Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Apr;80(4):1940–1956. doi: 10.1016/S0006-3495(01)76164-4

DNA folding: structural and mechanical properties of the two-angle model for chromatin.

H Schiessel 1, W M Gelbart 1, R Bruinsma 1
PMCID: PMC1301383  PMID: 11259307

Abstract

We present a theoretical analysis of the structural and mechanical properties of the 30-nm chromatin fiber. Our study is based on the two-angle model introduced by Woodcock et al. (Woodcock, C. L., S. A. Grigoryev, R. A. Horowitz, and N. Whitaker. 1993. Proc. Natl. Acad. Sci. USA. 90:9021-9025) that describes the chromatin fiber geometry in terms of the entry-exit angle of the nucleosomal DNA and the rotational setting of the neighboring nucleosomes with respect to each other. We analytically explore the different structures that arise from this building principle, and demonstrate that the geometry with the highest density is close to the one found in native chromatin fibers under physiological conditions. On the basis of this model we calculate mechanical properties of the fiber under stretching. We obtain expressions for the stress-strain characteristics that show good agreement with the results of recent stretching experiments (Cui, Y., and C. Bustamante. 2000. Proc. Natl. Acad. Sci. USA. 97:127-132) and computer simulations (Katritch, V., C. Bustamante, and W. K. Olson. 2000. J. Mol. Biol. 295:29-40), and which provide simple physical insights into correlations between the structural and elastic properties of chromatin.

Full Text

The Full Text of this article is available as a PDF (207.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bednar J., Horowitz R. A., Dubochet J., Woodcock C. L. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J Cell Biol. 1995 Dec;131(6 Pt 1):1365–1376. doi: 10.1083/jcb.131.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bednar J., Horowitz R. A., Grigoryev S. A., Carruthers L. M., Hansen J. C., Koster A. J., Woodcock C. L. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14173–14178. doi: 10.1073/pnas.95.24.14173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler P. J., Thomas J. O. Dinucleosomes show compaction by ionic strength, consistent with bending of linker DNA. J Mol Biol. 1998 Aug 21;281(3):401–407. doi: 10.1006/jmbi.1998.1954. [DOI] [PubMed] [Google Scholar]
  4. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
  5. Crothers D. M., Drak J., Kahn J. D., Levene S. D. DNA bending, flexibility, and helical repeat by cyclization kinetics. Methods Enzymol. 1992;212:3–29. doi: 10.1016/0076-6879(92)12003-9. [DOI] [PubMed] [Google Scholar]
  6. Cui Y., Bustamante C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):127–132. doi: 10.1073/pnas.97.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fraden S., Kamien R. D. Self-assembly in vivo. Biophys J. 2000 May;78(5):2189–2190. doi: 10.1016/S0006-3495(00)76767-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  10. Horowitz R. A., Agard D. A., Sedat J. W., Woodcock C. L. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol. 1994 Apr;125(1):1–10. doi: 10.1083/jcb.125.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katritch V., Bustamante C., Olson W. K. Pulling chromatin fibers: computer simulations of direct physical micromanipulations. J Mol Biol. 2000 Jan 7;295(1):29–40. doi: 10.1006/jmbi.1999.3021. [DOI] [PubMed] [Google Scholar]
  12. Khrapunov S. N., Dragan A. I., Sivolob A. V., Zagariya A. M. Mechanisms of stabilizing nucleosome structure. Study of dissociation of histone octamer from DNA. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):213–222. doi: 10.1016/s0167-4781(96)00199-6. [DOI] [PubMed] [Google Scholar]
  13. Klenin K. V., Vologodskii A. V., Anshelevich V. V., Klishko VYu, Dykhne A. M., Frank-Kamenetskii M. D. Variance of writhe for wormlike DNA rings with excluded volume. J Biomol Struct Dyn. 1989 Feb;6(4):707–714. doi: 10.1080/07391102.1989.10507731. [DOI] [PubMed] [Google Scholar]
  14. Leuba S. H., Yang G., Robert C., Samori B., van Holde K., Zlatanova J., Bustamante C. Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11621–11625. doi: 10.1073/pnas.91.24.11621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Livolant F., Leforestier A. Chiral discotic columnar germs of nucleosome core particles. Biophys J. 2000 May;78(5):2716–2729. doi: 10.1016/S0006-3495(00)76816-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  17. Marko J. F., Siggia E. D. Driving proteins off DNA using applied tension. Biophys J. 1997 Oct;73(4):2173–2178. doi: 10.1016/S0006-3495(97)78248-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raspaud E., Chaperon I., Leforestier A., Livolant F. Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys J. 1999 Sep;77(3):1547–1555. doi: 10.1016/S0006-3495(99)77002-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schlick T. Modeling superhelical DNA: recent analytical and dynamic approaches. Curr Opin Struct Biol. 1995 Apr;5(2):245–262. doi: 10.1016/0959-440x(95)80083-2. [DOI] [PubMed] [Google Scholar]
  20. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  21. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Widom J. A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1095–1099. doi: 10.1073/pnas.89.3.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Widom J., Klug A. Structure of the 300A chromatin filament: X-ray diffraction from oriented samples. Cell. 1985 Nov;43(1):207–213. doi: 10.1016/0092-8674(85)90025-x. [DOI] [PubMed] [Google Scholar]
  24. Widom J. Physicochemical studies of the folding of the 100 A nucleosome filament into the 300 A filament. Cation dependence. J Mol Biol. 1986 Aug 5;190(3):411–424. doi: 10.1016/0022-2836(86)90012-4. [DOI] [PubMed] [Google Scholar]
  25. Widom J. Structure, dynamics, and function of chromatin in vitro. Annu Rev Biophys Biomol Struct. 1998;27:285–327. doi: 10.1146/annurev.biophys.27.1.285. [DOI] [PubMed] [Google Scholar]
  26. Widom J. Toward a unified model of chromatin folding. Annu Rev Biophys Biophys Chem. 1989;18:365–395. doi: 10.1146/annurev.bb.18.060189.002053. [DOI] [PubMed] [Google Scholar]
  27. Woodcock C. L., Grigoryev S. A., Horowitz R. A., Whitaker N. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9021–9025. doi: 10.1073/pnas.90.19.9021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yao J., Lowary P. T., Widom J. Direct detection of linker DNA bending in defined-length oligomers of chromatin. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7603–7607. doi: 10.1073/pnas.87.19.7603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Holde K., Zlatanova J. Chromatin higher order structure: chasing a mirage? J Biol Chem. 1995 Apr 14;270(15):8373–8376. doi: 10.1074/jbc.270.15.8373. [DOI] [PubMed] [Google Scholar]
  30. van Holde K., Zlatanova J. What determines the folding of the chromatin fiber? Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10548–10555. doi: 10.1073/pnas.93.20.10548. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES