge, valence-weighted sum of constituent concentrations given by
andE is the electric field vector. This expression forms the e
basis for the model presented here. It should be noted’that 8=z'c'+z ¢ —nc —mc, (7)
represents the effective valence, which provides the corre%here, for convenience, we have introduced the parameters
electrophoretic mobility of the charged molecule in solu- . L o040 = —F Gauss's law, given in terms 6fby
tion. The effect of charge shielding is then accounted for inV - E = gdls, taken together with the three second-order,

the valence, which may take on noninteger values. nonlinear, partial differential equations represented by Eq.
5, provide a system of four scalar equations in the four
unknowns,c*(x, t), ¢ (x, t), c-(x, t), and &(x, t).

Jr= ‘]::/hemical+ ngectricv (2)

Electrochemical transport equations

The Stokes drag coefficienty, is related to the diffusion  Axisymmetric form of the equations
coefficient according to the Einstein relatidd} = kgT/f3,
where kg is Boltzmann’s constant andl is the absolute
temperature (Reif, 1965). Thus, the flux and species con
servation equations become

In all of what follows, axisymmetric conditions will be
imposed and axial variations in the field variables will be
neglected. With this approximation, all variables depend
only on the radial coordinate, and time. This simplifies the

24q governing equations substantially since Gauss'’s law is then
JY = —D7<ch - TCYE>’ (4) integrable. Omitting uniform additive contributions to the
ke electric field in theg,, &,, andg, directions, Eq. 6 reduces to
acr 7q 19(E,) é q("
-V (DVVC‘/ ~DhT cVE). (%) T =, YE= SrJ 8(o, Yo do )

0

The indexy makes explicit the fact that there are differ-

ent diffusing species in the system. Namejymay take

the valuest+, —, andL, for the mobile cations (N9), the

mobile anions (CI), and anionic molecular tracers,

respectively. . .
Itpremaingnow to determine the electric fidtddue to the also vanish at the sys_t_em boundaryrat Ji. This global

: ) electroneutrality condition requires that

presence of charge imbalances in the system. From the

outset it should be noted that there will be global charge 0

balance, so that the total charge in the system is zero. There E(R) = qJ (o, Yo do = 0. 9)

may, however, be local charge imbalances due to gradients eR 0

in the concentrations of the various species. The electric

field due to a system of charges may be determined usinghe conservation equations contained in Eq. 5 may be

Gauss's law from electrostatics. The divergence of the elecwritten in cylindrical coordinates, and upon substitution of

where, by axisymmetry, the electric field has only a radial
component such thaE = E/(rt)&. Furthermore, in the
axisymmetric case, the electric field must vanish atO0. If
there is zero net charge in the system, the electric field must
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Eq. 8 forE,, they become the diffusion time is insensitive to the exact form of this
initial distribution. However, the initial distributions of the
acr 19 o D2 [f mobile salt ions, Na and CI", present a more difficult
——=—-—|Dr —— c’| 8(o, t)o do (10) oo ;
at  roar ar ke Te problem. Because it is assumed that salts in the blood
0 plasma are in equilibrium before molecular tracers are

for y = +, —, andL. The fourth equation needed for closure added, the condition that determines the initi&landc™
is just the definition of given by Eq. 7. Thus, substitution distributions is that the flux vanish identically. Therefore,
of Eq. 7 into Eq. 10 provides a coupled system of threeV€ must solve Eq. 4 subject to the constraint that= 0.
scalar, second-order, nonlinear, partial integro-differentiall € electric field for these equations is given by Eq. 8, but

equations in the three unknowrs,, ¢, andc". with ¢- = 0in Eq. 7 def_iningﬁ. In cylindrical coordinates,
the two zero-flux equations become

Boundary conditions

dci Zi ZCI r
Because the equations represented by Eq. 10 have one time C g k:ITs f 3(a)o do =0, (14)
derivative and two space derivatives, an initial condition 0
and two boundary conditions are needed. For a closed
system, the flux of any species across the system boundaand the expression fd¥ in equilibrium becomes
must vanish. In particular, if the closed boundary of the
system is at = R, then the radial component of the flux 8(r) =z'c*(r) + z ¢ (r) — nc(r). (15)
must satisfyJY(R, t) = 0. Expressing Eq. 4 for the flux in
axisymmetric cylindrical coordinates, this boundary condi-as for the unsteady case, the boundary conditions for Eq. 14
tion takes the form are given by Egs. 12 and 13. From Egs. 12—15, steady-state
2q solutions can be obtained that represent the equilibrium
- CVEr(QR)> =0. (11) configurations forc™(r,t,) immediately before molecular
o kel tracers are added.
Recalling the charge balance requirement of Eq. 9, this
boundary condition simplifies to

y

Jd
Y = — _—
J(R, 1) D7< Fram

ac” Nondimensional form of the equations

rl=o (12)

=% So that reasonable order-of-magnitude approximations can
Ol?e made, we make the relative size of each term in the
rﬁ-guations apparent by nondimensionalizing the variables
and equations. The parameters that characterize the problem
are given in Table 1. Using an asterisk to denote dimen-
sionless variables, the dependent and independent variables

The second boundary condition arises from the geometry
the problem. Because the system is presumed to be axisy
metric, odd derivatives of the concentration vanish &t0,
which provides the second boundary condition given by

ac” are nondimensionalized as follows:

—| =o. (13)

ar |r=o0

%2
r=9Rr* t= Wt*, (16)

Initial conditions
We assume a Gaussian radial distribution for the initialc™ = ¢, c™*, ¢ =cjct, F=dc™, &= c5*.
concentrationg™(r, t,), of molecular tracers. As we will see, a7
TABLE 1 Parameter values used in the model
Symbol Description Typical Value
c5 Concentration of dextrans in blood 3510 ° mol/l*
Chlood Concentration of salts (Na CI™) in blood 0.14 mol/l
D* Diffusion coefficient of N& and CI” in water 10° m?s
D- Diffusion coefficient of molecular tracer in water 22410 m?/s*
R Radial dimension of entire system 310 um
[ Radial location of endothelial-cell surface 253 um
lec = Ig Thickness of glycocalyx 0.4 0.5um

*Values are typical for 39 kDa FITC-dextran tracers, but vary with molecular weight (see Table 2).
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TakingD?” to be constant, and assumiBg ~ D™, we have 1.0 .90
o L a0 ot
gt~ D e gra| 7 e ~ZQCT | 8%(0%)erdot ), = 05
0 L
(18)
act 11 0 act r 0,005
S (" _ * % () 7 ] * 0.0 —= — s
t* Dr* ar*(r or* ZLQCLJ o} (0' )0' do y *A‘;y—' . C(‘E"ATW: r
0
(19) FIGURE 1 The assumed form of the distribution, as in Eq. 22,
. . . . showing the parameterg, Arg, ro, andAr.. Not to scale.
& =7z'B¢"” +zBc —nFd — md-, (20)
where we have introduced the following dimensionless
groups: EQUILIBRIUM CONFIGURATION
> Lo 1 r A few observations can be made about the three equations
q Co% D Chiood C0
Q= — (L) B = F=—. (21) represented by Egs. 18 and 19. They are clearly coupled
keTe D Co Co through Eq. 20 fors, and are nonlinear. The nonlinearity

appears in the flux contribution associated with the electric
Henceforth, the nondimensional form of the governingpotential, and is bilinear and quadratic. The integral term
equations will be used, and for convenience, the asterisksomplicates the problem considerably because it means that
will be dropped. local charge imbalances have global influence. Here we

derive some exact and asymptotic relations of the equilib-

rium solutions, including an asymptotic expressiondas
Glycocalyx distribution a function ofct. These results are used in the next section to

) . derive a linearized set of equations.
The concentrations of proteoglycan, glycoprotein, and GAG

macromolecules in the glycocalyx are assumed to increase

continuously from zero in the lumen to a nearly constantproduct of concentrations at equilibrium

(but unknown) value near the endothelial-cell wall. Leakage ) o ) o .
of the tracer molecules from the capillary into the extravasor two dlfferet?t d'fflvlsmg species at equ\lllbnum, having
cular space might also play an important role in the elecconcentrations” andc” and valenceg" andz’, the product

. . . . . . 1/ —1/7' ; . .
trochemical dynamics. The glycocalyx distribution is thus (")~ (¢")" ™ is constant over space. To see this, consider

approximated by an expression of the form: the steady-state version of the flux equations given by
N 53 Vc' — 2'Qc’E = 0, (23)
c(r) = {1+ tan—(r —r
") 4( r(Afg( g)>) V' — 2QCE = 0. (24)
(14 tan 5.3(_r ) ' 22) Dividing Eq. 23 byz'c" and Eq. 24 by'c” and subtracting,
Arg, e ' we obtain
The dagger indicates that the distribution is symmetrized ve _ E — 0= VIn((c)*(c) V) = 0
aboutr = 0; thatis,p(r)" = p(r) + p(—r), andN is a scaling z'c¢t Z'¢’ ’

factor so that max§(r)} = 1. The radii,ry andr,, denote

the locations of the lumen-glycocalyx and glycocalyx-en-
dothelial boundaries, respectively, and are known approxi- UL N 12
mately from experimental results of Vink and Duling (1996, ©)™() const. (25)
2000). Near g, 99% of the rise irc™ occurs over a distance For a salt solution witt® = +1 andz’ = —1, this result

Arg, while 99% of its fall occurs near,; over a distance  says that the produat™c™ is constant at equilibrium. In
Ar Fig. 1 shows a schematic diagram of this distribution.dimensional variables, the constant is equal to unity; dimen-
Setting bothArg and Ar to zero results in a box-shaped sjonally, it is given bycZ.,s Furthermore, from Eq. 25 it

distribution, with discontinuities in glycocalyx concentra- fo|lows that at any two radial distances, andr.,
tion atry andre. In dimensional variables, the maximum

concentration of the glycocalyx correspondsc§o cU(rp¥zei(r) Y% = cU(ry)lrc(ry) Y7,

from which it follows that
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from which we conclude

(Cu(rl))l/z“ B (Cv(rl))llﬂ
cra))  \c'rd) -
This result becomes useful when solving for the equilibrium

distribution of a species because it can be used to uncoup arz = TZ+ ; 1_ liecalési th_e cor_wcer;]tratlons :re n%ndl—
the zero-flux equations. mensional,c”(0) = 1, and ifr = ry is chosen where the

glycocalyx is most concentrated, thef(r,) = 1. Thus,
& = nF/(z'B) measures the ratio of the glycocalyx fixed-
charge density to the luminal concentration of free salts, and

and substitute Eq. 31 into Eq. 27 to obtain

cH(r)

&(0) = BLED + (€02 + )

(26)

(33)

+

Implication for tracer exclusion in equilibrium

The results of the previous section have important implica-
tions for the exclusion of molecular tracers from regions
where the glycocalyx fixed-charge density is large. To il-
lustrate this, we initially restrict consideration26 = 1 and

. —1. Subsequently, we will give an argument to

cH(ro)

o) = Qe+ @+ (34)
This quantity will be referred to as the exclusion factor

because it gives the factor by which anionic molecular
tracers are suppressed within the glycocalyx compared with

Z =
generalize the results to arbitrary valueszdéfandz .
Using Eq. 26, and letting; = 0,r, = r,u= +, andv =

T o . the lumen. It is plotted againgg for several different values
L (so thatz" = 1 andZ" = —m), we obtain of min Fig. 2. If & and m are small, therc-(ry)/c-(0)
) (ctr)\™ approaches unity. I&, andm are large, therc-(ro)/c-(0)
c-(0) = <c*(0)) . (27) approaches zero, implying that the molecular tracers are
excluded from the glycocalyx. Thus, if the fixed-charge
Similarly, density of the glycocalyx is large compared with the con-
o ~ centration of free salts in the blood, orrif is large, then
¢ (0)c™(0) = c*(r)c (r). (28)

anionic tracers are excluded from the glycocalyx. This plays
a very important role in suppressing the flux of tracers
through the glycocalyx, and thereby lengthening the diffu-
sion time.

Recalling the definition ob from Eq. 20, we note thd ~
4000 in blood plasma, and also thd#t is presumed to be
large compared witim, which is<~5 in the experiments of
Vink and Duling (2000). Because all concentrations are

nondimensional, they are of order unitysa- is negligible

compared with the other terms. Also, because mode<Equilibrium distribution for &
charge imbalances result in large forcésjs generally

assumed to be very small. Therefore, The equilibrium configuration fod can be determined from

the zero-flux equation foc™ corresponding to the dimen-
sionless form of Eq. 14 given by

Z'Bct(r) + z B¢ (r) — nFc(r) = 0. (29)

In the lumenc is also negligible because the glycocalyx is ot .
assumed not to extend across the entire vessel (Vink and ri — Z+QC+J 8(o)odo = 0.
Duling, 1996, 2000). Since™(0) = 0, then at the center of dr

the lumenz*c*(0) =~ — z ¢ (0). Using this in Eq. 28, and

(35)

0

recalling the assumptions that = +1 andz™ = —1, Eq.
29 becomes
1.0
nF .
ct(0)? = c*(r)(c*(r) — BCF(I’)) (30) _ 08
from which it follows that the nonnegative value ©f(r) is é "
given by g 04
.
c'(r)  1/nF c(r) [/nF c(r)\? 2 02
+ =5l Rr A H\m = +4 . (31) 1
c"(0) 2\ B c*(0) B ¢c"(0) ol

i
o
S
=1

0.010

Now, for convenience we define

nF c(r)

&n=_g 0 (32)
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We divide the zero-flux equation bg", which vanishes whereV, is a constant of integration. Substituting fioin
nowhere, and differentiate with respectrtéo find this expression from Eq. 40 gives

d/ d kT
dr( In(C*))- "Qré = 0. (36) V)= IFECO+H(ET? + 4. (43)

This immediately gives in terms of the distribution o™ The reference voltage has been chosen to make the voltage
such that zero within the lumen. This expression agrees with the
interface potential quoted by Masaki et al. (2000).

8(r) = 1 d/d In(c* 37
(r) ~ZOrdr "ar n(c*(r)|. (37)
LINEARIZED SOLUTION
Using Eq. 31, and recalling that (0) = 1, we substitute for ] _ ) o
* in Eq. 37 to obtain In this section we invoke the approxma‘glon thigdn > 1
and use the results of the previous section to decouple and
5 d/ d | nkF nF _ z v linearize the governing equations. This permits an eigen-
() = Z'Qrdr ri N\ 2g°¢ )+ BC (r) function solution to the problem. The value of the first
(38) nonzero eigenvalue\,, is shown to have important impli-
cations for the diffusion time, and an asymptotic expression
- 1 d/d for A, is found for a box-shaped distribution of the glyco-
r - f(r) (39)
mQrdr\" dr calyx.

where
Quasi-static approximation for é

m
f(r) Ezjln(c*(r)) The key observation is that althoughc- might signifi-
cantly exceed throughout the systen,varies only slightly
= In(%[gocF(r) + ((&CT(N)2+ HY2)™z' (40)  asc- changes with time. The physical justification for this
is somewhat subtle. Before the addition of anionic molec-
Equation 38 shows thadis related to the second derivative ular tracersc™ andc™ have been in the system sufficiently
of the glycocalyx distributionc™. SinceQ = 72300 for a  long to attain equilibrium with the glycocalyx molecules.
typical capillary,d is a small quantity, as assumed in the This means that the electric field set up by the fixed charges
derivation of Eq. 29, making the assumption self-consistentbound to the glycocalyx is already supporting concentration
Based on dimensional considerations discussed earlier, thigadients irc™ near the glycocalyx. When tracers are added,
estimate ford should be accurate to within one part in they also diffuse through the glycocalyx; however, because
Z Chiood(MG) = B/m ~ 1000 even during the diffusion c§ << ¢,,04the presence of tracers introduces only a small
process. Next it will be shown théts closely related to the perturbation to the free salt ion concentration. Thisgoes
voltage field induced in the neighborhood of the glycocalyx.not change significantly, and neither does the electric field,
which continues to support concentration gradients™in
Therefore,8 is perturbed only slightly around its equilib-
rium value and remains nearly unchanged throughout the
Although electroneutrality has been imposed globally, condiffusion process. Essentially, the presence of anionic mo-
centration of the glycocalyx on the endothelial-cell wall lecular tracers may only pertur by around one part in
gives rise to small departures from electroneutrality near th&m ~ 1000.
interface between the glycocalyx and the plasma in the This result can be derived formally by considering Eq. 37
lumen. The resulting electric field that arises from theseln conjunction with the requirement of global charge bal-
charge imbalances can be calculated directly fdosing ~ ance. Because the additional cations must globally balance
Eq. 8. Substituting the approximate analytic expression fothe charge on the anionic molecular tracers, we have
8, given by Eqg. 39, into Eqg. 8, and redimensionalizing, gives
the electric field explicitly:

Induced voltage

f Z'B(c*(r,t) — c*(r, tp))rdr = J mc(r, t)rdr (44)

