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ABSTRACT The role of ciliary geometry for transduction events was explored by numerical simulation. The changes in
intraciliary ion concentrations, suspected to occur during transduction, could thus be estimated. The case of a single excised
cilium, having a uniform distribution of membrane channels, voltage clamped to 280 mV, was especially investigated. The
axial profile of membrane voltage was that of a leaky cable. The Ca21 concentration profile tended to show a maximum in
proximal segments, due to a preponderance of Ca21 inflow over Ca21 export at those locations. The local increase in Ca21

concentration activated Cl2 channels. The resulting current caused a local drop in Cl2 concentration, especially at the tip of
the cilium and in distal segments, accompanied by a drop in ciliary K1 concentration. In consequence, the membrane Cl2

current was low in distal segments but stronger in proximal segments, where resupply was sufficient. The model predicts that
the Cl2 depletion will codetermine the time course of the receptor potential or current and the ciliary stimulus-response curve.
In conclusion, when modeling with transduction elements presently known to participate, the ciliary geometry has large
effects on ion distributions and transduction currents because ciliary ion transport is limited by axial electrodiffusion.

INTRODUCTION

Presently, there is increased interest in electrophysiological
events occurring in subcellular compartments like dendrites
and spines of neurons and transduction compartments like
cilia, outer segments, and stereocilia. The small size of these
membrane-bound structures (an olfactory cilium of the rat
has a volume in the order of 0.2 fL only) will allow for large
changes of ion concentrations in the interior. The resulting
diffusion gradients in the “cytosol” codetermine the ampli-
tude of the concentration changes. Despite the interest, only
a few studies have dealt with the diffusion events in sub-
cellular compartments in a quantitative and rigorous way
(Qian and Sejnowski, 1989; Lumpkin and Hudspeth, 1998;
Nygren and Halter, 1999). The present study takes the
olfactory cilia as an example, where the equations for mem-
brane transport and cytosolic diffusion of ions may be
combined into an electrodiffusional cable formalism.

Sensory cilia of olfactory receptor cells are long and
slender protrusions of the apical membrane. Their diameter
is between 0.1 and 0.2mm, and their length varies between
20 and 200mm across vertebrate species (Lidow and
Menco, 1984). This striking geometry is likely to be rele-
vant to the transduction process. Although the cilia and
similar structures have been scrutinized with respect to their
electrical cable properties (Kaissling, 1971; Pongracz et al.,
1991; Kleene et al., 1994; Larsson et al., 1997), the cable
formalism used therein has assumed constant intraciliary
concentrations. Thus, core ion gradients have been ignored.
Presently it is unknown, therefore, to what extent ciliary

volume and length may codetermine dynamic changes in
ciliary ion concentrations and, thereby, affect time course
and magnitude of the receptor currents.

To probe this question, software for simulation of olfac-
tory cilia was developed. It solves the partial differential
equations of simultaneous transport and diffusion of several
ionic species numerically in the steady state, based on
morphological and biophysical detail. Basic properties of
the ciliary diffusion system could thus be explored as a first
step toward a realistic simulation of olfactory transduction.

DESCRIPTION OF THE MODEL

The experimental paradigm adopted for the modeling was that of a single
voltage-clamped cilium responding to odorants. Single cilia can be excised
from the apical knob of receptor cells and their transient and steady state
responses investigated with patch clamp techniques (Kleene and Gesteland,
1991a,b; Kleene, 1993; Kleene et al., 1994). This approach is ideal for the
study of the olfactory transduction machinery.

Transduction

In olfactory cilia, odorant detection is initiated by heptahelical receptors,
which induce a rise in the second messenger cAMP (Fig. 1). Subsequently,
cyclic nucleotide-gated channels (cNg channels) open (Nakamura and
Gold, 1987). Ca21 and Na1 ions then flow into the filamentous intraciliary
space (Frings et al., 2000a). Ca21-activated chloride channels open and
inward chloride current now contributes substantially to the receptor cur-
rent (Kleene and Gesteland, 1991a; Kleene, 1993; Lowe and Gold, 1993;
Schild and Restrepo, 1998; Frings et al., 2000b).

Na1 ions are probably eliminated from the cilia by a Na1-K1 pump
(Kern et al., 1991; Menco et al., 1998), usually a low-capacity device
working in the background (e.g., Rasmusson et al., 1990). Ca21 ions are
eliminated from the cilia by a Na1-Ca21 exchanger of high capacity
(Reisert and Matthews, 1998). Furthermore, a Ca21 pump is likely to
eliminate Ca21 ions and thus contribute to the reconstitution of the resting
state (Lo et al., 1994). A model of olfactory cilia, therefore, has to account

Received for publication 18 October 2000 and in final form 11 January
2001.

Address reprint requests to Bernd Lindemann, Dept. of Physiology, Uni-
versität des Saarlandes, D-66421 Homburg, Germany. Tel.: 49-6841-
166464; Fax: 49-6841-166060; E-mail: phblin@med-rz.uni-sb.de.

© 2001 by the Biophysical Society

0006-3495/01/04/1712/10 $2.00

1712 Biophysical Journal Volume 80 April 2001 1712–1721



for the activity of ion channels, a Ca21 pump, a Na1 pump, and a
Na1-Ca21 exchanger in the plasma membrane and for ion diffusion gra-
dients in the core of the cilium.

The modeled cNg conductance (Fig. 1) allowed simultaneous inflow of
Ca21 and Na1 ions and outflow of K1 ions. The Ca21 fraction of this
current (see Fig. 4C) was typically set to.0.8 (Dzeja et al., 1999; Frings
et al., 2000a). The Ca21-activated Cl2 conductance was modeled with a
KM value for Ca21 of 4.8 mM and a Hill coefficient of 2 (Kleene and
Gesteland, 1991a). A uniform distribution of channels was assumed to
exist on the ciliary membrane (Lowe and Gold, 1991). Their fully activated
conductances were scaled to yield total currents of 20 to 80 pA flowing
through the basal cross-section of the cilium (e.g., Firestein and Werblin,
1989; Kleene and Gesteland, 1991b).

Concentrations and voltage

The base of the cilium was in contact with a comparatively large reservoir,
representing the cytosol of olfactory knob, dendrite, and soma, or the
quasi-intracellular solution facing the orifice of an excised cilium. The
reservoir had constant chloride (80 mM), potassium (140 mM), sodium (4
mM), and calcium concentrations (30 nM). The most critical of these
values, the chloride concentration, is based on recent measurements using
a fluorescent dye (Kaneko et al., 2000). Other measurements, utilizing
energy-dispersive X-ray microanalysis, yielded similar values, near 70 mM
(Reuter et al., 1998). Throughout reservoir and cilium, a uniform concen-
tration of immobile anions (64 mM) was assumed. The mucosal compart-
ment, in contact with the ciliary surface, had constant chloride (55 mM),
potassium (60 mM), sodium (60 mM), and calcium concentrations (3 mM).

The trans-ciliary voltage clamp potential (Vc) was set to280 mV,
reference being the uniform potential of the mucosal solution. Therefore,
the electrical potential at any point along the ciliary axis was equal to the
local membrane potentialVx, which was smaller thanVc whenever an axial
potential profile developed. Since the cilium is thin, radial gradients of
voltage and concentrations were considered negligible with respect to axial
gradients.

Geometry and space for free diffusion

Olfactory cilia in the rat have diameters of 0.2mm at the base and taper
toward the tip. Their mean outside diameter is near 0.1mm. With an
effective membrane thickness of 3 nm, the mean inner diameter is 0.094
mm. The length is 20 to 30mm in the rat, but 100 to 200mm in the frog
(Lidow and Menco, 1984). Thus, the ciliary volume of the rat will be 0.007
fL/mm length. This volume is in part occupied by a backbone of microtu-
bules (91 2 pattern in proximal segments but merely 2 microtubules in

medial and distal segments), leaving a free solution space or water-filled
volume (WFV) that must be smaller than the ciliary volume. The WFV
may be considered as an unstirred, filamentous continuum. Ions flowing
into this volume through membrane channels will rapidly increase their
local concentration. On the other hand, diffusion in the axial direction will
equilibrate the WFV of different segments of a cilium with each other and
with the bulk volume of the olfactory cell.

The volume fractiong available for free diffusion is not known with
precision but may be in the 30–60% range (see Lidow and Menco, 1984).
Therefore, the WFV of the model cilium was chosen, somewhat arbitrarily,
as 40% of the ciliary volume, i.e., 0.0028 fL/mm length. The segment
length used for spatial discretization wasDx # 1 mm (see Appendix). The
effective cross-sectional area available for diffusion wasAD 5 0.0028
mm2. For the WFV, diffusion coefficients for diffusion in water were used
(e.g., Hille, 1992).

A constant radiusr, that close to the base of the cilium, was used,
ignoring the taper, thereby slightly underestimating concentration profiles.
By varying r (Fig. 2), it was found that the general shape of profiles was
robust and not critically dependent on particular values ofr.

Transmembrane currents

For modeling, the cilium was treated as a cable of radiusr and lengthL,
delimited by a plasma membrane and filled with electrolyte. The radius
being small, the membrane potentialV and also the four internal ion
concentrationsck varied with positionx on the cable axis, if current flowed
across the membrane. Thus, five variables changed with location: the
electrical potentialVx and the four concentrationscNa,x, cK,x, cCa,x and
cCl,x.

At the membrane, the current for ion speciesk depended on the local
membrane potential and the local ion concentration. For this dependence
the Goldman-Hodgkin-Katz (GHK) relationship was chosen for simplicity
(Hille, 1992).

