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ABSTRACT The effect of peptides, corresponding to sequences in the skeletal muscle dihydropyridine receptor II-III loop,
on Ca21 release from sarcoplasmic reticulum (SR) and on ryanodine receptor (RyR) calcium release channels have been
compared in preparations from normal and malignant hyperthermia (MH)-susceptible pigs. Peptide A (Thr671-Leu690; 36 mM)
enhanced the rate of Ca21 release from normal SR (SRN) and from SR of MH-susceptible muscle (SRMH) by 10 6 3.2
nmole/mg/min and 76 6 9.7 nmole/mg/min, respectively. Ca 21 release from SRN or SRMH was not increased by control
peptide NB (Gly689-Lys708). AS (scrambled A sequence; 36 mM) did not alter Ca 21 release from SRN, but increased release
from SRMH by 29 6 4.9 nmoles/mg/min. RyR channels from MH-susceptible muscle (RyRMH) were up to about fourfold more
strongly activated by peptide A ($1 nM) than normal RyR channels (RyRN) at 240 mV. Neither NB or AS activated RyRN.
RyRMH showed an ;1.8-fold increase in mean current with 30 mM AS. Inhibition at 140 mV was stronger in RyRMH and seen
with peptide A ($0.6 mM) and AS ($0.6 mM), but not NB. These results show that the Arg615Cys substitution in RyRMH has
multiple effects on RyRs. We speculate that enhanced DHPR activation of RyRs may contribute to increased Ca21 release
from SR in MH-susceptible muscle.

INTRODUCTION

Contraction of striated muscle depends on Ca21 release
from the terminal cisternae (TC) of sarcoplasmic reticulum
(SR) through ryanodine receptor (RyR) calcium release
channels. During excitation-contraction coupling (EC cou-
pling) in skeletal muscle, an L-type Ca21 channel (dihydro-
pyridine receptor, DHPR) senses T-tubule depolarization
and transmits an activating signal to the RyR. The signal is
transmitted via a protein-protein interaction which requires
the loop between the second and third repeats of the skeletal
DHPRa1 subunit (II-III loop, Tanabe et al., 1990). A region
important for binding of the II-III loop is located on the
skeletal RyR between Arg1076 and Asp1112 (Leong and
Maclennan, 1998). Functional interactions between the
skeletal DHPR II-III loop and skeletal RyRs have been
described. For example, the II-III loop increases [3H]ryano-
dine binding to SR vesicles, and activates purified RyR
channels in lipid bilayers (Lu et al., 1994, 1995). A short
peptide, corresponding to Thr671-Leu690 of the skeletal
DHPR II-III loop (peptide A), activates Ca21 release from
SR, (El-Hayek et al., 1995; El-Hayek and Ikemoto, 1998;
Dulhunty et al., 1999). At240 mV, peptide A ($10 nM)
activates rabbit skeletal RyRs, but at140 mV, peptide A
($1 mM) inhibits channels because the positively charged
peptide blocks the channel pore (Dulhunty et al., 1999). A
different II-III loop peptide, peptide C (724–760) inhibits

activation of Ca21 release from SR by peptide A (El-Hayek
et al., 1995; El-Hayek and Ikemoto, 1998).

Because of the ability of the skeletal II-III loop and
peptide A to activate RyRs, it has been suggested that
binding of the A region of the DHPR to the RyR is a step in
EC coupling (El-Hayek et al., 1995; El-Hayek and Ikemoto,
1998). Although the A region peptide is undeniably a high
affinity activator of the RyR, its precise role in EC coupling
remains to be determined. Skeletal EC coupling occurs
when the A region contains either a skeletal, cardiac, or
scrambled sequence; skeletal EC coupling cannot proceed
unless the II-III loop contains a skeletal sequence between
residues 725 and 742 (Nakai et al., 1998; Proenza et al.,
2000), which is encompassed in peptide C. Curiously, the
cardiac DHPR II-III loop also increases the activity of
skeletal RyRs (Lu et al., 1994, 1995). Therefore, perhaps
not surprisingly, binding of the II-III loop, or the 20-amino
acid peptide A, has less rigid isoform specificity than the
full EC coupling process. The experiments with dysgenic
myocytes (Nakai et al., 1998; Proenza et al., 2000) do not
give quantitative or kinetic information about EC coupling.
It is possible that signal transmission during normal skeletal
EC coupling occurs through both the A and C regions, but
that some Ca21 release from the SR can be induced via the
C region alone. The functional properties of the A peptide
continue to be investigated (i) because it is a high affinity
specific activator of the RyR and thus useful for probing
RyR function and (ii) because the A region may play a role
in EC coupling.

The skeletal RyR is altered in a potentially lethal manner
by approximately half of the mutations that lead to suscep-
tibility to malignant hyperthermia (MH; Loke and Maclen-
nan, 1998; Jurkat-Rott et al., 2000). In humans, 22 MH
mutations have been identified at 20 different amino acid
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residues in the RyR and two MH mutations at one residue in
the DHPR (Jurkat-Rott et al., 2000). A single amino acid
substitution of Arg614 to Cys is responsible in 4% of MH-
susceptible humans, and the same substitution at residue
615 of the RyR is found in all MH-susceptible pigs. Fifteen
MH-linked RyR mutations are associated with an increased
sensitivity to caffeine-induced Ca21 release when recom-
binant DNA for the mutant RyRs was expressed in heter-
ologous systems (Tong et al., 1997). Only two identified
mutants have been studied in detail in muscle cells and/or
muscle-derived preparations: arg615cys in pigs and
gly2434arg in humans. A comparison of these mutants dem-
onstrated remarkable similarities in RyR abnormalities, in-
cluding enhanced sensitivity to both caffeine and calcium
(Richter et al., 1997). Porcine MH SR vesicles are charac-
terized by a greater than normal rate of Ca21-induced Ca21

release (Kim et al., 1984); MH RyR channels have reduced
inhibition by millimolar concentrations of Ca21 (Fill et al.,
1991; Shomer et al., 1993) or Mg21 (Laver et al., 1997).
Both of these abnormalities would presumably lead to en-
hanced Ca21 release from SR during EC coupling (Ohta et
al., 1989) and increased force production (Gallant et al.,
1980) in MH muscles. Whether or not resting cytoplasmic
[Ca21] is increased in MH muscles remains controversial
(Mickelson and Louis, 1996), and resting [Ca21] is not
elevated when RyRs with MH mutations are expressed in
heterologous systems (Otsu et al., 1994; Tong et al., 1997,
1999). Such an elevation could indicate greater than normal
Ca21 leak from the SR of MH-susceptible muscles.

It has been suggested that reduced Mg21 inhibition could
be responsible for a higher resting cytoplasmic [Ca21] and
enhanced EC coupling in muscle from MH-susceptible pigs
(Laver et al., 1997). It is thought that RyRs are chronically
inhibited by Mg21 under resting conditions, and EC cou-
pling proceeds after a decrease in the affinity of RyRs for
Mg21 (Lamb and Stephenson, 1991). Although the reduced
Mg21 inhibition explains many of the effects of the
Arg615Cys substitution on EC coupling, other aspects of
RyRMH activity relevant to EC coupling have not been
examined. Therefore, we have compared the effects of
peptide A on the activity of normal RyRs and on RyRs from
MH-susceptible pig muscle.

We find that peptide A activation of Ca21 release from
SR of MH-susceptible pigs is eightfold greater than that
from SR of normal pigs. The enhancement of single RyR
channel activity, at240 mV, by peptide A is also two- to
fourfold greater in RyRMH as compared to RyRN. This
activation is specific for the native sequence of peptide A.
Activation is not seen with peptide NB, corresponding to a
sequence in a different region of the skeletal II-III loop,
whereas lesser activation is seen with a scrambled sequence
of the peptide (peptide AS). Inhibition of RyR channels at
140 mV by peptide A and peptide AS is also enhanced in
RyRMH. The results show that the point mutation in MH can
have multiple effects on RyR activity. It is possible that

stronger binding of the peptide A region of the DHPR to the
RyRMH may contribute to greater Ca21 release from the SR
during EC coupling in MH-susceptible muscle.