KT 0
E = m—f’(r) = =V'(r). (41)
q where ¢*(r, t,) is the equilibrium distribution of cations
The voltage is then given by: before the tracers are added. Thus, the temporal variation of
) ¢” must be of ordenvVB, so we writec™(r, t;) = ¢ (r, tp) +
kT (MVB)Ac™(r), wherec™(r, t;) is the cation equilibrium dis-
MU ﬁf(r) Vo, (42) " tibution after the tracers have equilibrated, avud (r) is of
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order unity (in the sense that its volumetric integral o0 ary conditions provides a denumerable infinite set of eig-
r = 1 is unity). Substituting this expression into Eg. 37 envalues, 4.} ;_, corresponding to the set of eigenfunc-

gives tions, {R.,(N};s-o. wWhere eachR.(r) must satisfy the
1 d/ d ordinary differential equation (ODE) given by the first of
S5(r,t) = — (r — In(c*(r, tf))>, (45) Eq. 50 Fomg = _O,.an gnalytic expression f&(r) is found
Z'Qrdr\" dr to within a multiplicative constant to be
1 d/ d m )
__ . + o + r =e
7 or dr(r F In[c (rt) + g Ac (r)]), (46) Ro(r)
= (&N + (&M + 4™ (51)
_ st +m 1 d( dAc*(r)) 47
= 8(r, to) B z"Qrdr " ar cr(r,t)) (“7) This corresponds to the equilibrium distribution fdrafter

) ) o transients have decayed. To within a multiplicative constant
Thus, consistent with the qualitative arguments made Prefactor, it is the same as Eq. 33. For the remaining eigen-

viously, the fractional Va”a“.‘”? ird is of orderm/B = functions,R(r), however, there is no analytic expression for
1/1000, and is therefore negligible. Thwscan be consid- ygeneralf(r)

ered quasi-static, and is well-approximated by the stead
state result given by Eq. 39.

Orthogonality of R,,(r)

Eigenvalue problem for static 6 . . . . .
To obtain the eigenvalues and their associated eigenfunc-

Using the quasi-static approximation férin Eq. 39, the tjons, the ODE given by the first of Eq. 50 must be solved
governing equations can be linearized and decoupled. Reumerically forR,. An eigenfunction expansion, which is
calling Eq. 19, the conservation of mass &ris given by  formed by the linear superposition of eigenfunctioRs,
) . and which can be made to satisfy the initial condition,
aoc 19 oc ' provides the series solution given by
D—=-—|r—+mQ¢| 8(o)odo|. (48)
Jat ror\ or
0
Substituting Eq. 39 fob and integrating provide c(r, ) = X ce WOIR(r). (52)
n=0
ac- 1 a( ac-  df )

-~ —|r— 4+ __ AL
ot rarr "ar ©

or dr (49)

The coefficientsg,, are found by taking the inner product of
) o L _ the corresponding eigenfunctioR,(r), with the initial dis-

This equation is linear irc apd homogeneOUS, ar_1d IS tribution, c-(r, t,). The inner product is defined by a weight
uncoupled from the conservation equations governing th?unction,w(r), with respect to which all of the eigenfunc-
other species. Separation of variables provides a serigg,ng are orthogonal. If a linear ODE with variable coeffi-

SOILIJFK;,” in telrms of ortlhog(?ngl fun(;tiﬁnsf. Thus, Wﬁ S€€Kcients can be written as a Sturm-Liouville boundary value
mu'tlp icatively separable solutions o t 1 OIR(IY)T(I) that roblem with separated boundary conditions, one can show
satisfy Eq. 49 and the boundary conditions. Using standarﬁ1

o . . that the eigenfunctions of the ODE are orthogonal with
methods (Boyce and DiPrima, 1992), a linear superposmorpespect to the weight functiony(r) (Boyce and DiPrima,

frfa?uv(\:/irlll i)(()elurﬁzzse \;\glIsz;ic;\%dteh:?n?tlig?Zgjr?c;:i?icc)): Zﬁ"":ns'onm%). We therefore seek to transform the first of Eq. 50
Substituting into Eq. 49 and separatingndt depender?&:e into a Sturm-l__iouv_ille problem. The transformation must
we find ' preserve the linearity of the ODE and should not add inho-
mogeneities to the boundary conditions. Thus we define
1 d T y(r) = R(r)/a(r), wherea(r) is to be determined. Substitut-
ﬁ&(rR’ +rf'R) = sz —\? (50) ing y(r) into the left-hand side of Eq. 50 and equating
coefficients with those of the Sturm-Liouville operator, it is
where) is a real constant. In this form it is evident tii(r) ~ €asily shown thag(r) = e, and the ODE fouy is then
depends only on andf(r), which in turn depend only om, ~ 9ven by
&, andc™(r). Because Eq. 49 is homogeneous, we conclude
from the second of Eq. 50 tha(t) = e »*P. y’ + @ —rf)y = —Ary. (53)
Because the flux must vanish at= 0 andr = 1,
according to Egs. 12 and 13, the boundary conditions ohe eigenfunctionsy,(r), of the transformed problem are
R(r) are simplyR’(0) = R'(1) = 0. Imposing these bound- thus orthogonal with respect to the weight functisfr) =
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re '™ so that

TYm(ya(Dre™@dr - [*RL(NR,(r)redr

JYa(r)?re~Odr JR(r)?redr
0 0

it

Becausd(r) is real and boundedy(r) is strictly positive.
For a given initial concentration distributios™(r, t,), of
molecular tracers, the coefficients, are thus given by

ifm=n

ifm#n - (54)

[ (r, OR,(r)redr
0

o JR(NreOdr (59)
0

Analytic solution for a box-shaped
distribution in cF

An analytic solution can be obtaineddf has a box-shaped
distribution of the form

0 if0=r<r,
1 ifrg=r<rg.
0 ifre=r=1

ci(r) =

This is the limiting case aAry — 0 andAr, — 0. For this
distribution,f becomes (setting” = 1 for simplicity)

0 ifo=r<r,
f(r) =1 NGlé& + (& + D™ ifrg=r<re..  (56)
0 ifre=r<1

In this casef’(r) is just a linear combination of two Dirac
delta functions given by

f/(r) = In([& + (& + Hr2)m

S(8(r —rg) — &8(r — red).

Away fromrg andr,, f'(r) is identically zero, so the ODE
given by Eq. 53 becomes

(57)

ry'+y + Ay =0, (58)

1679

Nearry andr,, a careful limiting process needs to be
made to account for the Dirac delta function. The ODE
given by Eq. 53 can be written as

N
X, + a-r) + AZX, =0.
y r y
We first deal with the behavior neay. We assume that
is nonzero around, (which will be checked for consistency
below) and integrate over a small intervg} - €, ry + €)
containingr to obtain

(60)

(61)

fgt+e y
In(y")e + In(r)fete — £ [o22 + )\ZJ v dr =0,
I

g~ €

wheree > 0. Because/' is assumed not to vanish on the
interval, y/y’ is bounded over the region of integration.
Taking the limit ase — 0" yields

ln(v’(rgo
y'(rg-)
Defining Af = f(ry,) — f(r4_) and using Eq. 56, we obtain

) = (f(rg.) — f(rg-)) = 0. (62)

Af = InGl& + (& + 4™ (63)
Rearranging and taking the exponential of both sides of Eq.
62 yields

y'(rg+)
y'(rg-)

This implies that as long ag'(rg.) # 0 (an assumption
made above), the first derivative is discontinuoug,atvith
Yi(rg) = e“y’_(rg). For nonzeroAf, the magnitude of the
slope ofy increases discontinuously gf. A similar result
holds atr., with Af replaced by—Af, so thaty’, (r.d =
e 2y (ro).

Another condition ony is that its first derivative be
bounded for allr; otherwise, an unphysical infinite flux
would result. Thereforey must be continuous at all points,
and atry andr, in particular. It should be noted that this
does not imply thaR is continuous, asis discontinuous for
a box-shaped distribution.

The coefficientsd, 3B, €, and% are determined by the
continuity requirement ofy at r, and atr., the jump
condition relating the first derivative gfatry and atr,, and

= e

(64)

the solution of which can be written as a piecewise lineathe boundary conditiony’(0) = y’(1) = 0. In fact, the

combination of Bessel functions of the form

Jo(Ar) ifOo=r<ry
y(r) =4 AJ(Ar) + BYo(Ar) ifrg=r<rg . (59
@Io(Ar) + DYo(Ar) ifree=r<1

In the first interval, 0= r <, Y,(Ar) is omitted because it
is unbounded as— 0, and the coefficient afy(Ar) is taken
as unity because the ODE is linear.

boundary condition at = 0 is already met in the assumed
form of the solution in Eq. 59, so only the boundary con-
dition atr = 1 remains to be satisfied. These five constraints

are expressed by the relations
Jo(/\rg) = SﬁJo()\rg) + %Yo()\rg), (65)

Ji(Arg) = e ¥(AJy(Arg) + BY,(Ary)),
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AIo(Ared + BYy(Are) = BIo(Aled + DYo(Ared), (67) large compared with unity, onF is large compared with
. g*B (§>> 1) andm > 0, we obtain a simple expression for
AI(Ared + BY1(Ared = (6 (Ared + DYi(Ared), X,. The Taylor expansion fok, about 1M = 0 (i.e., about
68) M- ) is found to be
(6\]1()\) + @Y]_()\) - O (69) . 2(1 _ rgc + I‘S) 1/2
o _ ey A=A = 3| M2+ O(M %),

Throughout, the identitiedy(Ar) = —AJ;(Ar) andYg(Ar) = IN(redrg)(1 — r2r?