Ik,x
chan5 PkVx~zkF!2/RTz

ck,x 2 ck,ojx

1 2 jx
@A/cm2# (1)

in whichck,o is the constant concentration of speciesk in the outer medium,
Pk the permeability andjx 5 exp(2VxzkF/RT). R, T, z, andF have their
usual meaning. Eq. 1 was used to model current through cNg channels and
through Cl2 channels. When needed, alternatives for the GHK relationship
can easily be substituted. Capacitive currents, of course, are absent in the
steady state (dVx/dt 5 0).

Ca21 activation of the chloride conductance was formulated according
to Kleene and Gesteland (1991a) as

PCl,x 5 PCl
max z S cCa,x

cCa,x1 KM,Ca
DH

, (2)

in which H, the Hill coefficient, was set to 2, and 2mM was used forKM,Ca,
yielding aK1/2 of 4.8 mM.

The Ca21 dependence of active Ca21 transport (Rasmusson et al., 1990)
may be described by

Ix
Ca-pump5 Imax

Ca-pumpz
cCa,x

cCa,x1 KM,p
, (3)

where Ix
Ca-pump is the outward current generated by the Ca21 pump at

location x. The effect of membrane voltage on the pump current is ne-
glected in this relationship, restricting the use of Eq. 3 to moderate changes
of Vx.

FIGURE 1 Scheme of principal transduction elements in olfactory cilia.
The mean ciliary diameter is 0.1mm in the rat and 0.2mm in the frog. Not
represented are the Na1-K1 pump and the Ca21 pump.
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The outward current generated by the Na1-K1 pump (sodium pump)
was modeled according to Rasmusson et al. (1990):

Ix
Na-pump5 p1 z S cNa,x

cNa,x 1 KNa
D3

z S cK,x

cK,x 1 KK
D2

z SVx 1 kV1

Vx 1 kV2
D

(4)

in which p1 is a scaling constant,KNa 5 5.46 mM,KK 5 0.6 mM, kV1 5
150 mV, andkV2 5 200 mV. The contributions of the pump current to Na1

and K1 transport wereINa,x
Na-pump5 3 z Ix

Na-pumpandIK,x
Na-pump5 22 z Ix

Na-pump.
The current carried by a Na1-Ca21 exchanger has a complex depen-

dence on Na1 and Ca21 concentrations and membrane voltage (Mullins,
1977). At intermediate complexity (DiFrancesco and Noble, 1985) and for
a Na1/Ca21 transport ratior the relationship is given by

Ix
ex 5 k1

~cNa,x
r z cCa,o/jx! 2 ~cNa,o

r z cCa,x z jx!

1 1 k2 z ~cNa,x
r z cCa,o1 cNa,o

r z cCa,x!
(5)

in which k1 is a scaling constant andjx 5 exp(20.5 Vx(r 2 2)F/RT). k2 is
an affinity constant which is, in first approximation, inversely related to the
half-saturation value forcCa,x: K0.5

Ca 5 (k2 z cNa,o
r )21. With r 5 3, the value

of k2 was chosen to give a half-saturation value of 4.6mM, making the
exchanger a high-threshold transporter. The contributions of the exchange
current to Na1 and Ca21 transport wereINa,x

ex 5 3 z Ix
ex andICa,x

ex 5 22 z Ix
ex.

The steady state electrodiffusional
cable equation

Axial electrodiffusion in the steady state generates a one-dimensional,
coaxial currentJk,x for ion speciesk through the cable cross-sectionAD 5

gr2p, whereg defines the volume fraction available for the WFV. This
current is for locationx on the cable given by the Nernst Planck equation,
a relationship which additively combines Fick’s and Ohm’s law:

Jk,x 5 ak

dck,x

dx
1 bkck,x

dVx

dx
@A# (6)

in which

ak 5 zkF z Dk z AD Fcoul

mole
z
cm4

s G
bk 5 ak z zkF/RT, Fcoul

mole
z

cm4

szmVG
whereDk is the diffusion coefficient in water andAD the area available for
diffusion.Vx andRT/F are conveniently expressed in mV. The signs in Eq.
6 account for the fact that outward membrane current and, therefore, axial
current from base to tip are defined as positive, whereasx increases from
tip to base.