METHODS

Materials

Chemicals and biochemicals were from Sigma-Aldrich (Castle Hill, Aus-
tralia). DHPR II-III loop peptide synthesis has been described previously
(Dulhunty et al., 1999). Peptides were synthesized with purification to 98
to 100% using HPLC, mass spectroscopy, and NMR. Stock peptide solu-
tions (;2 mM) were prepared in H2O and frozen in aliquots of 20ml.
Precise stock solution concentrations were determined by Auspep Propri-
etry Ltd. (Melbourne, Australia). Peptides used in this study were:

Peptide A:

671Thr Ser Ala Gln Lys Ala Lys Ala Glu Glu Arg Lys Arg Arg Lys Met Ser
Arg Gly Leu690

Peptide NB:

689Gly Leu Pro Asp Lys Thr Glu Glu Glu Lys Ser Val Met Ala Lys Lys
Leu Glu Gln Lys708

Peptide AS:

Thr Arg Lys Ser Arg Leu Ala Arg Gly Gln Lys Ala Lys Ala Lys Ser Glu
Met Arg Glu

Biological material and caffeine-halothane
contracture test for MH susceptibility

The methods for genetic testing, anaesthetic techniques, muscle dissection,
caffeine-halothane contracture testing, preparation of SR vesicles, and
single channel recording have been described previously (Otsu et al., 1992;
Owen et al., 1997; Laver et al., 1997). Muscle and blood samples were
obtained from 3 homozygous normal pigs (1 Belgium Landrace and 2
Landrace) and 3 homozygous MH pigs (2 Belgium Landrace and 1 Land-
race) aged;4 months. Each animal was genetically tested for normal or
MH RyR allele containing either Arg615 or Cys615. The SR preparations
were from the same animals as those used in Laver et al. (1997) and
Haarmann et al. (1999). All fiber bundles from the 3 homozygous normal
animals failed to respond to halothane or 2 mM caffeine, whereas all fiber
bundles from the 3 homozygous MH animals developed tension in re-
sponse to both drugs.

Isolation of SR vesicles

The preparation of crude SR vesicles was based on Meissner (1984) and
Ma et al. (1995). Freshly dissected back and leg muscle was washed in cold
phosphate-buffered saline containing 2 mM EGTA (pH 7.0), trimmed of
fat and connective tissue, cut into cubes, and either frozen in liquid N2 and
stored at270°C or freshly processed. The fresh or thawed muscle cubes
were suspended in 5 mM Tris maleate, 100 mM NaCl, 2 mM EDTA, and
0.1 mM EGTA, pH 6.8 (5 ml/g of tissue). The muscle was homogenized in
a Waring Blendor with four 15-s high-speed bursts. The homogenate was
centrifuged at 26003 g for 30 min and the supernatant filtered through
cotton gauze and centrifuged at 10,0003 g for 30 min. The pellet (P2) was
collected and the supernatant was centrifuged again at 35,0003 g and the
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pellet (P3) collected. Pellets P2 and P3 were resuspended in 5 mM
Tris-2-(N-morpholino)ethanesulphonic acid (Tris-MES), 300 mM sucrose,
100 mM KCl, and 2 mM dithiothreitol, pH 6.8. Aliquots of the suspensions
were frozen in liquid nitrogen and stored at270°C. All buffers contained
the protease inhibitors phenylmethylsulfonyl fluoride (0.7 mM), leupeptin
(1 mg/ml), pepstatin A (1mM), and benzamidine (1 mM).

Calcium release from SR vesicles

Extravesicular Ca21 was monitored at 710 nm with the Ca21 indicator,
antipyrylazo III, using a Cary 3 Spectrophotometer (Varian, Sydney, Aus-
tralia). Identical experiments at 790 nm showed that there were no changes
in OD which would alter the rate of Ca21 uptake measured at 710 nm. A
step increase in OD upon addition of ruthenium red or caffeine, seen at
both 710 nm and 790 nm, was subtracted from the data in Figs. 1 and 2
(Results). The temperature of the cuvette solution was thermostatically

controlled at 25°C, and the solution was stirred with a magnetic stirrer.
Ca21 release was measured as described by Timerman et al. (1993). TC
vesicles (100mg of protein) were added to the cuvette, to a final volume
of 2 ml of a solution containing 100 mM KH2PO4 (pH 7); 4 mM MgCl2,
1 mM Na2ATP, and 0.5 mM antipyrylazo III. Vesicles were partially
loaded with Ca21 by four sequential additions of CaCl2, each initially
increasing the extravesicular [Ca21] by ;7.5 mM (;15 nmoles). It was
necessary to suppress Ca21, Mg21-ATPase activity after loading (using
200 nM thapsigargin; Sagara and Inesi, 1991), to allow extravesicular
[Ca21] to increase after activation of the RyR. Peptide was then added,
followed either by 10 mM caffeine (to determine RyR-releasable Ca21

remaining in the SR vesicles) or by the RyR blocker ruthenium red (to a
final concentration of 5mM), to determine whether Ca21 release from SR
was via RyR channels. The Ca21 ionophore A23187 (3mg/ml) was finally
added to release the Ca21 remaining in the SR vesicles. A calibration curve
for OD changes for a given increase in [Ca21] was established at the start
of each experiment, using 4 sequential additions of 12.5mM (25 nmoles)
of CaCl2.

Addition of H2O alone to the cuvette after thapsigargin, produced a
small decline in the rate of release of Ca21. This was measured for each
experiment and the rate of Ca21 release in the presence of peptide was
appropriately corrected. The increase in OD for a given increase in ex-
travesicular [Ca21] was;40% less in the presence of 10 mM caffeine (see
legend to Fig. 1). This factor was taken into account in calculations of
releasable Ca21.

Lipid bilayer techniques

The lipid bilayer and single channel recording technique are described in
Laver et al. (1997) and Dulhunty et al. (1999). Bilayers were formed from
phosphatidylethanolamine, phosphatidylserine, and phosphatidylcholine
(5:3:2 w:w) (Avanti Polar Lipids, Alabaster, AL) across an aperture with a
diameter of 200 to 250mm in the wall of a 1.0 ml Delrin cup (Cadillac
Plastics, Australia). TC vesicles (final concentration, 10mg/ml) were added
to thecischamber and stirred until vesicle incorporation was observed. The
cytoplasmic side of channels incorporated into the bilayer faced thecis
solution. The bilayer potential was controlled, and single channel activity
was recorded using an Axopatch 200A amplifier (Axon Instruments, Foster
City, CA). For experimental purposes, thecis chamber was held at ground
and the voltage of thetrans chamber controlled. Bilayer potential is
expressed in the conventional way asVcis 2 Vtrans, (i.e., Vcytoplasm 2
Vlumen).

Bilayers were formed and vesicles incorporated into the bilayer using
cis solutions containing 230 mM Cs methanesulphonate (CsMS), 20 mM
CsCl, 1.0 mM CaCl2, and 10 mM N-tris[hyroxymethyl]methyl-2-amin-
oethanesulfonic acid (TES), pH 7.4, adjusted with CsOH. Thetrans solu-
tion had the same composition, except that CsMS was 30 mM. Thecis
solution sometimes contained 500 mM mannitol to aid SR vesicle fusion
and RyR incorporation into the bilayer. After incorporation, thecissolution
was replaced (by perfusion) with an identical solution, except that [Ca21]
was varied between 0.3, 10, and 100mM, and buffered at 0.3 and 10mM
by 2 mM BAPTA, and 200 mM CsMS was added to thetranschamber to
establish symmetrical conditions.

Recording and analysis of single channel activity

Currents were filtered at 1 kHz (10-pole low pass Bessel,23dB) and
digitized at 5 kHz. Analysis of single channel records (using Channel 2,
developed by P. W. Gage and M. Smith, John Curtin School of Medical
Research) yielded channel open probability (Po), frequency of events (Fo),
open times, closed times, and mean open (To) and closed (Tc) times, as well
as mean current (I9). Po, To, and Tc were measured by determining the
number and duration of events in which the current exceeded a threshold
level. An event discriminator set above the baseline noise at;20% of the

FIGURE 1 Increase in rate of Ca21 release after addition of peptide A is
greater in SRMH than in SRN. (A) and (B) show records of OD changes at
710 nm, with changes in extravesicular [Ca21], measured using antipyry-
lazo III as the Ca21 indicator. SR vesicles were loaded with Ca21 by an
initial uptake of;16 nmoles of Ca21 plus four additions of 15 nmoles of
Ca21 (not shown). The first arrow (t) indicates addition of 200 nM
thapsigargin to block the SR Ca21 ATPase. The second arrow (p) indicates
addition of 36mM peptide A. Caffeine (10 mM) was added at the third
arrow (c) before the ionophore A23187 (last arrow (i), 3mg/ml). The
vertical calibration is in OD units: an increase of 0.1 OD unit occurred with
an increase in extravesicular Ca21 of 18 nmoles before adding caffeine, or
31 nmoles after adding caffeine (see Methods).DCa21 is the non-RyR
releasable Ca21 remaining in the SR after exposure to caffeine.
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maximum current, rather than the usual 50%, was used so that openings to
both subconductance and maximum conductance levels were included in
the analysis. In contrast, I9, the mean current, is the average of all data
points in a record, in which the baseline is set to 0 pA. Ideally, in a channel
lacking submaximal conductance activity, I9 approaches the single channel
conductance as Po approaches 1.0. The threshold detection method is very
accurate in measuring openings when the peak amplitude of openings
exceeds the event discriminator. However, the technique fails when the
channel openings are to low conductance levels that are close to the
baseline noise. In this case, mean current provides the most accurate
method of measuring channel activity.

Bilayers that appeared to contain one channel under control conditions
often showed multiple channel openings (i.e., a maximum conductance of
2 or 3 times the single channel conductance) after addition of peptide A. I9
provided an accurate measure of the current flowing through two or three
channels after addition of peptide. The discriminator method was not used
to measure activity when more than one channel was present in the bilayer
because of the difficulty in deconvolution to meaningful single channel
parameters. Since bilayers containing more than one channel could not be
used for measurements of single channel parameters (i.e., Po, To, and Tc)
and since most bilayers eventually contained more than one channel,
routine measurements of channel activity were done using mean current
(I9) analysis. Po was measured in the few records containing only one
channel to assess how single channel activity was affected by the peptide.

Statistics

Average data is given as mean6 SEM. The significance of the difference
between control and test values was tested a using either Student’st-test,
either 1- or 2-sided and either for independent or paired data, as appropri-
ate, or the nonparametric sign test (Minium et al., 1993). Differences were
considered to be significant whenP # 0.05.

RESULTS

Calcium release from sarcoplasmic
reticulum vesicles

Ca21 release from skeletal SR of normal (SRN) and MH-
susceptible (SRMH) pig muscle was examined in vesicles
that were loaded with Ca21 followed by block of the Ca21,
Mg21-ATPase with 200 nM thapisgargin. A time-depen-
dent increase in extravesicular [Ca21] occurred after thap-
sigargin addition. The rate of calcium release increased
further after adding peptide A (Fig. 1).

In the examples in Fig. 1, the rate of Ca21 release from
SRN with thapsigargin was;47 nmoles/mg/min and this
increased to;60 nmoles/mg/min after adding 36mM pep-
tide, showing a peptide-induced enhancement of 13 nmoles/
mg/min (Fig. 1A). Peptide A evoked stronger release from
SRMH; the rate increased from 66 nmoles/mg/min with
thapsigargin to;162 nmoles/mg/min after adding 36mM
peptide, with a peptide-induced enhancement of 96 nmoles/
mg/min (Fig. 1B).

The fraction of Ca21 accumulated by SRN and SRMH that
was not available for release through RyRs (presumably that
not contained in terminal cisternae) was determined by
exposing vesicles to 10 mM caffeine (;4 min after peptide
addition), to release Ca21 in TC vesicles through RyR
channels, and then to the Ca21 ionophore A23187 (3mg/ml)

to release all remaining Ca21 (Fig. 1,A andB). The fraction
of non-releasable Ca21 was the difference between the
Ca21 released by caffeine and that released by the iono-
phore (DCa, Fig. 1;DCa is larger in SRMH than in SRN).
Ruthenium red (10mM) stopped Ca21 release if it was
added while extravesicular [Ca21] was increasing (n 5 8,
data not shown), showing that Ca21 release after addition of
thapsigargin, and release activated by peptide A, was
through RyR channels.

On average the rate of Ca21 release from SRMH with
thapsigargin of 536 5.2 nM/mg/min (n 5 12) was signif-
icantly greater than the 416 2.2 nM/mg/min (n 5 13) for
SRN. The rate of Ca21 release induced by peptide A is the
rate after peptide addition, minus the rate with thapsigargin
(inset, Fig. 2). A release rate of 766 9.7 nmole/mg/min
(n 5 3) from SRMH induced by 36mM peptide A was
significantly greater than the rate of 106 3.2 nmole/mg/min
from SR N (n 5 3, Fig. 2). Comparable results were ob-
tained from three SRN and three SRMH preparations.

Average nonreleasable Ca21 was 16.56 0.57 nmoles in
SRN and 20.36 0.55 nmoles in SRMH. Since;60 nmoles
of Ca21 were loaded, non-RyR releasable Ca21 fraction was
0.28 6 0.01 in RyRN and 0.346 0.01 in RyRMH. The
significantly smaller nonreleasable Ca21 in SRN suggests
that SRN was more enriched in terminal cisternae than the
SRMH. The different fraction of nonreleasable Ca21 indi-
cated that the difference between peptide A-induced release
from terminal cisternae was about eightfold greater in SRMH

than in SRN (rather than the;7.6-fold indicated by the
uncorrected rates).

Control peptides NB and AS did not mimic the effects of
peptide A. The rates of Ca21 release from SRN and SRMH

FIGURE 2 The initial rate of peptide A-enhanced Ca21 release
(nmoles/mg of TC vesicles/min) from SRN is less than from SRMH. The
rate is the initial rate of release with peptide, minus the preceding rate with
thapsigargin (n 5 3 at each peptide concentration for each of SRN and
SRMH). Filled bins show data from SRN and cross-hatched bins show data
for SRMH. Data are averages6 SEM for TC vesicles from three different
SR preparations. Asterisks show significant differences between data for
SRN and SRMH. The insert shows average rates of Ca21 release from SRN
and SRMH in the presence of thapsigargin, just before addition of peptide
(n 5 12).
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immediately after adding 36mM NB (minus the rate with
thapsigargin) were 8.26 2.6 nmoles/mg/min (n 5 4) and
21.16 3.4 nmoles/mg/min (n 5 4), respectively. Addition
of AS resulted in excess release at rates of 6.36 4.2
nmoles/mg/min (n 5 4) and 296 4.9 nmoles/mg/min (n 5
4) for SRN and SRMH, respectively. The increase in Ca21

release from SRMH with AS was significant, but remained
significantly less than that induced by peptide A.

RyR channel activity

Peptide A (0.6 nM to 30mM) was added to thecis side of
the bilayer, with 250/250 mM Cs1 (cis/trans), at [Ca21]s of
33 1027 M, 1025 M, or 1024 M (cis) and 1023 M (trans).
Initial experiments with 2 mM Na2ATP in thecis solution
failed to show convincing peptide A-induced activation of
normal pig skeletal RyRs (RyRN, n 5 23) or RyRs from
MH-susceptible pigs (RyRMH, n 5 25), although the usual
peptide A-induced inhibition (Fig. 6 below) was seen in the
presencecis Ca21 5 100mM. Thus experiments examining
activation by peptide A were performed in the absence of
ATP. Low levels of activity were recorded under these
conditions. Table 1 shows that average mean current in
bilayers containing 1 to 3 RyRN or RyRMH channels was
between 0.2 and 2.5 pA before addition of peptide. This was
0.01 to 0.05 of the maximum current (115 pA or 215 pA
at 140 mV or 240 mV, respectively). There were no
significant differences in control mean current between
RyRN and RyRMH.

Activating effects of peptide A on channels at
240 mV

The strongest activating effects of peptide A in rabbit are
seen at negative potentials where there is less peptide-
induced inhibition (Dulhunty et al., 1999). Peptide A (cis,
0.6 mM and 30mM) activated RyRN and RyRMH channels
at 240 mV (Fig. 3). The increase in activity was not
associated with an increase in the single channel conduc-
tance. The conductance of the RyRN channel was in fact
reduced with 30mM peptide, due to the peptide’s inhibitory

action. One RyRMH channel is apparent in Fig. 3 under
control conditions and a second and third channel are seen
with peptide A. Washout of peptide with 10 volumes ofcis
solution caused an increase in activity (discussed below).
Activity of RyRN and RyRMH was abolished by 30mM cis
ruthenium red added at the end of the experiment (Fig. 3G).

A history plot of mean current during similar experiments
with 10 or 100 mM cis Ca21 are shown in Fig. 4. I9
progressively increased during exposure to increasing con-
centrations of peptide and there was a further increase after
washing out 30mM peptide. A greater increase in activity
with peptide addition is seen in RyRMH than in RyRN. The
average normalized mean current (I9p/I9c) also increased

TABLE 1 Average mean current under control conditions
(I*c) in pA for RyRN and RyRMH with 300 nM, 10 mM, and
100 mM cis Ca21

Cis[Ca21]

RyRN RyRMH

n
240mV
I9c (pA)

140mV
I9c (pA) n

240mV
I9c (pA)

140mV
I9c (pA)

300 nM 8 0.686 0.21 0.676 0.24 9 0.946 0.29 0.946 0.50
10 mM 8 1.166 0.17 1.226 0.30 10 1.776 0.85 1.246 0.44
100 mM 6 1.766 0.4 1.626 0.41 6 1.336 0.26 2.486 0.98

Data are given as mean6 SEM. The number of experiments is listed under
n. The data inbold print are significantly different (Student’st-test from
data obtained with 300 nMcis Ca21.

FIGURE 3 Single channel activity at240 mV is enhanced after adding
0.6 mM or 30 mM peptide A and activation is greater in RyRMH (right
panel) than RyRN (left panel). Records were obtained with 10mM cis
Ca21. (A) Control; (B) after adding 0.6mM peptide A to thecis chamber;
(C) after increasingcis (peptide A concentration) to 30mM; (D–F), 1, 8,
and 12 min, respectively, after perfusion of thecis chamber with peptide-
free solution; (G) 1 min after adding 30mM cis ruthenium red. The solid
line shows the zero current (closed, C); the broken line shows the maxi-
mum open channel conductance for one channel (O1), or two channels
(O2) in RyRMH.
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more in RyRMH than in RyRN with peptide A at eachcis
[Ca21] (Fig. 5, A–C). Maximum activation of both RyRN
and RyRMH at was achieved with 0.6 to 6mM peptide A.

Single channel parameters were measured from records
with only one channel active in the bilayer before and
during exposure to the peptide (Fig. 6). Such experiments
were rare because summed openings of multiple (two or
three) channels usually became obvious after addition of
activating concentrations of peptide. Therefore, the numbers
of channels analyzed in this way were too few to establish
the Ca21 dependence of single channel parameters or the
effects of Ca21 on peptide-induced changes in the parame-
ters. The effects of cytoplasmic Ca21 concentration on
peptide A-induced activation are best seen in Fig. 5.

In the set of experiments used for single channel analysis,
activity tended to be low (Po , 0.1) under all control
conditions. Peptide A caused an increase in Po, To, and Fo
and a decrease in Tc in all 7 RyRN channels and in 8 of 9
RyRMH channels at240 mV (Fig. 6,A–D). There was no
consistent difference between parameter values for RyRN

and RyRMH under control conditions at#100mM cis Ca21

(see also Fill et al., 1990; Shomer et al., 1993; Laver et al.,
1997). However, in the presence of the peptide at240 mV,
Po, and To tended to be greater in RyRMH than in RyRN

(Fig. 6, A andB).
Overall, the results suggest that peptide A had similar ac-

tions on the gating of RyRN and RyRMH channels, reducing the
mean closed time and increasing the duration and frequency
of channel openings. The effect of the Arg615Cys substitu-
tion in RyRMH was to amplify these actions of the peptide,
particularly the increase in the duration of channel opening.

Activating and inhibiting effects of peptide A on
RyR channels at 140 mV

At 140 mV, RyRN and RyRMH channels were activated by
peptide A at 0.6mM, but inhibited by peptide at 30mM

FIGURE 4 Continuous time course of channel activity during exposure
to peptide A, washout of peptide A and exposure to ruthenium red. The
mean current (I9) in 30-s recordings at240 mV (each separated by a 30-s
recording at140 mV). A and IB, with 100mM cis Ca21; data from one
bilayer with 2 RyRN (open circles) and a second bilayer with 2 RyRMH

channels (filled circles). C and D, with 10 mM cis Ca21; data from one
bilayer with 2 low activity RyRN channels (open circles) and from a second
bilayer with 3 relatively high activity RyRMH (filled circles), to compare
analysis techniques. Each data point is from a 30-s recording at240 mV.
Successive points are separated by 30 s at140 mV (not shown). The initial
two points in each graph show control activity. Peptide A was then added
to progressively increase concentration from 0.6 nM to 6 nM, 60 nM, 600
nM, 6 mM, and 306mM (indicated by short horizontal lines), with 120 s at
each peptide concentration. Peptide was then perfused out of thecis
chamber and washout effects recorded during the period labeled “wash”.
Finally, ruthenium red was added (horizontal line labeledr).

FIGURE 5 Peptide A causes a greater increase in mean current at240
mV in RyRMH (right) than in RyRN (left). Relative mean current (I9p/I9c,
where I9p is I9 in the presence of peptide and I9c is I9 under control
conditions) is plotted against the logarithm of peptide A concentration in
nM. Symbols show average I9p/I9c and vertical bars show61 SEM where
this is greater than the dimensions of the symbol. Results were obtained
with: (A) 300 nMcis Ca21 (n 5 11 for RyRN; n 5 8 for RyRMH); (B) 10
mM cisCa21 (n 5 19 for RyRN; n 5 15 for RyRMH); (C) 100mM cisCa21

(n 5 9 for RyRN; n 5 10 for RyRMH).). On average, peptide A caused up
to a twofold increase in I9p/I9c for RyRN at eachcis [Ca21]. RyRMH

showed greater increases in the normalized mean current at240 mV with
peptide A at eachcis [Ca21], with 4.0- to 7.5-fold increases in I9p/I9c.
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(Fig. 7, A–C). Inhibition resulted in channel openings to
lower conductance levels, which are apparent in RyRN with
0.6mM peptide (Fig. 7B). Activation by 0.6mM peptide at
140 mV was greatest in the RyRMH channel. Perfusion of
peptide A out of thecis chamber at140 mV was followed
by a slow increase, and then a decline in channel opening
(Fig. 7, D–F). The increase in activity after perfusion was
associated with recovery of the maximum open conduc-
tance, confirming that the reduced conductance with 0.6
mM peptide was due to the inhibitory effect of the peptide.

Normalized mean current at140 mV increased with
peptide A between 0.6nM and 0.6mM and then, in contrast
to effects at240 mV, declined with inhibition at higher
[peptide] under most conditions (Fig. 8). Both the increase
in average I9p/I9c and the subsequent decline with increas-
ing [peptide] at140 mV were more pronounced in RyRMH

than in RyRN. As in rabbit (Dulhunty et al., 1999) the
strongest inhibition by peptide A was seen in both RyRN

and RyRMH whencis Ca21 was 100mM.
The peptide-induced changes in single channel parame-

ters were smaller and less consistent at140 mV than at
240 mV (Fig. 6,E–H). For example, an increase in To was
seen in 5 of 7 RyRN channels and 3 of 9 RyRMH channels.

FIGURE 6 The effects of peptide A on single channel characteristics of
RyRN and RyRMH. Analysis was performed on 120 s of channel activity
before addition of peptide and 120 s of activity at the peptide concentration
giving greatest activation, i.e., between 0.6 and 30mM. Channel activity
was measured at240 mV (A–D) and at140 mV (E–H). Data is shown for
open probability (Po, A and E), mean open time (To, B and F), opening
frequency (Fo, C andG) and mean closed time (Tc, D andH). The symbols
show data for individual channels withcis Ca21 concentrations of 300 nM
(E), 10 mM (f), and 100mM (F). Solid lines connect data for control
conditions (con) with data obtained in the presence of peptide A (A).

FIGURE 7 Single channel activity at140 mV is enhanced after adding
0.6 mM peptide A, but is inhibited with 30mM peptide A. Activation is
greater in RyRMH (right panel) than RyRN (left panel). Records are from
the same channels shown in Fig. 3 with 10mM cis Ca21. (A) control; (B)
after adding 0.6mM cis peptide A; (C) after increasingcis [peptide A] to
36 mM; (D–F), 1, 8, and 12 min, respectively, after perfusion of thecis
chamber with peptide-free solution; (G) 1 min after adding 30mM ruthe-
nium red to thecis chamber. The solid line shows the zero current (closed,
C); the broken line shows the maximum open single channel conduc-
tance (O).
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This was presumably due to the competing activating and
inhibiting effects of the peptide at140 mV, since inhibition
decreases To (Dulhunty et al., 1999).

Peptide A washout

The increases in channel activity after washout of peptide
(Figs. 3, 4, and 7) were also seen in rabbit RyRs and were
thought to reflect exposure of a high-affinity activating
effect after washout of a lower affinity peptide A-induced
inhibition (Dulhunty et al., 1999). The slower removal of
peptide from its activating site after washout is consistent
with a higher affinity binding to the activation site in RyRN

and RyRMH, whereas faster removal from the inhibition site
is consistent with lower affinity binding to the inhibition site
in RyRN and RyRMH. The washout activation suggests that

channel activity in the presence of the peptide is a sum of
simultaneous activation and inhibition. The time to peak
activity after washout reflects the time course of removal of
inhibition. The lack of full reversal of activation after 7 to
12 min suggests that the peptide remained bound to its
activation site for this time, as might be expected with high
affinity binding. The slower washout of activation in
RyRMH suggests stronger binding of peptide A to the acti-
vation site on RyRMH.

The increase in RyR activity after removal of peptide A
may provide a more accurate indication of the ability of the
peptide to activate RyRN and RyRMH than channel activity
in the presence of the peptide, which is the sum of activation
and inhibition. Long-term washout experiments were per-
formed with 10mM and 100mM cisCa21. I9p/I9c increased
significantly after washout and was significantly greater at
240 mV than at140 mV under all conditions (Fig. 9).
I9p/I9c after washout at240 mV was significantly greater in
RyRMH than in RyRN with both 10mM and 100mM cis
Ca21 (note the different scales on they axes). Curiously,
there was no difference between RyRN and RyRMH in

FIGURE 8 Peptide A causes a greater decrease in average mean current
at 140 mV in RyRMH (right column) than in RyRN (left column). Relative
mean current is plotted as described for Fig. 5. Symbols show average
I9p/I9c and vertical bars show61 SEM where this is greater than the
dimensions of the symbol. Results were obtained with: (A) 300 nM cis
Ca21 (n 5 11 for RyRN; n 5 8 for RyRMH); (B) 10 mM cis Ca21 (n 5 19
for RyRN; n 5 15 for RyRMH); (C) 100mM cisCa21 (n 5 9 for RyRN; n 5
10 for RyRMH). There were 3.4-fold and 5.0-fold declines in average
I9p/I9c, from the maximum peptide-activated levels, in RyRMH with 30mM
peptide and 10mM or 100 mM cis Ca21 respectively, compared with
2.1-fold and 1.6-fold falls in I9p/I9c for RyRN. I9p/I9c did not fall signifi-
cantly in RyRN with 300 nM Ca21.

FIGURE 9 Mean current increases after peptide A removal from thecis
chamber. The increase is significantly greater at240 mV in RyRMH (right
panel) than in RyRN (left panel) at eachcis [Ca21] (note the different scales
on they axes; see text). The results are from a subset of data in which RyRN

or RyRMH channels were held for 6 to 10 min after washout of peptide A,
with 10 mM cis Ca21 (n 5 6 for RyRN; n 5 5 for RyRMH) (A) or 100mM
cisCa21 (n 5 6 for RyRN; n 5 8 for RyRMH) (B). The [Ca21] was the same
in the peptide-containing solution and the perfusion solution. Filled bins,
I9p/I9c (see legends to Figs. 5 and 6, for definition) during exposure to 30
mM peptide A. Cross-hatched bins, I9p/I9c for 60 s of maximum activity,
6 to 8 min after washout of peptide A. The asterisks indicate that the
difference between I9p/I9c before and after peptide removal is significant
according to the Student’st-test. The hatch marks (#) indicate the differ-
ence is significant according to the nonparametric sign test. Results are
shown for240 mV and140 mV as indicated.
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I9p/I9c after washout at140 mV. This may have been due
to slower removal of the stronger inhibition of RyRMH

Washout activation provides minimum values for the
effectiveness of the peptide in activating RyRs, since max-
imum I9p/I9c occurred when some inhibition remained and
activation was declining. Slower washout of inhibition in
RyRMH would further reduce the observable activation for
these channels. The greatest average activation was a sev-
enfold increase in I9p/I9c in RyRN and an 11-fold increase in
RyRMH (with 10 mM cis Ca21). Highest individual values
were a 12-fold increase in one RyRN channel and a 15-fold
increase in one RyRMH.

Control experiments

Three types of control experiment for the effects of peptide
A and its removal on RyR activity are shown in Fig. 10. In
the first type of experiment (Fig. 10,A andB), bilayers were
exposed to one concentration of peptide (30mM) for 20
min. There was a slow increase in activity during the 20 min
of exposure to the peptide in RyRN and RyRMH, with a
greater increase in RyRMH. The small increase in activity
during exposure to peptide was followed by a massive
increase upon washout. Similar results were obtained in 5
bilayers containing RyRMH and 3 bilayers containing RyRN
channels. Fig. 10,A and B, show examples of washout
effects with 300 nMcis Ca21 (not shown in Fig. 9 above)
and also show that the washout-induced increase in activity
after 20 min exposure to 30mM peptide was similar to that
after 2 min exposure to 30mM peptide, with a total expo-
sure to increasing peptide concentration of 12 min (Fig. 4
above). Thus, the increase in activity after 12 min was a
specific effect of washout and not a function of time after
exposure to peptide.

In the second type of experiment the volumes of water
normally added with peptide were added at the usual inter-
vals, but in the absence of peptide, and then thecischamber
perfused (Fig. 10,C andD, circles). Finally, in the third type
of experiment, thecis solution was stirred at 2min intervals,
with no additions, and then perfused after 12 min (Fig. 10D,
triangles). There was no significant increase in RyRN activ-
ity with water or with stirring alone. Neither did activity
increase in RyRN after perfusion. There was a consistent
approximately twofold increase in I9 in RyRMH after the
second perfusion of thecis solution in RyRMH, after either
water addition or stirring alone (all experiments were pre-
ceded by a perfusion step to replace the incorporation so-
lution with the recording solution; see Methods). The in-
crease after the second perfusion was small compared with
the increase in activity after washout of peptide. Similar
results were obtained for the water control in 4 bilayers
containing RyRN and 10 bilayers containing RyRMH, and
for the stirring controls in 3 bilayers containing RyRMH.
Fig. 10,C andD, shows that the increase in activity during

exposure to the peptide and upon its washout are specific
effects of peptide A on channel activity, since they do not
occur in the absence of peptide.

FIGURE 10 A large increase in channel activity upon washout of pep-
tide A occurs after 20 min exposure to 30mM peptide and is not seen
unless channels have been exposed to peptide. Analysis of continuous
channel activity in 30-s segments at240 mV (each separated by a 30-s
recording at140 mV), recorded with 300 nMcis Ca21. The data inA and
B were from a single RyRN (A) and a single RyRMH channel (B), under
control conditions (first 3 points), during exposure tocispeptide for 20 min
(30 mM, A1), and after perfusion of thecis chamber (wash) and then
exposure to ruthenium red (r). The data inC were obtained from a bilayer
containing two RyRN channels, under control conditions (first 4 points)
during exposure to increasing volumes of water (0.5, 4.5, 4.5, 4.5, 4.5, and
20 ml, equivalent to that added with stock solutions to give 0.6 nM, 6 nM,
60 nM, 0.6mM, 6 mM, and 30mM peptide, respectively), and then after
perfusion of thecis chamber. The data inD were from three different
bilayers containing RyRMH channels. The open circles show data from one
bilayer containing three channels and the filled circles show data from a
second bilayer containing one channel. The first two or three data points were
obtained under control conditions; data were then obtained with water addi-
tions (as above) and after perfusion of the cis chamber, and finally after
addition of ruthenium red (r). In the third experiment (D, ‚), data are shown
from one channel under control conditions (first 3 points), and then during a
12-min period during which thecis solution was stirred every 2 min, but no
additions were made to the solution. Perfusion was performed in the usual way
after 12 min, and ruthenium red was added at the end of the experiment.
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Long-lasting substate openings induced by
peptide A

Channel opening to lower conductance levels as a result of
the inhibitory action of peptide A was seen in all channels.
Very long lasting substate openings (Tripathy et al., 1998;
Gurrola et al., 1999) were seen only in a subpopulation of
RyRN and RyRMH and usually in channels that showed
strong substate activity under control conditions (Fig. 11,A
andB). There was no consistent difference between RyRN

and RyRMH in substate levels or in the prolongation of
substates in the presence of the peptide. Thus an example
from one type of channel only is shown in Fig. 11. The
predominant substate level in the RyRMH channel in Fig. 11
was at;33% of the maximum conductance under control
conditions and the prolonged substate opening in the pres-
ence of 0.6mM peptide A was to the same level. This level
(arrow) is clearly seen in the all points histograms in Fig.
11, C and D. Twelve of 27 RyRN and 15 of 23 RyRMH

showed substate activity that was prolonged in the presence
of the peptide.

Effects of control peptides on single
channel activity

The specificity of the native sequence of peptide A was
examined by adding peptide NB or peptide AS to thecis
solution while recording activity from RyRN and RyRMH in
the presence of 10mM cis Ca21, where peptide A induced
the strongest activation. Peptide NB had no effect on RyRN

or RyRMH at either240 mV or140 mV (Fig. 12,A andB).
Peptide AS did not alter RyRN activity at140 mV or240
mV or RyRMH at 140 mV. Mean current increased by

FIGURE 11 Openings to submaximal conductance levels are prolonged
by peptide A. The recordings in (A) and (B) show 4 s ofcontinuous
recording from an RyRMH channel at240 mV with 10 mM cis Ca21,
before (A) and after (B) addition of 0.6mM peptide A to thecis chamber.
The solid line (C) shows the zero current, closed level; the dotted line (S)
shows the dominant submaximal conductance level which is the same in
control activity and after peptide addition. The broken line (O) shows the
maximum open single channel conductance. (C) and (D) are all-points
histograms showing the probability (P) of current levels (I(pA)) for the
data in (A) and (B), respectively. The closed level at 0 pA is apparent in
both histograms. The submaximal level at;3.8 pA is indicated by the
arrow and is clearly enhanced after peptide A addition (D).

FIGURE 12 Control peptides NB and AS do not reproduce the effects of
peptide A on RyRN or RyRMH with 10 mM cis [Ca21]. (A andB) Relative
mean current (I9p/I9c) for RyRN (left) and RyRMH (right) at 240 mV (A)
and140 mV (B). Open circles show average data for peptide AS (n 5 3,
RyRN; n 5 4, RyRMH) and closed triangles show average data for peptide
NB (n 5 4, RyRN; n 5 5, RyRMH). The broken lines, included for
comparison, connect data for peptide A (from Figs. 5 and 6). Asterisks
indicate significant differences between either peptide NB or peptide AS
and peptide A at each concentration. (C) Effects on relative mean current
through RyRN (left) or RyRMH (right) of removing 30mM of peptides AS
or NB from thecis chamber. Average I9p/I9c is shown in the presence of
30 mM peptide AS or NB (filled bins) and 3 to 5 min after removal of AS
or NB (cross-hatched bins). For comparison, the open bins show average
I9p/I9c before and after removal of 30mM peptide A (data from Fig. 7).
Asterisks indicate significant differences between control peptide (NB or
AS, data bins) and peptide A (open bins), under each condition.
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1.8-fold with 6 mM AS at 240 mV, but this was signifi-
cantly less than the 7.5-fold increase seen with peptide A.

No significant washout activation was seen with NB or
with AS in RyRN or RyRMH at either240 or140 mV (Fig.
12 C). An increase in activity was, however, seen in 3 out
of 3 RyRMH channels at240 mV after removal of AS, but
the average relative mean current of 4.66 1.4 was signif-
icantly less than the average of 11.26 1.2 seen after
washout of peptide A. When comparing AS or NB data with
peptide A data, the relative mean current at240 mV was
significantly less both before and after washout of AS or NB
than before and after washout of peptide A.

Thus, the degree of activation of RyRN and RyRMH by
peptide A was a specific effect of the peptide and depended
on the sequence of amino acids in the peptide. The small
activation of single channels by the scrambled sequence AS
at high peptide concentrations is consistent with the small
increase in Ca21 release from SR vesicles evoked by the
peptide.

The experiments in Fig. 12 do not provide information on
the ability of the control peptides to inhibit RyR activity,
since inhibition is minimal whencis [Ca21] is 10 mM (Fig.
8 and Dulhunty et al., 1999), but is significant with 100mM
cis Ca21. Therefore, inhibition by the control peptides was
examined in a separate series of experiments with 100mM
cis Ca21 and also 2 mMcis Na2ATP (which suppresses
activation, but not inhibition, by peptide A; see Results
above). Under these conditions, peptide NB failed to inhibit
either RyRN or RyRMH at either 240 mV or 140 mV
(Table 2). On the other hand, 6mM peptide AS inhibited
RyRMH at 240 mV, whereas 0.6mM and 6mM AS inhib-
ited RyRMH at140 mV. Peptide AS did not alter activity in
RyRN. These results are consistent with a previous report

that AS can inhibit RyR activity (Dulhunty et al., 1999) and
confirm the observation that RyRMH is more susceptible
than RyRN to inhibition by positively charged peptides.

DISCUSSION

We show here that Ca21 release from the SR of MH-
susceptible pig skeletal muscle is more strongly activated by
the peptide A segment of the skeletal DHPR II-III loop than
Ca21 release from SR of normal pig muscle. In addition, the
peptide A-induced increase in RyR channel activity in lipid
bilayers was greater in RyRMH. These results suggest that
enhanced tension production (Gallant et al., 1980; Ohta et
al., 1989) in MH could, in part, be due to stronger activation
of RyRs by the A region of the DHPR II-III loop. This
would be consistent with observations that MH muscles are
more sensitive than normal to some, but not all, RyR ago-
nists, e.g., caffeine, halothane, and ryanodine (Mickelson
and Louis, 1996), but not sulfydryl oxidation (Haarmann et
al., 1999).

Activation by peptide A

MH mutations might influence relatively distant sites within
the RyR. Identified RyR-linked MH mutations occur in two
widely separated clusters: between N-terminal residues 35
and 615 (MH1 domain) and between residues 2163–2458
(MH2 domain; Tong et al., 1997). The only direct compar-
ison of mutations from these two domains found that the
physiological abnormalities were nearly identical (Richter
et al., 1997). It is possible that the MH domains of the RyR
are structurally important and/or have allosteric effects over
widespread areas of the RyR. The Arg615Cys substitution
could alter the conformation of the MH1 domain and its
interaction with other regions of the RyR or allosterically
alter the II-III loop binding site or the structure of regions
critical for transmission of information from the DHPR
binding region to the RyR ion channel pore.

It is not possible, from the present experiments, to dis-
tinguish among several likely mechanisms for stronger ac-
tivation of RyRs by peptide A. The MH mutation may alter
the peptide binding site on the RyR so that the peptide binds
more effectively and causes greater activation. A second
possibility is that the MH mutation facilitates transmission
of a signal from the remote cytoplasmic DHPR-binding
domain, presumably adjacent to the T-tubule membrane, to
the channel gating mechanism. Alternatively, the response
of the RyR gating mechanism to a signal from the binding
domain might be facilitated. In the last case, any activating
signal should induce a stronger response in RyRMH than in
RyRN. This is not the case, because the increase in activity
upon sulfhydryl oxidation is not greater in RyRMH (Haar-
mann et al., 1999).

TABLE 2 Peptide AS blocks RyRMH activity.

Peptide concentration n 0.6 mM 3 mM 6 mM

I9p/I9c
240 mV

NB
RyRN 6 0.716 0.16 0.906 0.15 0.836 0.16
RyRMH 8 0.896 0.16 0.766 0.25 0.786 0.28

AS
RyRN 6 1.076 0.17 — 1.066 0.13
RyRMH 6 0.926 0.17 — 0.636 0.12

140 mV
NB

RyRN 6 1.586 0.44 1.616 0.51 1.366 0.42
RyRMH 8 0.866 0.45 0.746 0.25 0.966 0.29

AS
RyRN 6 0.826 0.18 — 0.566 0.14
RyRMH 6 0.456 0.09 — 0.356 0.12

Effects of peptidesNB and AS on normalized average mean current
(I9p/I9c) for RyRN and RyRMH with 100mM cis Ca21 and 2 mM Na2ATP,
at 240 mV and140 mV. Data are given as mean6 SEM. Bold print
indicates a significant (by Student’st-test) decrease in mean current in the
presence of the peptide.
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We have suggested that the A region of the DHPR is
bound to the RyR in resting muscle (Dulhunty et al., 1999).
Increased resting activation of RyRMH by the A region in
vivo could contribute to enhanced Ca21-activated Ca21

release (Kim et al., 1984; Ohta et al., 1989; Mickelson et al.,
1988) and increased force (Gallant et al., 1980). If mecha-
nisms that lower myoplasmic [Ca21] are unable to cope
with the high Ca21 leak, resting cytoplasmic [Ca21] would
also be higher than normal (Lopez et al., 1986).

The scrambled peptide AS released Ca21 from SRMH,
and from rabbit skeletal SR, at a lower rate than the native
peptide A (Dulhunty et al., 1999) and enhanced RyRMH

activity. Since peptide AS contains the same number of
positively charged residues as peptide A, it is likely that it
interacts weakly with the A-binding region on the RyR, but
cannot interact strongly because it lacks the appropriate
structure (Casarotto et al., 2000).

Inhibition

Inhibition by high concentrations of the peptide A at140
mV was enhanced by the MH mutation. The voltage and
current direction dependence of inhibition suggest that the
peptide blocks the channel pore (Dulhunty et al., 1999) as a
result of strong interactions between its numerous positively
charged residues and negative sites within the pore (Mead et
al., 1998). In contrast, activation is likely to depend on
peptide binding to a II-III loop binding-site on the RyR. The
enhanced inhibition of RyRMH could be due to a greater
negative charge density in the channel vestibule as result of
the Arg615Cys substitution. Alternatively, the geometry of
the vestibule might change to allow the peptide greater
accessibility. In either case, the results show that the MH
mutation changes more than one property of the RyR and
underlines the importance of the MH domains in influenc-
ing the structure of the entire RyR. The MH mutation in the
N-terminal part of the RyR alters the properties of C-
terminal residues, which form the channel pore (Bhat et al.,
1997).