—AY;(Ar) have been used. There are five unknown param- (70)

eters, o, B, €, P, andA, and five equations, so there should
be a solution as long as the equations are linearly indeperiRecalling the definition ofAf andM, and discarding higher-
dent. The equations are linear i, %, €, and%, so any order terms in W, we find the asymptotic solution fox,
four of the five equations may be used to write the coeffi-asAf — =, for the box-shaped distribution of, given by
cients explicitly in terms ofA. The coefficients may be o o 1
substituted into the remaining expression, resulting in a - ( 21 —ret 1y ) A2 (71)
characteristic equation, denot¥@\) = 0, that involves\ as toAIn(redrg (1 — r2rg ’
the only unknown. Coefficientsl and? may be written in
a fairly compact form; however, the expressionsr, . 2(1—rZ+ry)
and Y(A) are lengthy and are not explicitly shown here. — IN(redrg)(1 — fgc)fs
They are, however, easily obtained using symbolic algebra
software. This expression is extremely valuable for estimating

In any case, using numerical methods, the zero¥(aj Comparison with numerically computed values Xf re-
can be found that determine the denumerable infinite set ofeals good agreement with the asymptotic form Agr<
eigenvalues, X} o, that satisfy the constraints. A corre- ~2 (e.g., wher, > ~10 andm = 1, or whené, > ~2 and
sponding set of coefficients 4, B,,, €, D} o, Canthen m = 3, or when&, > ~0.06 andm = 100). Although Eq.
be found by direct substitution of eaah into the charac- 72 was derived using the analytic solution for the box-
teristic equation, and then the eigensolutions for the boxshaped distribution, it does reveal the dependence, oin
shaped distribution are found. This solution requires the usthe parameters. The first factor on the right-hand side of Eq.
of numerical techniques only to find the roots of an alge-72 accounts for the geometry of, while the second ac-
braic equation, so may be considered fully analytic. counts for the role of and m. Recalling the relationship

betweenA, and the characteristic diffusion time,, it is
evident that

1/2
) Q&+ (&) (72)

Asymptotic approximation of A, for monovalent
mobile ions 7 D[& + (& + 47" (73)
Because the first nonzero eigenvalug, determines the arorgo > 1,7, « D&J. This result illustrates the important

slowest transient in the solution, its value is a fundament - . - .
. . . . . influence ofm andF on the electrochemical diffusion time
determinant of the electrochemical diffusion time scale. In L .
of anionic molecular tracers. A more general asymptotic

particular, the dimensionless characteristic time scale assQ- L : o L :
. . : . o approximation of, for multivalent mobile ions is given in
ciated with the first nonzero eigenvalue is given fy= the Appendix
D/A2, and thus a long diffusion time is associated with a '
small value ofA,. From the solution to the box-shaped
distribution for ¢ foun_d above,_ it is pOSS|_bIe_to obtqm a NUMERICAL METHODS
closed-form asymptotic approximation Aq if either mis
large or the fixed-charge densityel, of the glycocalyx is  The eigenvalue equation, given by Eq. 53, that arises from
large compared to the concentration of ions in the bloodthe linearized problem is solved numerically using a shoot-
i.e., if & >> 1 form > 0. The characteristic equation for the ing method in conjunction with a commercial ODE solver
eigenvalues of the box-shaped distributiaffrA) = 0, can  (Mathematica). To validate the analysis of the previous
be expanded in a Taylor series abaut 0. It is known that ~ section, numerical solutions of the coupled, nonlinear, par-
Y has aroot ak = 0, so the Taylor series is taken@§A®). tial, integro-differential equations in Egs. 18 and 19 have
The truncated Taylor expansion is cubic and has real rootalso been obtained (with no asymptotic approximations)
atA = 0 and=A,. If A, is sufficiently small, the truncated using a flux-conservative, Crank-Nicolson, finite-difference
Taylor series of the characteristic equation should be a goodpproach on an irregular grid. This numerical scheme han-
approximation to the original characteristic equation at leastlles the stiffness of the system and limits global error
up to A,, that is,A; = A, + O(A%). Although lengthy, A,  accumulation associated with the integral term. Details of
may be determined analytically. However, if we make thethe finite-difference methods used are discussed more fully
assumption thaM = e*' > 1, which is true if eithem is in Stace (1999).
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RESULTS nificant. In fact, near the glycocalyx bounda#éghanges by

<0.25%. The er panels of Fig. 3 were initialized with a
In this section, the results of the finite-difference solutions > Upper p '9- > W nitiatized wi

. . . ¢~ distribution that followed a hyperbolic tangent distribu-
and analytical solutions are presented. The generality of thﬁon while the lower panels were initialized with a Gaussian
finite-difference scheme is shown to extend to cases Wherﬁist}ibution of ¢-. The diffusion times were found to be
6 varies significantly with time. Through several tests, the xtremely insensitive to the initiat- distribution
scheme showed no numerical instabilities and achieveg '

erati t hti te0. Also. th The finite-difference scheme was checked for consis-
Itération convergence at each time step. AISo, the accura%ncy using several methods. Most importantly, at each time

of the staticé approximation is demonstrated when thegep, the Newton-Raphson algorithm reduced the magnitude

3]55;‘_”‘_{’“‘(’;‘; of the de;'v":_lt'on arle metl. ?Iext, the results o f the absolute residual of the coupled nonlinear difference
e finite-difference and eigenvalue solutions are compare quations to<5 x 108, Second, whem = 0, the coupled

forl_;tcor}tl?huoTsttgly;:oc?rl]yx d|str|bl];1t|cznt,&es|:t_abl:lsh|rt1§ thenonlinear equations are uncoupled and linear, and the re-
validity of the fatter for the case of sta inatly, the sulting spatial eigenvalue problem may be written in terms

varlaltlon dc_)ftthbe 1;|_rst n(_)nzer(? elg(;anC/Jallue W|ttr;]d|ffgrenttg[{y— dof Bessel functions. Takingh = 0, the solutions obtained
cocalyx distributions 1S €xplored. Uniess otherwise state using this analytic method were compared with those ob-

times given are nondimensional. tained using the finite-difference approach on a nonuniform
grid, and the relative pointwise difference between the two
Finite difference scheme was <1% at each time step. Third, for nonzeng the

) ) ) ) ) finite-difference code was run until variations were insig-
WhenB/m or F/m is near unity, the statié approximation pificant, and the resulting product of concentrations was
is not valid. The finite-difference scheme is certainly capa-

) i R : seen to be constant over space, in agreement with Eq. 25.
ble of dealing with this situation, however. In Fig.8and  rina)ly numerical solutions computed at two different (but
b, ¢ is zero, so that™ just balances the charges on the

e L Me _ small) time steps agreed within 0.5%.
glycocalyx and diffusing anionic molecules, makiBgn =
1. Clearly, 6 varies with time, decreasing in amplitude
where the glycocalyx concentration varies most. WB&N
>> 1 or F/m >> 1, the staticd approximation is seen to
hold. For Fig. 3¢ andd, F/m = 285 andB/m = 800. With  The eigenvalue problem formulated above is now com-
this choice of parameters, temporal variationsiis insig-  pared, for a particular case, with the solution obtained using

Comparison between results of numerical
solution and eigenfunction expansion

b. 80 -

a. 1.0-‘
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FIGURE 3 @) Time variation of anionic molecular tracer concentratidry, t), for F/m = 1 andB/m = 1. Note that the initial distribution fo- follows

a hyperbolic tangentbj Time variation of§(r, t) corresponding to the instantaneahglistributions shown ing). Note thats varies significantly with time.
(c) Time variation of anionic molecular tracer concentrationfifm = 285 andB/m = 800. In this case, the initia distribution follows a Gaussiand)
Time variation ofd(r, t) corresponding to the instantaneatisdistributions shown ind). Note that the instantaneo@gistributions are indistinguishable,
which is consistent with a quasi-static approximationdotn all panelsm = 5, Q = 72314, and the geometric parametersgre- 0.86,Ar, = 0.02,
andr,. = 1 such that there is no leakage into the extravascular space.
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the finite-difference scheme. In the results shown in Fig. 3distribution is assumed to follow the form shown in Fig. 1,
the system boundary, where the flux of anionic tracerswvherer,. < 1.