In the steady state (eachdck,x/dt 5 0), not only the total current but also
the partial currents are preserved by a continuity relationship for anyone
locationx:

dJk,x

dx
5 2rp z ~Ik,x

chan1 Ik,x
pump1 Ik,x

ex ! F A

cmG (7)

FIGURE 2 (A) The ciliary potential profile along the axial dimension (V(x)) during flow of transduction current. The tip of the cilium is on the left, the
base on the right. Ciliary diameter was progressively doubled beginning with 0.1mm, as indicated. The vertical distance between abscissa and curve
represents the membrane potentialVj of a segment, and the vertical distance between curve andVc 5 280 mV represents the electrodiffusional potential
between the segment and the base of the cilium. Note that the constant factorsak andbk in Eq. 6 contain the productDkgr2. Therefore, the increase inr
shown in the figure may be rescaled to an increase in eitherDk or g. Although, strictly speaking, a space constant is not defined for a cable with core
electrodiffusion (see Appendix), the approximate electrotonic length wasl ' 8 mm for the uppermost curve of this set. (B) Partial currents flowing through
the basal cross-section as a function of ciliary diameter. The partial basal currents were computed by integrating partial membrane currents along the axial
dimension. Cl2, chloride current; cNg, current through cNg channels (essentially Ca21 current). The dependence of currents on diameter shows that axial
electrodiffusion was rate-limiting, especially at small diameters.
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Therefore, differentiating Eq. 6 and combining it with the equations for
membrane currents yields:

aNa

d2cNa,x

dx2 1 bNa

dcNa,x

dx
z
dVx

dx
1 bNacNa,x z

d2Vx

dx2

2 2rp z ~INa,x
chan 1 INa,x

ex 1 INa,x
Na-pump! 5 0 (7a)

aK

d2cK,x

dx2 1 bK

dcK,x

dx
z
dVx

dx
1 bKcK,x z

d2Vx

dx2

2 2rp z ~IK,x
chan1 IK,x

Na-pump! 5 0 (7b)

aCa

d2cCa,x

dx2 1 bCa

dcCa,x

dx
z
dVx

dx
1 bCacCa,x z

d2Vx

dx2

2 2rp z ~ICa,x
chan1 ICa,x

Ca-pump1 ICa,x
ex ! 5 0 (7c)

aCl

d2cCl,x

dx2 1 bCl

dcCl,x

dx
z
dVx

dx
1 bClcCl,x z

d2Vx

dx2

2 2rp z ~ICl,x
chan! 5 0 (7d)

We have thus obtained a set of four ordinary, nonlinear, second order
differential equations, which represent the steady state cable formalism for
the case of ion concentration gradients within the cable. In addition, the
condition for bulk electroneutrality (Finkelstein and Mauro, 1977) is to be
included:

cNa,x 1 cK,x 1 2cCa,x2 cCl,x 2 cA 5 0, (7e)

in which cA (concentration of immobile anions) is a constant. With Eq. 7e,
we have five equations and five unknowns.

The boundary conditions for a cable of lengthL, closed at the tip (x 5
0) but open at the base, are

At x 5 0
dVx

dx
5 0

dck,x

dx
5 0

At x 5 L VL 5 Vc ck,L 5 ck,c,

in which Vc andck,c are constants.
The relationship between the electrodiffusional cable formalism (Eq. 7)

and the classical cable equation is discussed in the Appendix. Segmenta-
tion, discretization strategies, and numerical procedures are also detailed in
the Appendix.

RESULTS

Voltage profile

With transduction currents switched on, membrane voltage
varied considerably along the ciliary axis, as shown in Fig.
2 A. The Vx profile was steeper toward the base of the
cilium, where the axial current became larger (see below),
as expected for a leaky cable closed at one end and open at
the other. However, unlike that of a classical cable, the
voltage profile contained axial diffusion potentials associ-
ated with concentration gradients. Their values were calcu-
lated by adding the Nernst-Planck equation (the discretized
form of Eq. 6 was used) for all ion speciesk, setting for a
given x the sum ofJk,x to zero and solving forDVx. The

resultDVx
J50 was the instantaneous value of the local axial

potential, observed when all membrane transport was sud-
denly halted, causing the net axial current to vanish.

When using 30 segments,DVx
J50 was usually less than 1

mV per segment (Figs. 3D and 4D). It should be noted that
the diffusion gradients in the cilium are mainly those of K1

and Cl2, ions of similar diffusion coefficients. This explains
the comparatively small values ofDVx

J50 in this special
situation.DVx

J50 changed sign when followed along the axis
(Figs. 3D and 4D). This was due to the additional diffusion
gradients of Ca21 ions in proximal segments (see below).

The profiles of membrane voltage for the ciliary diame-
ters of 0.1 and 0.2mm (Fig. 2A) show that the space clamp
must be quite poor in voltage clamp experiments with
excised cilia of rat and frog (see also Larsson et al., 1997).
When the ciliary diameter was increased, keeping the value
of the membrane conductances constant, theVx profiles
flattened. At the same time, the currents flowing through the
base of the cilium increased (Fig. 2B). The increase was
due to the change in membrane voltage and ciliary ion
concentrations, which resulted from the enlargement of the
diffusional cross-section. It showed that most of the ciliary
ion transport was limited by axial electrodiffusion.

Concentration profiles

Consequences of chloride outflow

It is a basic feature of ciliary ion transport that Ca21-
activated, anion-conducting channels allow flow of inward
current. As this current direction means outward movement
of Cl2 ions, depletion of Cl2 ions had to occur in the model
cilium. The ion depletion was only partially compensated
by coaxial, electrodiffusional resupply of chloride ions from
the base of the cilium and was strongest at the tip and in
distal segments, where diffusional replenishment was more
difficult (Figs. 3A and 4A). A parallel depletion of K1 ions
occurred in addition, driven by the requirement for electro-
neutrality. The membrane current carried by Cl2 ions was
not uniform but, due to the profile of Cl2 concentration,
maximal in proximal segments (Figs. 3C and 4C). Yet, as
the cilium was voltage clamped toVc 5 280 mV, the
driving force for movement of chloride ions continued to be
outward even in distal segments (driving inward current),
despite the changes in the local membrane potentialVx and
Nernst potentialECl,x.

Ca21 inflow, Ca21 flooding

In the absence of Ca21 export, the ciliary Ca21 concentra-
tion rose to millimolar values. This was a consequence of
the fact that Ca21 was the major carrier of current in the
cNg-channels and that this current was directed into the
small WFV of the cilia. A rough calculation may serve to
illustrate this. When the cNg channels open at the onset of
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transduction and pass the inward currentiCa
chan[A], the initial

change ofcCa with time is given by

dcCa

dt
5

2iCa
chan

2F z WFV
(8)

This amounts to 60 mM/s/pA, suggesting a rapid rise to high
values. The more detailed steady state calculation is pro-
vided by the numerical simulations. The Ca21 flooding of
the WFV demonstrated the necessity for Ca21 export
through the ciliary membrane, since diffusion in the axial
dimension obviously did not suffice to keep thecCalow, and
buffering cannot cope with these large amounts of Ca21

ions. Moreover, it was impossible to include Ca21 buffers
because their contribution cancelled out in the steady state
ciliary system.

Ca21 export

By activating the Ca21 pump, the ciliary Ca21 concentra-
tion could be lowered. However, despite a uniform distri-
bution of channels and pumps, the resulting Ca21 profile
was not uniform: in proximal segments a pronounced Ca21

peak was found (Fig. 3B). It was due to the fact that the

Ca21 inward current changed with voltage (Eq. 1). This
current was, therefore, stronger in proximal segments,
whereas current through the Ca21 pump (Eq. 3) changed
much less across segments. These two currents are com-
pared in Fig. 3C. The voltage effects described here are
effects of driving force and are not due to voltage-gating.

Active Ca21 transport is usually a background mecha-
nism of high affinity and low capacity (DiPolo and Beauge´,
1983). It is unlikely that this mechanism carries the main
load of rapid Ca21 export in the cilia, especially since it
would not explain that a decrease in mucosal Na1 concen-
tration causes prolongation of the transduction current. This
observation has suggested a Na1-dependent Ca21 extrusion
by means of Na1-Ca21 exchange (Reisert and Matthews,
1998).

Implementation of a Na1-Ca21 exchanger into the model
showed that this device was unable to decrease the ciliary
Ca21 concentration to values below 6 mM. The reason was
the increase in ciliary Na1 concentration effected by the
exchange, removing the Na1 gradient required for outward
movement of Ca21 ions. Therefore, a Na1-K1 pump was
implemented parallel to the Na1-Ca21 exchanger. This de-
vice kept the ciliary Na1 concentration small and allowed

FIGURE 3 Axial profiles of concentrations, currents and voltages. In this simulation, Ca21 extrusion was exclusively due to the Ca21 pump. The ciliary
diameter was 0.2mm. (A) Profiles of Cl2 and K1 concentrations. The depletion of both ions in distal segments is obvious. (B) Profiles of Na1 and Ca21

concentrations. In the distal segments, the Ca21 concentration was lower than 7mM. (C) Profiles of membrane currents through chloride channels (labeled
Cl2, scale on the right) and cyclic nucleotide-gated channels (cNg). The Ca21 component of the cNg-current is labeled Ca21. The outward current through
the Ca21-pump is shown above (CaP). (D) Voltage profiles.DVx is the change of the electrodiffusional voltage per segment,DVx

J50 its non-ohmic
component. Currents leaving the cilium through the basal cross-section were as follows (in pA): cNg,237.8; Ca21 component,235.8; Ca21 pump, 35.1;
Cl2 current,247.5.
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the exchanger to decrease the ciliary Ca21 concentration to
values below 100mM in distal segments (Fig. 4B). In
proximal segments, however, the axial Ca21 profile retained
a peak, which was due to a difference in the voltage depen-
dence of import and export processes, as shown in Fig. 4C.

DISCUSSION

Significance of steady state modeling

Olfactory cilia have been extensively investigated in the
steady state. Furthermore, even the transient responses, re-
corded after application of olfactory stimuli, have long
durations on the order of seconds, suggesting that steady
state conditions might be approached. Therefore, the mod-
eling of ciliary ion dynamics in the steady state is of interest.
Moreover, it provides the foundation for future modeling of
transient responses.