Inhibition by peptide A was not apparent in Ca21 release
from SRN and SRMH and is not apparent in Ca21 release
from rabbit skeletal SR (Dulhunty et al., 1999). Inhibition is
minimal in these experiments where ion flow is from the SR
lumen into the cytoplasm. Inhibition is strongest when ions
flow from the cytoplasm to the lumen (i.e.,140 mV). It is
unlikely that inhibition occurs in vivo where the II-III loop
is tethered to the DHPR in the T-tubule membrane well
away from the RyR pore.

Multiple effects of the MH mutation

In addition to effects of the MH mutation on activation and
inhibition by peptide A, the Arg615Cys substitution is asso-
ciated with a reduced affinity of RyRMH for Ca21 (Fill et al.,

1991; Shomer et al., 1993; Richter et al., 1997) or Mg21

(Laver et al., 1997) at a low affinity inhibitory site. We did
not use [Ca21] in the inhibitory range (.100 mM), so did
not observe this difference between RyRMH and RyRN.
Mg21 inhibition is thought to play a critical role in EC
coupling in that the RyR is chronically inhibited at myo-
plasmic [Mg21]. Ca21 release during EC coupling proceeds
because the EC coupling signal from the DHPR reduces the
affinity of the RyR for Mg21 (Lamb and Stephenson, 1991).
The lower than normal affinity of RyRMH for Mg21 means
that RyR activity is higher than normal and may be en-
hanced more than normal during EC coupling (Laver et al.,
1997). The Ca21/Mg21 inhibition site has been located on
the C-terminal portion of the RyR (3692 to 4969, Lynch et
al., 1999), and changes to this site might be related to
changes in the channel region that lead to enhanced inhibi-
tion by peptide A. Involvement of the C-terminal Mg21-
inhibition region further emphasizes the wide-spread influ-
ence of the MH domain on RyR structure and function.

As mentioned previously, it is not clear whether the MH
mutation increases the ability of all activating agents to
enhance channel activity by altering a common site in the
activation process or whether the mutation causes multiple
changes in ligand binding sites or links between the binding
sites and the channel pore. Both activation by relief of Mg21

inhibition (with reduced [Mg21]) and by caffeine are en-
hanced in MH, suggesting that both physiological and non-
physiological activators may share a common activation
mechanism. On the other hand, physiological activation by
sulfhydryl oxidation is not enhanced in MH (Haarmann et
al., 1999), so that the common mechanism is not shared by
all activating influences. Thus, the question remains open
whether peptide A is a physiological or a nonphysiological
activator of the RyR channel, since the A region is not
essential for skeletal EC coupling (Nakai et al., 1998, 2000).
The peptide, however, has several merits as a probe for
studying normal and disordered RyR activity, including its
high affinity and specific binding to the calcium release
channel.

Peptide A-evoked Ca21 release from
normal pig SR

The low Ca21 release from SRN induced by peptide A was
unexpected, since EC coupling and contraction in pig mus-
cle proceed as effectively as in rabbit muscle (Gallant et al.,
1980). In contrast to Ca21 release, activation of single pig
RyRN channels by peptide A was similar to activation of
rabbit RyRs (Dulhunty et al., 1999). Ca21 release from the
SR was, of necessity, measured in the presence of ATP,
which prevented peptide A activation of single pig RyR
channels (Results). Thus ATP may have suppressed Ca21

release from pig SR. We are further investigating this effect
of ATP on peptide A activation of pig RyRs.
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There are several possible reasons for the difference
between peptide A-induced activation of normal pig and
rabbit RyRs. Rabbit and pig RyRs differ by one amino acid
in the RyR sequence required for DHPR II-III loop binding
with Thr1082Ala substitution in the pig (Fujii et al., 1991;
Takeshima et al., 1989). First, this difference may destabi-
lize peptide A binding and reduce in vitro peptide A acti-
vation of normal pig RyRs (in vivo, the RyR-DHPR loop
interaction could be stabilized by the spatial constraints
imposed by insertion of the two large proteins in their
respective membranes). Second, the sequence differences
between normal pig and rabbit RyRs may mean that addi-
tional cytosolic factors are necessary for effective peptide
A, or A region of the II-III loop, binding to the RyR in
normal pig muscle. Finally, there maybe be changes in the
porcine II-III loop sequence that accommodate and stabilize
binding to the porcine RyRN. A number of species-specific
sequence differences occur in the DHPR II-III loop, al-
though the pig sequence is not yet reported (Tanabe et al.,
1987; Hogan et al., 1994; Chaudhari, 1992). In any case,
the lack of peptide A sensitivity of normal pig RyRs in vitro
in the presence of ATP is partially reversed by the MH
mutation.

In conclusion, we find that RyR channels from MH-
susceptible pig muscle are more easily activated by peptide
A than RyR channels from normal pigs, in the absence of
Mg21 or inhibiting concentrations of cytoplasmic Ca21.
The channels from MH-susceptible muscle are also inhib-
ited more by high concentrations of the positively charged
peptide. The results suggest that activation by the DHPR
II-III loop might be enhanced during EC coupling and
contribute to an increase in Ca21 release from the SR of
MH-susceptible muscle. In addition, the results show that
the MH point mutation alters the response of the RyR to
more than one ligand, and thus has multiple actions on the
RyR.

We thank Joan Stivala for general assistance and Dr. J. R. Mickelson for
help with sequence information. Dr. Gallant was on sabbatical leave from
the Department of Veterinary Pathobiology, University of Minnesota (St.
Paul, MN) and received funding from the National Science Foundation
(INT-9724904) and the National Institutes of Health (AR08477).

REFERENCES

Bhat, M. B., J. Zhao, H. Takeshima, and J. Ma. 1997. Functional calcium
release channel formed by the carboxyl-terminal portion of ryanodine
receptor.Biophys. J.73:1329–1336.

Casarotto, M. G., F. Gibson, S. M. Pace, S. M. Curtis, M. Mulcair, and
A. F. Dulhunty. 2000. A structural requirement for activation of skeletal
RyRs by a 20 amino acid region of the II-III loop of the skeletal DHPR.
J. Biol. Chem.275:11631–11637.

Chaudhari, N. 1992. A single nucleotide deletion in the skeletal muscle
specific transcript of muscular dysgenisis (mdg) mice.J. Biol. Chem.
267:25636–25639.

Dulhunty, A. F., D. R. Laver, E. M. Gallant, M. G. Casarotto, S. M. Pace,
and S. Curtis. 1999. Activation and inhibition of skeletal RyR channels

by a part of the skeletal DHPR II-III loop: effects of DHPR Ser687 and
FKBP12.Biophys. J.77:189–203.

El-Hayek, R., B. Antoniu, J. Wang, S. L. Hamilton, and N. Ikemoto. 1995.
Identification of calcium release-triggering and blocking regions of the
II-III loop of the skeletal muscle dihydropyridine receptor.J. Biol.
Chem.270:22116–22118.

El-Hayek, R., and N. Ikemoto. 1998. Identification of the minimum es-
sential region in the II-III loop of the dihydropyridine receptor a1
subunit required for activation of skeletal muscle-type excitation-
contraction coupling.Biochemistry.37:7015–7020.

Fill, M., E. Stefani, and T. E. Nelson. 1991. Abnormal human sarcoplasmic
reticulum Ca11 release channels in malignant hyperthermic skeletal
muscle.Biophys. J.59:1085–1090.

Fujii, J., K. Otsu, F. Zorzato, S. De Leon, V. K. Khanna, J. E. Weiler, P. J.
O’Brien, and D. H. Maclennan. 1991. Identification of a mutation in
porcine ryanodine receptor associated with malignant hyperthermia.
Science.253:448–451.

Gallant, E. M., R. E. Godt, and G. A. Gronert. 1980. Mechanical properties
of normal and malignant hyperthermia susceptible porcine muscle: ef-
fects of halothane and other drugs.J. Pharmacol. Exp. Ther.213:91–96.

Gurrola, G. B., C. Arevalo, R. Sreekumar, A. J. Lokuta, J. W. Walker, and
H. H. Valdivia. 1999. Activation of ryanodine receptors by imperatoxin
A and a peptide segment of the II-III loop of the dihydropyridine
receptor.J. Biol. Chem.274:7879–7886.

Haarmann, C. S., R. A. H. Fink, and A. F. Dulhunty. 1999. Oxidation and
reduction of pig skeletal ryanodine receptors.Biophys. J.77:3010–3022.

Hogan, K., P. A. Powers, and R. G. Gregg. 1994. Cloning of the human
skeletal musclea1 subunit of the dihydropyridine-sensitive L-type cal-
cium channel (CACNL1A3).Genomics.24:608–609.