vanishes, was chosen as the endothelial-cell wall. All sub- To find the eigenvaluesR, is computed for different
sequent results account for leakage of tracers into the exsalues ofA. The derivative R(1; A), evaluated at the sys-
travascular space. This is simulated by including a regioriem boundary, is plotted againstand shown in Fig. 4.

past the endothelial-cell wall into which anionic molecular The eigenvalues correspond to the roots of the characteristic
tracers can diffuse. Thus, for the results shown belowgthe equation,R,(1;A) = 0. In this case, the first three eigen-

20 —
10 —

0 —
210 =
290 —
.30 —

R’ (1;))

0 20 40 60 80 100

0.0 0.2 0.4 0.6 0.8 1.0
r
C. 2.0— — 1.0
eigensolution L 0.8
1.5 — finite difference solution
s e T N T, T — 06 ~
o0 t=124 ol
\t =
3 — 04 —
o)
05— t=17.74
— 0.2
T e . A— s | ().
[ | [ [ 1 |
0.0 0.2 0.4 0.6 0.8 1.0
r

FIGURE 4 @) Graphical representation &'(1; A), corresponding to the left-hand side of the characteristic equation associated with the eigenvalue
problem. Asa varies, so doeR'(1; A). The eigenvalues, corresponding to the roots of the characteristic equddign §ccur whereR'(1; A) vanishes. lf)

The first five eigenfunctionsRk(r). To within a constant multiplicative factor, the eigenfuncti®g(r), corresponds to the equilibrium distribution df.

(c) Comparison of the solutions obtained by the finite-difference method versus the eigenfunction expansion (truncated after the first fGiseatsis);
shown. For all panelds = 4744,B = 4000,Q = 200871,m = 5, ry = 0.52,Ary = 0.2,r. = 0.6, andAr,, = 0.03.
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values are 0, 2.19, and 7.78. Each eigenvalue has a corrzansient dynamics, and are related to the nondimensional
sponding eigenfunction, and Fig.bdshows the first five characteristic diffusion times according tp = D/AZ. Be-
eigenfunctionsR,, . .. , R,, corresponding tdy, . .., A4 cause transients correspondingxpdecay faster with in-
ForF = 4744,B = 4000, andn = 5, the instantaneous creasingn, the slowest time constant is associated with the
distributions ofc-, computed from the eigenfunction expan- first nonzero eigenvalue),. Whereasr, depends on the
sion truncated after 15 terms, are shown in Figc @  dimensionless diffusion coefficient rati®@, A, does not,
various times. Also shown are the corresponding resultand results are therefore more generally expressed in terms
found using the finite-difference scheme. The agreemendf the latter. AsA, depends orf, it varies withm, & =
between the two methods is excellent, differing most (al-nF/(z"B), and the geometric parameterg ro, Arg, and
though not apparent from the figure) whetfeis large. Argc appearing in Eq. 22. In what follows, the dependence
of A, on these parameters will be examined.

Time variation of ¢ for box-shaped distribution

For F = 235200,B = 4000, andm = 3, Fig. 5 shows the Dependence on &,
distribution of c- computed for a box-shaped distribution . . . -
using the first 10 terms of the fully analytic eigenfunction '€ variation ofA, with & is shown in Fig. 6 for several

expansion derived previously. The diffusion process ha¥alues of the valence magnitude, Sinceg, represents the
two characteristic time scales. In a short tink, reaches dlycocalyx fixed-charge density relative to the valence-

pseudo-equilibrium, with imperceptible concentration gra-Veighted concentration of ions in the blood, Fig. 6 reveals
; : h@e influence of the fixed charges on the diffusion time. The

results shown in Fig. 5, it takes 10° times longer for the ~SOlid curves correspond to a smoothly varyiigdistribu-
tion, for whichry = 0.4,Ary = 0.1,r,. = 0.5, andArg, =

anionic molecules to leak through the glycocalyx and es- . i
tablish equilibrium. This illustrates the stifiness of this 0-03: For all positive values af, as§ — 0 (i.e., as the
problem, as mentioned in the previous section. Note als§*clusion factor approaches unity), asymptotes to 3.8317

that the shape of the concentration distribution ffox r, for the solid and dotted curves. This is precisely the_ first
(wherec” is negligible) is very similar to what would be Nnonzero root ofJ,(r) = 0, which corresponds to the first

expected for diffusion driven solely by chemical potential Nonzero eigenvalue if diffusion were driven by chemical
gradients. gradients alone. A§, — o, A, decreases monotonically for

all values ofm according to the power-law relationship,

« & ¥, whered, which depends upom, is the slope of the
log-log plot shown in Fig. 6. Results for the box-shaped
While A, = 0 is associated with the equilibrium configura- distribution, corresponding to the dotted curves in Fig. 6,
tion, the nonzero eigenvalues,, are associated with the show that\; is consistently lower than for the smooth

Variation of A,
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FIGURE 5 Plots ofc(r, t) at various times assuming a box-shaped distributiorcfarith F = 235,200,B = 4000, andm = 3. Thec" distribution is
shown ¢lot-dash) as the rectangle extending from = 0.42 tor.. = 0.5.
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FIGURE 6 Dependence af, on &, for different values of anionic molecular valence magnituderl he solid lines correspond 1q found by numerically
solving the eigenvalue problem fog = 0.4, Ary = 0.1,r,, = 0.5, andAr, = 0.03. The dashed lines are the results for the corresponding box-shaped
distribution, and the dotted lines show the asymptotic approximatian fir the box-shaped distribution. Agreement for the last two is excellent,fer

2. It should be noted that the asymptotic approximations in all cases convexge=t®.244 ast, — 0, whereas the correct limit is, = 3.8317, as can

be seen from the solutions to the eigenvalue problem. Thus the asymptotic formula given by Eq. 72 is not kaliel fe2. The two right-hand axes show

the exclusion factor given by Eq. 34 and the diffusion timegiven by Eq. 74. Whereas, and the exclusion factor are independent of either the diffusion
coefficient or the geometric parameters of the systgndepends on both. In computing, the diffusion coefficientD"-, was taken to be 2.% 10~ ** m?%s

and the system radiu$}, was taken to be m.

distribution, indicating that the gradientséhdo have some distribution, and the dashed curves correspond to the as-
effect onA;. The solution for the box-shaped distribution ymptotic approximation fon, given by Eq. 72. Agreement
does capture the important trendsipy however, and dif- between the asymptotic expression and the eigenfunction
fers from the smooth distribution for the cases showncby €xpansion is good fok; < ~2. The exponential relation-
~15% for A, < ~2. The dashed curves show the variationship betweeni; and m is predicted by Eq. 72, which

in A, calculated using the asymptotic approximation givenindicates that for largé, A, is proportional tag; ™2 For a

by Eq. 72. The box-shaped distribution clearly converges td0g-linear plot ofA, versusm, the slope of this relation will

the asymptotic expression & — o, which gives a very be 6 = 1/2 In(go)._The asymptotic slqpe of the log-linear
good approximation to, for the box-shaped distribution CUrve corresponding i, = 119 is predicted to bé = 1.04,
when A, < ~2. The asymptotic formula given by Eq. 72 which is in good agreement with the results shown in Fig. 7.

indicates that the slope of the log-log plot shouldde= Also of note is that am — 0, A, — 3.8317 for the solid and

—m/2, which is clearly seen for each of the sets of curves indOttecj curves at all values df. Thus, the,elgenvqlue
Fig. 6 problem certainly reduces to that of Bessel's equation as

m— 0.

Dependence on m

The solid curves in Fig. 7 show howy varies withm for a Dependence on system geometry

smoothly varyingc™ distribution taking geometric parame- The geometry of the axisymmetric model is determined by
tersry = 0.4,Ary = 0.1,r,. = 0.5, andAr,. = 0.03. The the parameters,, Argy, ro, and Ar.. Varying re. while
value of A, is calculated for values ah ranging from 0 to  holding all other parameters constant corresponds to vary-
6. Although noninteger values of the valence magnitmge, ing the radius of the extravascular cavity relative to the
may seem unphysical, due to charge shielding, the effectiveRiminal radius. Fig. & shows the relationship betweean
valence of anionic molecular tracers is typically not integer-andr.for & = 11.9 andn = 5. The value of ..was varied
valued. Results clearly show a strong dependencendn  from 0.02 to 1, while the dimensions of the glycocalyx were
particular, form > 1 it appears that this dependence has arkept constant relative to.. In particular,ry = 0.75r,,
exponential character of the forkg ~ 6~ ™, where6, which  Ary = 0.5r, andAr,. = 0.05r.. An important feature to
depends upof, is the slope of the log-linear plot shown in note is that\, is inversely proportional to.. (indicated by
Fig. 7. The dotted curves are calculated for the box-shapethe —1 slope in the log-log plot), iE™(r) is small near =
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FIGURE 7 Dependence of, on the valence magnitude), of the anionic molecular tracer for different values&f The solid lines correspond to,
found by numerically solving the eigenvalue problem for a smoothly vargingistribution withr, = 0.4,Ar, = 0.1,r.. = 0.5, andAr,. = 0.03. The
dotted lines are the results for the corresponding box-shaped distribution and the dashed lines show the asymptotic approxipfiatitrediox-shaped
distribution. Agreement is excellent fay, < 2. The linearity of the results on the log-linear plot illustrates well the exponential dependekgcerothe
valence magnituden, for A, < 2. It should be noted that, as in Fig. 6, the asymptotic approximations in all cases converge 8244 as, — 0, whereas
the correct limitisy, = 3.8317. The two right-hand axes show the exclusion factor given by Eq. 34 and the diffusion tigieen by Eg. 74. In computing
7., the parameters used were the same as in Fig. 6.