Voltage profile

The voltage profile, which had the general shape expected
from a leaky cable with only one open end, was pronounced
with ciliary diameters of 0.1mm (rat) or 0.2mm (frog) and
transduction currents on the order of 50 pA. Therefore, the
space clamp must be quite poor in voltage clamp experi-
ments with excised cilia of rat and frog, as previously noted
by Larsson et al. (1997).

Chloride currents

Due to outward flow of chloride ions, these ions were
depleted especially in distal segments, where diffusional
resupply from the base was most difficult. For reasons of
electroneutrality, this change was accompanied by a deple-
tion of K1 ions. The K1 ions were lost by diffusion in the
axial direction. In consequence of the Cl2 depletion, the

FIGURE 4 Axial profiles of concentrations, currents, and voltages. In this simulation, Ca21 extrusion was mainly due to the Na1-Ca21 exchanger, which
was paralleled by a Na1-K1 pump. The ciliary diameter was 0.2mm. (A) Profiles of Cl2 and K1 concentrations. Note that the distal K1 concentration
was higher than in Fig. 3A by 20 mM, due to the action of the Na1-K1 pump. The Cl2 concentration was also higher for reasons of electroneutrality. (B)
Profiles of Na1 and Ca21 concentrations. Note that the proximal Ca21 peak was less steep than in Fig. 3B, due to the voltage dependence of the Na1-Ca21

exchange. (C) Profiles of membrane currents through chloride channels (labeled Cl2, scale on the right), cyclic nucleotide-gated channels (cNg) and the
Na1-Ca21 exchanger (Ex). The Ca21 component of the exchange is shown, to ease comparison with the Ca21 component of the cNg current (labeled Ca21).
NaP, Na1-K1 pump; CaP, Ca21 pump. (D) Voltage profiles.DVx is the change of the electrodiffusional voltage per segment,DVx

J50 its non-ohmic
component. Currents leaving the cilium through the basal cross-section were as follows (in pA): cNg,227.2; Ca21 component,225.7; Na1-Ca21

exchanger,212.1; Ca21 component, 24.2; Na1-K1 pump 10.3; Ca21 pump, 1.4; Cl2 current,253.6.
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chloride current through the ciliary membrane was not
uniform but increased towards the base of the cilium. The
maximum was found in those proximal segments where the
ciliary Cl2 concentration driving this current was high
enough and the Ca21 concentration activating this current
was also high enough. The Cl2 depletion is likely to code-
termine the time course of the receptor potential or current.

The present model used five transport elements, all of
which are known to occur in olfactory cilia. Other, undis-
covered elements may also contribute. For instance, a strong
cation-chloride cotransport, as known from other neurons
(Ehrlich et al., 1999), might serve for Cl2 accumulation and
thus limit the development of Cl2 profiles. However, there
is presently no experimental basis for inclusion of this
transporter into a ciliary model. Of foremost interest, there-
fore, is the future measurement of ciliary chloride concen-
trations, both in the resting state and during stimulation.

Ca21 profile

Due to the small ciliary volume and the large Ca21 fraction
of the transduction current, the steady state Ca21 concen-
tration exceeded 20 millimolar when the membrane trans-
port of Ca21 ions was limited to channels andVc clamped to
280 mV. To check this Ca21 flooding, the steady state
model used transporters like the Na1-Ca21 exchanger to
provide for Ca21 export.

The axial voltage profile affected Ca21 inflow and Ca21

export differently. The Ca21 inflow through cNg channels
varied strongly with membrane voltage, the ionic charge
moved being12 per ion. Therefore, the inflow followed the
Vx profile: small in distal segments but rising toward the
base of the cilium. In contrast, the voltage effect on Ca21

export through the Na1-Ca21 exchanger was smaller. With
a Na1/Ca21 coupling ratio of 3, the charge governing this
dependence was11. Export through the Na1-Ca21 ex-
changer was, in addition, affected by the Na1 profile. The
result was an outward current that increased toward the base
of the cilium, but slightly less than the Ca21 inward current
mediated by channels.

In consequence, Ca21 inflow exceeded export at all lo-
cations, the difference being maximal in proximal segments.
In conjunction with Ca21 diffusion towards the base, these
relationships caused a Ca21 profile having a maximum in
proximal segments. The two determinants of the Ca21 ac-
cumulation in proximal segments, an axial voltage profile
and a difference in voltage dependence between Ca21 im-
port and export processes, probably are common constella-
tions in the leaky cables associated with neurons.

The Na1-Ca21 exchanger can eliminate ciliary Ca21 only
by increasing ciliary Na1. It turned out that the increasing
Na1 concentration stopped the elimination process such that
values below 6 mM of ciliary Ca21 concentration could not
be attained. However, this limit was substantially lowered
when the Na1-K1 pump was incorporated into the model.