Jurkat-Rott, K., T. McCarthy, and F. Lehmann-Horn. 2000. Genetics and
pathogenesis of malignant hyperthermia.Muscle Nerve.23:4–17.

Kim, D. H., F. A. Sreter, S. T. Ohnishi, J. F. Ryan, J. Roberts, P. D. Allen,
L. G. Meszaros, B. Antoniu, and N. Ikemoto. 1984. Kinetic studies of
Ca21 release from sarcoplasmic reticulum of normal and malignant
hyperthermia susceptible pig muscles.Biochim. Biophys. Acta.775:
320–327.

Lamb, G. D., and D. G. Stephenson. 1991. Effect of Mg11 on the control
of Ca11 release in skeletal muscle fibres of the toad.J. Physiol.
434:507–528.

Laver, D. R., V. J. Owen, P. R. Junankar, N. L. Taske, A. F. Dulhunty, and
D. G. Lamb. 1997. Reduced inhibitory effect of Mg21 on ryanodine
receptor Ca21 release channels in Malignant Hyperthermia.Biophys. J.
73:1913–1924.

Leong, P., and D. H. Maclennan. 1998. A 37-amino acid sequence in the
skeletal muscle ryanodine receptor interacts with the cytoplasmic loop
between domains II and III in the skeletal muscle dihydropyridine
receptor.J. Biol. Chem.273:7791–7794.

Loke, J., and D. H. Maclennan. 1998. Malignant hyperthermia and central
core disease: disorders of Ca21 release channels.Am. J. Med.104:
470–486.

Lopez, J. R., L. A. Alamo, D. E. Jones, L. Papp, P. D. Allen, J. Gergely,
and F. A. Sreter. 1986. Ca11 in muscles of malignant hyperthermia
susceptible pigs determined in vivo with Ca11 selective microelec-
trodes.Muscle Nerve.9:85–86.

Lu, X., L. Xu, and G. Meissner. 1994. Activation of the skeletal muscle
calcium release channel by a cytoplasmic loop of the dihydropyridine
receptor.J. Biol. Chem.269:6511–6516.

Lu, X., L. Xu, and G. Meissner. 1995. Phosphorylation of dihydropyridine
receptor II-III loop peptide regulates skeletal muscle calcium release
channel function.J. Biol. Chem.270:18459–18464.

Lynch, P. J., J. Tong, M. Lehane, A. Mallet, L. Giblin, J. J. Heffron, P.
Vaughan, G. Zafra, D. H. Maclennan, and T. V. McCarthy. 1999. A
mutation in the transmembrane/luminal domain of the ryanodine recep-
tor is associated with abnormal Ca21 release channel function and severe
central core disease.Proc. Natl. Acad. Sci. USA.96:4164–4169.

Ma, J. 1995. Desensitization of the skeletal muscle ryanodine receptor:
evidence for heterogeneity of calcium release channels.Biophys. J.
68:893–899.

Enhanced Activation of RyRs by a DHPR Peptide in MH 1781

Biophysical Journal 80(4) 1769–1782



Mead, F. C., D. Sullivan, and A. J. Williams. 1998. Evidence for a negative
charge in the conduction pathway of the cardiac ryanodine receptor
channel provided by the interaction of K1 channel N-type inactivation
peptides.J. Membr. Biol.163:225–234.

Meissner, G. 1984. Adenine nucleotide stimulation of Ca11-induced Ca11

release in sarcoplasmic reticulum.J. Biol. Chem.259:2365–2374.
Mickelson, J. R., E. M. Gallant, L. A. Litterer, K. M. Johnson, W. E.

Rempel, and C. F. Louis. 1988. Abnormal sarcoplasmic reticulum ry-
anodine receptor in malignant hyperthermia.J. Biol. Chem.9310:9315.

Mickelson, J. R., and C. F. Louis. 1996. Malignant Hyperthermia: Exci-
tation-contraction coupling, Ca11 release channel, and cell Ca11 reg-
ulation defects.Physiol. Rev.76:537–592.

Minium, E. W., B. M. King, and G. Bear. 1993. Statistical reasoning in
psychology and education. John Wiley & Sons, New York.

Nakai, J., T. Tanabe, T. Konno, B. Adams, and K. G. Beam. 1998.
Localization in the II-III loop of the dihydropyridine receptor of a
sequence critical for excitation-contraction coupling.J. Biol. Chem.
273:24983–24986.

Ohta, T., M. Endo, T. Nakano, Y. Morohoshi, K. Wanikawa, and A. Ohga.
1989. Ca-induced Ca release in malignant hyperthermia-susceptible pig
skeletal muscle.Am. J. Physiol.256:C358–C367.

Otsu, K., M. S. Phillips, V. K. Khanna, S. De Leon, and D. H. Maclennan.
1992. Refinement of diagnostic assays for a probable causal mutation for
porcine and human malignant hyperthermia.Genomics.13:835–837.

Otsu, K., K. Nishida, Y. Kimura, T. Kuzuya, T. Kamada, and M. Tada.
1994. The point mutation arg615cis in the Ca21 release channel of
skeletal sarcoplasmic reticulum is responsible for hypersensitivity to
caffeine and halothane in malignant hyperthermia.J. Biol. Chem.269:
9413–9415.

Owen, V. J., N. L. Taske, and G. D. Lamb. 1997. Reduced Mg11

inhibition of Ca11 release in muscle fibers of pigs susceptible to
malignant hyperthermia.Am. J. Physiol.272:C203–C211.

Proenza, C., C. M. Wilkins, and K. G. Beam. 2000. Excitation-contraction
coupling is not affected by scrambled sequence in residues 681–690 of
the dihydropyridine receptor II-III loop.J. Biol. Chem.(in press).

Richter, M., L. Schleithoff, T. Deufel, F. Lehmann-Horn, and A. Herr-
mann-Frsank. 1997. Functional characterization of a distinct ryanodine

receptor mutation in human malignant hyperthermia-susceptible muscle.
J. Biol. Chem.272:5256–5260.

Sagara, Y., and G. Inesi. 1991. Inhibition of the sarcoplasmic reticulum
Ca11 transport ATPase by thapsigargin at subnanomolar concentra-
tions.J. Biol. Chem.266:13503–13506.

Shomer, N. H., C. F. Louis, M. Fill, L. A. Litterer, and J. R. Mickelson.
1993. Reconstitution of abnormalities in the malignant hyperthermia-
susceptible pig ryanodine receptor.Am. J. Physiol.264:C125–C135.

Takeshima, H., S. Nishimura, T. Matsumoto, H. Ishida, K. Kangawa, N.
Minamino, H. Matsuo, M. Ueda, M. Hanaoka, T. Hirose, and S. Numa.
1989. Primary structure and expression from complementary cDNA of
skeletal muscle ryanodine receptor.Nature.339:439–445.

Tanabe, T., H. Takeshima, A. Mikami, V. Flockerzi, H. Takahashi, K.
Kangawa, M. Kojima, H. Matsuo, T. Hirose, and S. Numa. 1987.
Primary structure of the receptor for calcium channel blockers from
skeletal muscle.Nature.328:313–318.

Tanabe, T., K. G. Beam, B. A. Adams, T. Niidome, and S. Numa. 1990.
Regions of the skeletal muscle dihydropyridine receptor critical for
excitation-contraction coupling.Nature.346:567–568.

Timerman, A. P., E. Ogunbumni, E. Freund, G. Wiederrecht, A. R. Marks,
and S. Fleischer. 1993. The calcium release channel of sarcoplasmic
reticulum is modulated by FK-506-binding protein.J. Biol. Chem.
268:22992–22999.

Tong, J., H. Oyamada, N. Demaurex, S. Grinstein, T. V. McCarthy, and
D. H. Maclennan. 1997. Caffeine and halothane sensitivity of intracel-
lular Ca21 release is altered by 15 calcium release channel (ryanodine
receptor) mutations associated with malignant hyperthermia and/or cen-
tral core disease.J. Biol. Chem.272:26332–26339.

Tong, J., T. V. McCarthy, and D. H. Maclennan. 1999. Measurement of
resting cytocolic Ca21 concentrations and Ca21 store size in HEK-293
cells transfected with malignant hyperthermia or central core disease
mutant Ca21 release channels.J. Biol. Chem.274:693–702.

Tripathy, A., W. Resch, L. Xu, H. H. Valdivia, and G. Meissner. 1998.
Imperatoxin A induces subconductance states in Ca21 release channels
(ryanodine receptors) of cardiac and skeletal muscle.J. Gen. Physiol.
111:679–690.

1782 Gallant et al.

Biophysical Journal 80(4) 1769–1782