1. As can be seen from Eq. 72, this arises because allaried between 0.1 and 0.595 while all other dimensions of
geometric terms in Fig. & are proportional ta.. When  the glycocalyx were kept constant relativertp In partic-

rec ~ 1, the boundary of the system is near the capillaryular,Ary = 0.1,r,. = 0.6, andAr.. = 0.03. The solid curve,
wall, resulting in very little leakage into the extravascular corresponding to the smoothly varyief, shows a qualita-
space. In this case, jumps sharply to~6.7 for the smooth tively different behavior as, approaches,. This arises

c", and becomes infinitely large for the box-shaped distri-due to the fact that, whern,, — ry < Arg/2 = 0.05, the
bution. Both reveal the same qualitative dependence,on general form of the" distribution near the endothelial-cell
with A, for the box-shaped distribution being50% of its  wall transitions from having a very sharp peak to having a
value for the smooth distribution at a given valuergf rather flat distribution.

Varying ry while holding all other parameters constant Varying Arg or Ar,. changes the range over which
corresponds to changing the thickness of the glycocalyincreases or decreases neguor r, respectively. Results
relative to the luminal space. Fig/B8shows the variation of showed that\, is relatively insensitive to both of these
Ay with rg for § = 11.9, andm = 5. The value off; was  parameters. For one computation, parameters were fixed at
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FIGURE 8 @) Dependence ok, onr.for §, = 11.9 andm = 5. The geometric parameters are fixed relative;isuch thatry = 0.75r,, Ary = 0.5

rec = 0.03, andAr.. = 0.5r.. This result may be interpreted as the variation.pvith changing cavity size, but fixed capillary diameter and glycocalyx
shape. The solid curve is calculated for a smoothly vargihgvhile the dashed curve is the corresponding solution for the box-shaped distribbjion. (
Dependence of, onr for a smooth distribution of” (solid curvé, and for the box-shaped distributiotiafted curvg Other parameters are fixed &t=
11.9,m = 5,r, = 0.6, andAr., = 0.03. The unusual behavior of the solid curve for small- r, occurs because the valuef; is large enough relative
tore. — rqto cause the distribution to be sharply peaked, rather than flat near the endothelial-cell wall.
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& =11.9,m= 5,1y = 0.45, and,. = 0.6. SettingAr,, = Asymptotic diffusion time

0.03, and varying\r, by a factor of 10, from 0.05 to 0.5, the Th . - It of th . tion is that. f
computed value of\; showed an approximately twofold € most important resuft ot the previous section 1s that, for
largem or &, => 1, A, is much smaller than its value of

variation, increasing nearly linearly from 0.015 to 0.03. For I . e
these same parameters, the corresponding solution for th33'8317 forgo = m = 0, when only chemical diffusion

box-shaped distribution, which is independentzaf, and exists. Figs. 6 and 7 clearly show reductions of two orders
Aros is Ay ~ 0.014. This value corresponds to the limit for of magnitude ink, for moderate values oh. Recalling the

the solution to the smooth distribution as, — 0. It was relationship,m% = D/A2, between the dimensionless charac-

found thatA, was even less sensitive to the value/of,. :erlstmddlffufsmn t'.T%’ L ;ndt_)‘l’ |t||s dOti'OUS_ that a
than it was toAr,. SettingAr, = 0.2, and varyingAr, by Wwo-order-of-magnitude reduction Iy leads to an increase

a factor of 20, from 0.02 to 0.4, the computed value\gf in the diffusion time of four orders of magnitude. The
varied only t;y —18% increas:ing nearly linearly from reduction ofA, by such an enormous amount rests on two
—0.017 t0 0.02 ’ requirements examined throughout the development of the

previous sections. First, it requires the presence of a fixed,
anionically charged glycocalyx, so thafF # 0 with either
DISCUSSION mis large or¢, >> 1. Second, tracers need to leak from the

Figs. 4c and 5 reveal the transient electrochemical dynam-Iumen into extravascular space, or the system will equili

. - . _brate in about one (Fickian) characteristic time constant. If
ics of anionic molecular transport through the layer. Owing

to the solid-bound fixed charges on the glycocalyx, thee|ther requirement is not met, then the governing equations

model predicts that negative ions in the blood and diffusin will not predict the prolonged diffusion times observed by

anionic molecular tracers are partially excluded from thg/ink and Duling (2000).
P y The physical reason for the reductionApis not imme-

glycocalyx in equilibrium. ”_‘es? concen_tratlon gradlentsd|ately obvious. Essentially, the near balance between the
are supported by the electric field that is set up by the ; . . .

) 7 . “chemical and electrostatic potentials causes the anionic mo-
negative charges bound to the glycocalyx. A gradient-in-

e . . lecular tracers to be excluded from the glycocalyx; this, in
duced diffusion of anionic molecules from the capillary L
. . S ; turn, causes a retardation in transport through the layer
lumen into the glycocalyx is then limited by this electro-

) . - because the flux scales according to the reduction in tracer
static exclusion. If leakage of anionic molecules out of the

capillary occurs, the concentration gradient begins to de_goncentratlon in the layer. The presence of free salt ions is

. important, as these set up the electrostatic potential against
crease between the lumen and the glycocalyx and increase . L
between the glycocalyx and extravascular space. Because ich the anionic tracers must move.
gy 4 pace. From the asymptotic formula fox,, given by Eq. 72, we

the levels of anionic molecular tracers remain suppressed, . . . . ; Yo -
o e Obtain an expression for the dimensional diffusion time of
within the glycocalyx throughout the diffusion process,

. . ' molecular tracers given by
tracers are passively transported against a concentration

gradient as they diffuse into the extravascular space. These |2 r P2 — p2
electrochemical dynamics drive the system to a new equir, ~ Z—DQL In(ec)<ec> (& + (& + p¥A™m.
librium state. Results indicate that a significant departure

rg/\R? = rZ.+ 13
S A : . (74)
from Fickian diffusion occurs particularly if the valence

magnitude of the diffusing anionic molecule is large and/or|n the previous section, it was noted that the dimensional
the fixed-charge density of the glycocalyx is large comparediffusion time is nearly independent of the system radius,
with the concentration of ions in the blood. %, when the extravascular space is large compared to the
The close agreement between the results of the finitecapi”ary_ This follows from Eq. 74, where it may be seen
difference solution and the eigenfunction expansion lendghat if % > r, > ry» then the third factor on the right-hand
strong support to the accuracy of both in solving the gov-ide is nearly unity, and the diffusion time becomes inde-

erning equations, as long as the approximatiBfis >=> 1 pendent ofR. Invoking this approximation, Eq. 74 reduces
and nF/m >=> 1 are met. The eigenfunction expansion iStg

much easier to implement and is much faster computation-

ally. As long as the charge concentration of molecular ré lec\ 1 ) y

tracers is small compared to the ion concentration in blood = opt |”<r)(§[§0 + (& + 9" hm (75)

and tond,, it is much simpler to discuss the diffusion time ’