The pump kept the ciliary Na1 concentration low and
permitted the exchanger to decrease the ciliary Ca21 con-
centration to,100 mM in distal segments. In proximal
segments, however, larger Ca21 concentrations persisted for
the reasons detailed above. These observations suggest that
the Na1-Ca21 exchange is accompanied by active Na1

transport of comparable capacity in the ciliary membrane. A
sodium pump located in the membranes of knob and den-
drite is not sufficient. The presence of a sodium pump on the
cilia was previously indicated by immunohistochemistry
(Kern et al., 1991; Menco et al., 1998).

It is interesting that recent measurements of the ciliary
Ca21 concentration with fluorescence techniques consis-
tently showed low values, below 300 nM, during transduc-
tion (Leinders-Zufall et al., 1997, 1998b,a). These low con-
centrations, which are not sufficient to activate the Ca21-
dependent Cl2 currents (Kleene and Gesteland, 1991a), are
rather unexpected in view of the strong Ca21 inward cur-
rents mediated by the cNg channels (Dzeja et al., 1999;
Frings et al., 2000a). Which mechanisms may limit the
expected Ca21 flooding?

Escape toward the dendrite by axial electrodiffusion does
contribute. However, according to the present simulations
this process is not rapid enough to keep the Ca21 concen-
tration low.

Uptake by vesicular Ca21 stores is unlikely, because
membrane-bound compartments are seldom found or absent
within the cilia (Arstila and Wersa¨ll, 1967; Menco, 1984;
Lidow and Menco, 1984; Menco, 1997) and Ca21 release
from intraciliary stores could not be demonstrated
(Leinders-Zufall et al., 1998b; Zufall et al., 2000).

Ca21 binding proteins, like calmodulin (e.g., Chen and
Yau, 1994; Kleene, 1994), are present in the cilia and will
act as buffers. However, protein-Ca21 buffers with concen-
trations in the lower mM range will hardly cope with an
increase in Ca21 concentration of 60 mM/s/pA (Eq. 8).

Export by a Ca21 pump and by the Na1-Ca21 exchanger
may limit the expected Ca21 flooding. The pump is usually
a low-capacity background device which cannot eliminate
Ca21 rapidly (DiPolo and Beauge´, 1983; Rasmusson et al.,
1990). In contrast, the exchanger appears to be of high
capacity (Reisert and Matthews, 1998). Most likely, a high-
capacity Na1-Ca21 exchanger, serving for Ca21 export
during recovery, may also have a role in the transduction
phase preceding recovery. However, as shown above, the
exchanger must be accompanied by a sodium pump.

Distribution of transport elements

The transport elements were distributed uniformly in the
model. Although this seemed justified by electrophysiology
(Lowe and Gold, 1991), morphological considerations and
localization of G-protein and adenylate cyclase suggested
that transduction occurs mainly in distal segments, which
are closer to the air/mucus interface (Menco et al., 1992;
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Menco, 1994). Moreover, immunohistochemistry has
shown one subunit of the cNg channel labeled more
strongly in distal segments (Matsuzaki et al., 1999). This
emphasis on distal segments, however, might aggravate
rather than relieve the diffusion limitation.

Ca21 measurements with a fluorescent dye indicated uni-
form changes along the ciliary axis in response to 8-Br-
cGMP, blockers of cyclic nucleotide breakdown (IBMX), or
the cNg channel blocker (LY83583), all agents that act
downstream of receptors (Leinders-Zufall et al., 1997).
However, upon stimulating with odorants a more granular
axial distribution (hot spots) was seen, which may be due to
a heterogeneous distribution of receptors (Leinders-Zufall et
al., 1998a). A nonuniform distribution of dye or cNg chan-
nels seems less likely in view of the earlier results with
8-Br-cGMP. A clustering of transduction elements in hot
spots will not, of course, resolve the overall diffusion lim-
itation of ciliary transport.

Conclusions

In summary, the ion transport system of olfactory cilia was
successfully modeled as an electrodiffusional cable. In sim-
ulations using this formalism, the ciliary geometry had large
effects on ion distributions and transduction currents. A
consistent feature found was the Cl2 and K1 depletion in
distal segments. Because realistic values had been used for
ciliary length and diameter, the depletion shows that ciliary
ion transport is limited by axial electrodiffusion. However,
the simulations included only those ion transporters that are
known to exist on the cilia. Additional, unidentified trans-
porters might also be present, possibly counteracting the
development of large concentration changes within the cilia.

APPENDIX

Relationship to classical cable equation

A space constant is not defined for a cable with core electrodiffusion (Eq.
7, a–e), but can be derived for the limiting case of constant concentrations
(each dck/dx 5 0). To show this without difficulty, we shall for the
membrane currents adopt a linear current voltage relationship:

Ik,x 5 gk z ~Vx 2 Ek! @A/cm2# (A1)

in which gk is the conductance V/cm2 and

Ek 5
RT

zkF
z lnSck,o

ck
D @mV# (A2)

the reversal potential, which does not change with location since concen-
trations are constant. By adding Eqs. 7a–d, one then obtains

d2Vx

dx2 5 2rp z
Ok ~gk z ~Vx 2 Ek!!

Ok ~bk z ck!
.

Since the reversal potentialVr of the membrane is a weighted mean of all
Nernst potentialsEk:

O
k

~gk z Ek! 5 VrO
k

gk ,

one finds by insertion

d2Vx

dx2 5
Vx 2 Vr

l2 , (A3)

in which the space constantl is given by

~l!2 5
Ok bkck

2rp z Ok gk
. @cm2# (A3a)

Eq. A3 is equivalent to the classical steady state cable equation (Rall,
1977), but modified to account for the effect of a reversal potential and by
using the Ohmic term of the Nernst-Planck equation to describe coaxial
current flow. The general solution is

Vx 5 A1exp~x/l! 1 A2exp~2x/l! (A3b)

With the boundary conditions for a sealed end of the cable atx 5 0
(dV0/dx 5 0) and an open and voltage-clamped end atx 5 L(VL 5 Vc), we
arrive at

Vx 5 ~Vc 2 Vr! z
exp~x/l! 1 exp~2x/l!

exp~L/l! 1 exp~2L/l!
1 Vr (A3c)

Discretization and numerical procedures

To obtain numerical solutions for the boundary value problem of Eq. 7, we
perform discretization in space by dividing the cable inton segments
(index j). The segment lengthDx must be much smaller than the space
constantl, which is given approximately by Eq. A3a. Values ofDx # 1
mm were used. Substitution with

d2Vx

dx2 5
1

Dx2 z ~Vj11 2 2 z Vj 1 Vj21!,

dVx

dx
5

1

2Dx
z ~Vj11 2 Vj21!, Vx 5 Vj ,

d2ck,x

dx2 5
1

Dx2 z ~ck,j11 2 2 z ck,j 1 ck,j21!,

dck,x

dx
5

1

2Dx
z ~ck,j11 2 ck,j21!, ck,x 5 ck,j ,

yields for ion speciesk

ak

Dx2 z ~ck,j11 2 2 z ck,j 1 ck,j21!

1
bk

4Dx2 z ~ck,j11 2 ck,j21! z ~Vj11 2 Vj21!

1
bk z ck,j

Dx2 z ~Vj11 2 2 z Vj 1 Vj21!

2 2rp z ~Ik,j
chan1 Ik,j

pump1 Ik,j
ex! 5 0. (A4)
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Corresponding equations were formulated for Na1, K1, Ca21, and Cl2.
For j 5 1 and j 5 n the appropriate boundary values were inserted. For
Ik,j
chan(Vj) current-voltage relationships other than the GHK relationship may

be substituted. Furthermore, the sum of membrane currents may be sup-
plemented by suitable expressions for currents through yet other membrane
transporters.

The set of 5n algebraic, nonlinear equations (Eq. A4 applied to Na1,
K1, Ca21, and Cl2, plus Eq. 7e) had to be solved for the 5n unknowns, i.e.,
Vj and the concentrationscNa,j, cK,j, cCa,j, andcCl,j. Solutions were obtained
iteratively with the Newton-Raphson procedure (Press et al., 1990; Sprott,
1991). Fig. 5 gives a graphical representation of the Jacobian matrix used.

The software written for this application was structured in modules,
such that solutions could be obtained for axial electrodiffusion only and for
combinations of electrodiffusion with ion transport through channels, Ca21

pumping, Na1-K1 pumping, and Na1-Ca21 exchange. Furthermore, the
Ca21 activation of the Cl2 conductance could be enabled and/or disabled.
The modular design proved helpful when stability problems arose (see
below).

The Newton-Raphson procedure worked efficiently as long as axial
electrodiffusion was combined with transport through channels only. In
this case the number of iterations required was less than ten. However,
when Ca21 pump and/or Na1-Ca21 exchanger were added, many more
iterations were needed, and often a solution could not be obtained. This
was expected because the procedure is very sensitive to the initial values
supplied, especially when highly nonlinear kinetics, like those for the
Na1-Ca21 exchanger, are involved.

A way around this problem was to obtain a solution with one critical
parameter, for instance the scaling constantk1 of the exchanger (Eq. 5), set
to a low value. This solution was then used as the initial condition of the
next run, for which the critical parameter was slightly increased. Variable
step size strategies were implemented to avoid steps too large or too small.
Thereby, step size was adjusted such that a run took two iterations only.
This strategy of migrating initial conditions proved tenable, even though in
some cases a series of many runs was required to obtain a solution showing
low Ca21 concentrations in the cilium.

Solutions were obtained in terms of axial profiles of voltage and
concentrations. Based on these, membrane currents and axial currents were
computed using the appropriate flow-driving force relationships. Partial
currents through the base of the cilium were obtained by integrating the
corresponding membrane currents along the axial dimension.
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