in terms of the solution to the eigenvalues of the linearThis approximate form of the diffusion time differs from the
problem. However, even iB/m and nF/m are not large exact value by<10% whenr,. = 0.3 R, which seems
compared with unity, such that the quasi-static approximareasonable for microvascular networks of mammalian skel-
tion for 6 may not be valid, the finite-difference solution can etal muscle as long as the capillary density is low enough to
still be used to examine the electrochemical transport ofllow a mean center-to-center intercapillary separation of
anionic molecular tracers through the layer. ~20 wm or more.
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Some physically significant insights into the diffusion MW(tracer)}’?D* ~ 2.4 x 10 **m?s. Because interstitial
time can be had from Eq. 75. The first factor in the productand free diffusion coefficients are reported to differ only by
on the right-hand side of Eq. 75 is one-half of a characterabout a factor of four for 3-kDa FITC-dextran tracers (Ley
istic transit time, from the center of the capillary to the and Arfors, 1986), we assuni¥ to be constant throughout
glycocalyx interface. The geometric factors in the middlethe system, including the extravascular space. It seems
reveal the dependence of the diffusion time on the thickneskkely, however, that for dextran tracers40 kDa, the
of the glycocalyx. In particular, becausg/r is near unity, — glycocalyx and interstitium offer increasing steric hindrance
the diffusion time scales approximately linearly with gly- with increasing molecular weight, and completely exclude
cocalyx thickness. The last factor in the product representdextrans larger than 70 kDa (Vink and Duling, 1996, 2000).
the ratio of the molecular tracer concentration in the bloodThe applicability of the model, therefore, to dextran tracers
to that in the glycocalyx, as can be seen by comparison tin excess of 40 kDa is uncertain because the idealized model
Eq. 33. Thus, the diffusion time, which increases exponenef Brownian motion through the glycocalyx is not likely to
tially with the magnitude of the tracer valence, varies inbe valid. Furthermore, no account is taken of macromolec-
inverse proportion to the anionic molecular exclusion factor. ular reflection in the extravascular space, and because the
reflection coefficients become appreciable for FITC-dextran
molecules in excess of 40 kDa (Curry, 1984), we limit
attention to the smaller tracers used in the experiments of
On the basis of erythrocyte and macromolecular exclusioVink and Duling (2000).
zones observed by Vink and Duling (1996, 2000), we as- The most significant uncertainty in all of the parameters
sume the in vivo thickness of the glycocalyx toh8.4um.  used in the model lies in our estimation of the magnitune,
The other geometric parameters used in the model deperaf the molecular tracer valence. In the experiments of Vink
upon capillary diameter and capillary density in the tissueand Duling (2000), anionic fluorescent tracers are conju-
and are given in Table 1. As we have seen, howevergated to macromolecules, such as dextran, so the valence of
predicted diffusion times depend weakly on the geometridhe conjugated molecular tracers is determined by the num-
parameters. ber of tracers that bind to the macromolecule. There may be

The luminal concentration of Naand CI” ions in blood some variation in this number, making the valence uncer-
is known to be~0.14 mol/l, and the luminal concentration tain. Also, because some of the molecular tracer conjugates
of the molecular tracer is-3.5 X 10 > mol/l for 39 kDa  are very large molecules, some charge shielding may take
FITC-dextran tracers, but varies with molecular weight.place, making the valence magnituae, nonintegral. The
Because it is thought that the glycocalyx is extremely dif-range ofm, corresponding to the valence magnitude asso-
fuse, it will be assumed that the diffusion coefficier®s;, ciated with each of the anionic FITC-dextran conjugates, is
associated with the mobile ions, ab, associated with the listed in Table 2 in order of increasing molecular weight
smaller molecular tracers used by Vink and Duling (2000),(Molecular Probes Inc., Eugene, OR).
are nearly the same in the glycocalyx as they are in water.

Furthermore, for tracers:39 kDa, the diffusion coefficient
is assumed to vary with the square root of the molecula
weight of the diffusing species. For Nathe diffusion  For the diffusion experiments reported by Vink and Duling
coefficient,D*, in water is known to be-10"° m%s. The  (2000), 4-, 17-, and 39-kDa FITC-dextran molecules were
diffusion coefficient,D", is then estimated by reducirij” used. The corresponding half lives,,, were reported to be
by the square root of the relative molecular weights of Na 12, 22, and 90 min, respectively (Vink and Duling, 2000).
and the molecular tracer. This estimate yields values confhe diffusion time,r;, of Eq. 75 is the ¥ diffusion time,
sistent with those estimated from intravital microscopywhich is related to the half-life by, = In(2) 7,,,. Using the
measurements of interstitial FITC-dextran concentrationgarameter values listed in Table 1 and the diffusion half-
(Fox and Wayland, 1979; Ley and Arfors, 1986). For ex-lives reported by Vink and Duling (2000), the value&gf=
ample, for a 39-kDa FITC-dextran trac®; ~ (MW(Na®)/  nF/B = nd}/c, .4 Can be inferred from Eq. 75. For each

Parameter values

rComparison with experimental findings

TABLE 2 Range of &, predicted by Eq. 75 that is necessary to account for the prolonged dextran diffusion times (r,,,) reported
by Vink and Duling (2000)

MW D" (m?s) T2 (S) O Valence Magnituden Fixed-Charge Density

4 7.6x10 11 720 504 05=m=2 290= &, = 7.4 X 10°
17 3.7x 10 1320 924 lI=m=2 270= & = 7.7 x 10¢
39 24x 101 5400 3780 =m=7 55= & = 58.8

Each range o€, shown corresponds to the given rangerofssociated with each of the three dextran tracers listed (Molecular Probes Inc., Eugene, OR).
The geometric parameters were chosen suchrthat 2 um andr., = 2.5 um (Vink and Duling, 1996, 2000).
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dextran fraction used in the experiment, the rangepf glycocalyx, and/or that the tracers compete for those sites
corresponding to the range ofis presented in Table 2.  with the proteoglycan and GAG aggregates constituting the
It is evident from Table 2 that there is no single value ofglycocalyx.
&, that provides a consistent explanation for all of the
diffusion times reported by Vink and Duling (2000). In fact,
the ranges fok, corresponding to the two smaller dextran
tracers do not overlap with the range corresponding to thén light of the foregoing discussion, it seems unlikely that
39-kDa tracer. Furthermore, considering the fixed-chargehe glycocalyx fixed-charge density can be inferred from
density of other mucopolysaccharide gels, the smallestiiffusion experiments involving anionic molecular tracers
value of&, that is able to reproduce the prolonged diffusionsuch as those performed by Vink and Duling (2000). How-
times reported by Vink and Duling (2000) for the smaller ever, the model does suggest an alternative approach to
two tracers listed in Table 2 is several orders of magnitudexperimentally extracting material properties of the layer. In
larger than physiologically plausible. For example, theparticular, the voltage gradients induced by the charge im-
fixed-charge density of the tectorial membrane in the cobalances near the apical end of the glycocalyx suggest
chlea is reported to be-0.02 Eqg/l on the basis of its useful experiments along the lines of those done by Masaki
composition. A recent estimate based on direct voltaget al. (2000). Even for a relatively low fixed-charge density,
measurements of the membrane places the estimate closeriq. 43 predicts the existence of a maximum equilibrium
0.15 Eqg/l (Masaki et al., 2000). An upper bound on thevoltage difference between the lumen and the glycocalyx
fixed-charge density of articular cartilage is reported asanging between 0.134 and 1.34 mV at 37°C, for 091
being~0.18 Eq/l (Maroudas, 1975). However, the presence, = 0.1. The presence of such an electric field suggests a
of collagen in cartilage constrains the expansion of themethod for directly probing the electromechanical proper-
proteoglycan and GAG aggregates, which results in a swellties of the layer. Although it is technically feasible to
ing pressure in the matrix at equilibrium. In free solution measure voltages of this magnitude, the practical limitations
without collagen, it is estimated that the proteoglycan andf using a microelectrode to obtain accurate in vivo mea-
GAG aggregates would expand to approximately five timesurements of voltage gradients in a 400-nm-thick hydrated
their constrained volume in cartilage (Muir, 1983; Lai et al., gel may be prohibitive. However, modulation of an exter-
1991). Because it is unlikely that the glycocalyx containsnally applied electric field might be more plausible, and
collagen or any other constituent that could limit expansionmight offer the possibility of varying the dimension of the
of the matrix, such a high fixed-charge density as that foundjlycocalyx in vivo. Because the equations used to derive

Experimental implications of the model

in cartilage would not be expected. Therefore, ¢Qtoq = Eq. 43 are obtained for steady-state conditions, voltage
0.14 mol/l, a physiological upper bound &g consistent measurements are not subject to uncertainties in the mea-
with other mucopolysaccharide structuresjs< ~1. surements of diffusion times. Furthermore, voltage mea-

Clearly, this falls well below the range in whiggwould  surements do not require the use of molecular probes be-
need to be to account for the prolonged diffusion times ofcause the voltage depends only on the valence of the free
anionic molecular tracers reported by Vink and Duling salt and the glycocalyx fixed-charge density. Despite poten-
(2000). In addition, there is another difficulty in reconciling tial technical difficulties, Eq. 43 provides a great incentive
the results of Vink and Duling (2000) with those of the to devise such experiments, which would in turn allow
analysis presented here. For evergjf>=> 1, the model direct measurement of the local glycocalyx fixed-charge
predicts the existence of a dark band in fluorescence interdensity without calibration. Finally, Eq. 43 does not depend
sity where the glycocalyx is located by virtue of the exclu-upon the existence of the extravascular space, so that the
sion of the anionic tracers by the layer. In contrast, thegeometric assumptions used to derive the diffusion times
results of Vink and Duling (2000) seem to imply that as theare unnecessary.
diffusion of molecular tracers progresses, the concentration The model suggests yet another approach to estimating
distribution advances through the glycocalyx as a front. Ifthe fixed-charge density distribution of the glycocalyx that
their observation of a front is valid, then it is very likely that does not depend upon the transient electrochemical dynam-
the process is highly nonlinear. This is in contrast to theics of the system. The equilibrium distribution of the anionic
weak nonlinearity of the present model, which was well-molecular tracer, given by Eq. 33, or equivalently, by Eq.
approximated by a linearized model. A possible source 061, depends upog, and the magnituden, of the tracer
nonlinearity may arise if reaction-diffusion kinetics, not valence. As we have demonstrated, eveg,ils small, the
accounted for in this model, are superimposed on the releexclusion factor, given by Eq. 34, can be largemfis
tively simple electrochemical dynamics described here andufficiently large (see Figs. 2 and 6). For example, Eq. 34
mediate interactions between anionic molecular tracers anpredicts that if§; = 0.01, a 40% reduction in tracer con-
the glycocalyx. One speculation is the possibility that thecentration within the glycocalyx can be achievedif=
anionic molecular tracers bind nonspecifically with cationic 100. Thus, if the fluorescence varies linearly with tracer
sites on albumin and other plasma proteins adsorbed to tr@ncentration, then the intensity profile from very nega-
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tively charged tracers at equilibrium will produce a directdiffusion kinetics associated with tracer transport through
image ofnd(r), according to Eq. 51. Although this does the layer.
require knowledge ofn, it provides an easy way to physi-
cally view and quantify the glycocalyx fixed-charge density
in vivo. The authors gratefully acknowledge K. Ley, A. J. Pearlstein, and R. D.
Rabbitt for their careful reading of the manuscript and for their helpful
insights and suggestions. The authors also convey their appreciation to
SUMMARY D. O. Pushkin for his helpful suggestions regarding the numerical imple-
mentation of the finite-difference equations.
A _dyr_]am'cal model of the eleCt_rOChem'Cal transport OfPartial support for this work was provided by the Whitaker Foundation
anionic molecules through the capillary glycocalyx has beencrant RG-98-0524).
presented that details the spatiotemporal variations in the
concentration field of the diffusing molecules for the axi-
symmetric case. Numerical and analytical solutions werédAPPENDIX
obtained including a fully analytic eigenfunction expansion . . . .
L g alully y g P Asymptotic approximation of A, for multivalent
that satisfied the linearized equations for a box-shapegnobile ions
distribution of the glycocalyx fixed-charge density. From
this solution, closed-form asymptotic expressions were obk deriving Eq. 72, it was assumed that the free salt ions were monovalent,
tained for the first nonzero eigenvalue and the anionid-e-2" =~z = 1. This assumption led to the quadratic equatiot'in
diffusion time that were closely related to the anionic mo_given by Eq. 30. For arbitrary free-ion valences, this equation becomes
lecular exclusion factor at equilibrium. From the asymptotic nF ~Uz
analysis, which applies if eithef, => 1 or mis large, c*(0)V* V= = c+(r)”z*(c+(r) _z*BCF(r)> , (76)
prolonged diffusion times are predicted that are limited by
the de_gree of eXCIUS'O_n O_f anions from the Iayer. In e_'therwherec*(O) = 1. The root of Eq. 30 was used in Eq. 37 (which is general)
case, if leakage of anionic molecules out of the capillaryto express in terms ofc™(r). For arbitrary values of* andz, the more
occurs, diffusion time is seen to vary exponentially with ~ general equation will still have a positive real root,(r), depending on
and in inverse proportion to the anionic molecular exclusionCF(r)- Thus, the exclusion factor is a function of the glycocalyx concen-
. . . tration distribution and the ion valences. For convenience, we deisén
_factor. It was also found that the dlﬁuslon _tlme was nearlythe first of Eq. 40, without specifying the functional formaf(r) in terms
independent of the extravascular cavity size, but the elecs &F(r). In general, then
trochemical dynamics and transient response of the system
were critically dependent on the presence of such a cavity.
Generally, results were found to be relatively insensitive to
the precise shape of the glycocalyx fixed-charge density
distribution and to the layer thickness. where it is understood th&tultimately depends only on the concentration
One of the most important findings of the present Studyﬂistributioncp(r), because™ (r) is derived from the root of Eq. 76, which
ertains to the electrochemical equilibrium configuration ofdepends only 0”(r). Using this definition off, Eq. 39 becomes general.
p o . . q s 9 As such, all the analytic work that follows it is still completely valid. In
the glycocalyx a'j]d Its |mpI|cat|or_1$ for anionic molecular particular, the definition ofAf = f(rg,) — f(ry_) may be used, and the
exclusion. In particular, the analytical work suggests a numresults of the asymptotic analysis up to Eq. 71 are true for arbitrary
ber of experiments that would offer useful tests of theoret-valences. Of coursé\f may be calculated directly from the root of Eq. 76.
ical predictions made by the model under steady-state Codr)d_ee(_jzAf may be evaluated explicitly in terms of(rg_+). Wherec(r) is
ditions and provides a means for obtaining an estimate o; significant, i.e., wher(r) = 0, E. 76 has the solutiasi (r) = ¢ (0) =
p . e . 9 . , and it again follows tha(ry_) = 0. According to Eq. 77, we then have
the glycocalyx fixed-charge density in vivo. Another im- s — f(rg.) — f(rg_) = Mz" In(c*(ry,)).
portant implication of the model pertains to the interpreta- Roots of Eq. 76 were presented earlier for the case of monovalent
tion of recent in vivo findings of Vink and Duling (2000). In cations+and aTons. They canibe found analy?ically for three more cases:
particular, the model shows definitively that, for physiolog- Whenz' =2,z" = 3 (both forz" = —1 and arbitrano), or wheng, =
ical values of glycocalyx fixed charge density diffusion 1 for arbitraryz™. Again, these can be used to write an analytic expression
. TS ) - ! for A,. Forz" = 2 or 3 (andz" = —1), Eq. 76 can be written as a cubic
t'me_s_ for anionic molecular tracers W'm < 10_ are not o quartic polynomial, respectively, each of which has roots expressible in
significantly influenced by the electrostatic field induced by terms of algebraic numbers. We do not give them explicitly here&sor
the glycocalyx; this finding thus eliminates the possibility 1. it is possible to derive a general closed-form asymptotic expression for
that such a field is strong enough to account for the ob2x Valid for arbitraryz” andz". If we rewrite Eq. 76 as
served behavior of anionic molecular transport through the ¢t (r) &)\ 2 e (r)
layer reported by Vink and Duling (2000). It seems likely, <+0 — & — 5 ) ( 0 ) =1,
therefore, that in addition to the electrochemical dynamics c'(0) c'(0) c'(0)
described here’_ m9re comphcated rate_“mltmg mteracpon%ve note that, becausez'/z" is strictly positive, the first bracket on the
between the anionic tracers and the glycocalyx occur S'_muhéft-hand side must nearly vanish whereek(r) is significant andé, >
taneously, which might take the form of unknown reaction-1. In this case (recalling that™(0) = 1), c*(r) =~ &c(r) = &), so

f(r) = 22 In(c*(r)) 77

(78)
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f(rg.) = (Mz")In &, Thus,Af = In gg“f, and so Eq. 71 becomes Klitzman, B., and B. R. Duling. 1979. Microvascular hematocrit and red
cell flow in resting and contracted striated muséen. J. Physiol. Heart
201 —r2.+r3 \¥2 Circ. Physiol.237:H481-H490.
~ ec 9 —m/2z! ) . .
A= IN(rodro)(1 — rzc)rz & . (79) Lai, W. M., J. S. Hou, and V. C. Mow. 1991. A triphasic theory for the
ec’ g ec’g swelling and deformation behaviors of articular cartilageBiomech.

Eng.113:245-258.
It shoul hat Egs. 72 7 1 > 1.1 . . . . .
t should be noted that Egs and 79 agree wiier- 1 andg, t Levick, J. R. 1987. Flow through interstitium and other fibrous matrices.

should further be noted that this asymptotic result is independent of the Q. J. Exp. Physiol72:409—438.

3\/?2:22 Vj>|erllcizZsém”zwr?;tggutbri]suFs)h{kilao:i)r?wlCﬁlitreleetr\:gnceen:rglti?eo(f:aEs © Ley, K., and K.-E. Arfors. 1986. Segmental differences of microvascular
0 ’ plicity 9 y g- permeability for FITC-dextrans measured in the hamster cheek pouch.

79 are attractive and might be applicable to in vitro studies at significantly  \icrovasc. Res31:84-99.

reduced plasma ionic strength. Maroudas, A. 1975. Biophysical chemistry of cartilaginous tissues with

special reference to solute and fluid transpBrtrheology.12:233-248.
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