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ABSTRACT The mechanism by which the cytoskeletal protein actin affects the conductance of amiloride-sensitive epithelial
sodium channels (ENaC) was studied in planar lipid bilayers. In the presence of monomeric actin, we found a decrease in the
single-channel conductance of a-ENaC that did not occur when the internal [Ca21]free was buffered to ,10 nM. An analysis
of single-channel kinetics demonstrated that Ca21 induced the appearance of long-lived closed intervals separating bursts
of channel activity, both in the presence and in the absence of actin. In the absence of actin, the duration of these bursts and
the time spent by the channel in its open, but not in its short-lived closed state, were inversely proportional to [Ca21]. This,
together with a lengthening of the interburst intervals, translated into a dose-dependent decrease in the single-channel open
probability. In contrast, a [Ca21]-dependent decrease in a-ENaC conductance in the presence of actin was accompanied by
lengthening of the burst intervals with no significant changes in the open or closed (both short- and long-lived) times. We
conclude that Ca21 acts as a “fast-to-intermediate” blocker when monomeric actin is present, producing a subsequent
attenuation of the apparent unitary conductance of the channel.

INTRODUCTION

Cytoskeletal elements participate in many cellular events
(Kabsch and Vandekerckhove, 1992; Mills and Mandel,
1994; Cowin and Burke, 1996; Zigmond, 1996; Janmey,
1998; Hu and Reichardt, 1999; Fuchs and Yang, 1999),
including regulation of a variety of ion transport events (see
Cantiello, 1995; Smith and Benos, 1996; Cantiello and Prat,
1996; Cantiello, 1997a,b; Hilgemann, 1997; Sheng and Pak,
2000 for reviews). Such a role for the cytoskeleton has been
also proposed regarding regulation of epithelial amiloride-
sensitive sodium channels (Smith et al., 1991; Cantiello et
al., 1991; Prat et al., 1993; Staub et al., 1996). More re-
cently, following the cloning of the three Epithelial Na1

Channel (ENaC) (Canessa et al., 1993, 1994; Lingueglia et
al., 1993) subunits, we used a planar lipid bilayer reconsti-
tution technique to study ENaC-cytoskeleton interactions
(Berdiev et al., 1996; Ismailov et al., 1997a). In this system,
we found that actin induced a two-fold reduction of ENaC
single-channel conductance accompanied by an increase in
channel open probability (Po). The present study was per-
formed to investigate specifically the mechanism(s) under-
lying the effect of actin on ENaC conductance.

To simplify the interpretation of the data, we restricted
our experiments to studying the effects of actin on single
channels formed bya-ENaC alone. We found that the
actin-induced reduction of the single-channel conductance

was independent of the degree of actin polymerization, but
was completely abolished by buffering [Ca21]free in the
solution bathing the ENaC-containing bilayers to,10 nM.
Elevation of [Ca21] in the presence of actin resulted in a
concentration-dependent decrease ina-ENaC unitary con-
ductance, with no apparent changes in channelPo. In con-
trast, raising [Ca21] in the absence of actin led to a dose-
dependent decrease in channelPo, with no changes in
conductance. Analyses of the kinetic properties of ENaCs
revealed that, both in the presence and in the absence of
actin, elevation of [Ca21] induced the appearance of rela-
tively long lived closed events separating bursts of ENaC
activity. The Ca21- induced decrease in single-channelPo in
the absence of actin was referable to elongation of these
interburst intervals, shortening of the time spent by ENaC in
its open state, and a decrease in the mean burst time of
ENaC. In the presence of actin, the duration of the interburst
intervals and the mean open time of ENaC were virtually
independent of [Ca21], whereas the mean burst time of
ENaC was inversely related to [Ca21]. These findings can
be interpreted as arising from the effects of Ca21 acting as
a “slow-to-intermediate” blocker of the open channel in the
absence of actin, and as a “fast” blocker in the presence of
actin.

MATERIALS AND METHODS

Reagents and solutions

Actin, purified from rabbit muscle (a kind gift of Dr. Steven S. Rosenfeld,
University of Alabama at Birmingham), was diluted to a final concentra-
tion of 10 mg/ml with a buffer containing (in mM): Tris, 2; CaCl2, 0.2;
MgATP, 0.2; and mercaptoethanol, 0.2, pH 8.0, and added to the bilayer
chamber (of 4 ml in volume) to reach a final concentration of 2.4mM. This
addition of actin resulted in the introduction of 2.068mM of MgATP and
CaCl2 into the bathing solution, which was taken into account when
calculating final concentrations of free divalent cations using the Bound-
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and-Determined program (Brooks and Storey, 1992). To ensure that actin
remained in the monomeric form, all of our experiments studying effects of
varying [Ca21] on ENaC (including the control recordings in the absence
of actin) were performed in the presence of 4mM DNase in the bathing
solution. Phospholipids were purchased from Avanti Polar Lipids (Alabas-
ter, AL). All other chemicals were reagent grade, and all solutions were
made with distilled water and filter sterilized before use (Sterivex-GS, 0.22
ı̀m filter, Millipore Corp., Bedford, MA).

In vitro translation of ENaC

a-rENaC protein (a kind gift of Dr. B. Rossier, Lausanne, Switzerland) was
in vitro translated using a TnT T7 Quick Coupled Transcription/Transla-
tion System kit (Promega, Madison, WI) according to manufacturers
instructions in the presence of canine microsomal membranes (Promega,
Madison, WI) and 0.8 mCi/ml [35S]Trans label (ICN, Costa Mesa, CA). A
25-ml translation reaction was mixed with 0.5 mg phosphatidylethanol-
amine, 0.3 mg phosphatidylserine, 0.2 mg phosphatidylcholine, and 25ml
of a buffer containing 60 mM tris-(hydroxymethyl)-aminomethane (Tris)
pH 6.8, 0.4% Triton X-100 (v/v), and 25% glycerol (v/v). The translated
proteins were eluted from a G-150 superfine Sephadex (Pharmacia Bio-
tech., Inc.) gel filtration column (5 mm in diameter, 2 ml in volume) with
a buffer containing 500 mM NaCl, 0.1 mM EDTA, and 10 mM Tris (pH
7.6), and Triton X-100 (0.2%, v/v). 100ml fractions were collected, and
counted to determine the fractions with highest level of [35S] incorporation.

Reconstitution into proteoliposomes

Three 100-ml fractions displaying the highest level of [35S] incorporation
were mixed with a phospholipid mixture (phosphatidylethanolamine: phos-
phatidylserine:phosphatidylcholine at a ratio of 50:30:20 w/w). Final vol-
ume was brought up to 600ml with 400 mM KCl buffer supplemented with
5 mM Tris/HCl, 0.5 mM MgCl2, 50 mM DTT, pH 7.4. To remove Triton
X-100, samples were mixed with 150-mg Bio-Beads SM-2 (Bio-Rad,
Melville, NY) and rotated at room temperature for 45 min, followed by
overnight incubation at 4°C. Proteoliposomes were separated from the
beads using a 1-ml syringe, sonicated for 40–45 s at 43 kHz (160 Watts),
and allowed to re-form by freeze-thawing three to five times. This proce-
dure resulted in dissociation of putative individual conduction elements of
ENaC held together by sulfhydryl bonds (Ismailov et al., 1996). After
DTT-treatment, single amiloride-sensitive Na1 selective channels with
uniform conductance of 13 pS in more than 70% of total incorporations
were observed (Berdiev et al., 1998, Ismailov et al., 1999). Divided into
25-ml aliquots, proteoliposomes were stored at270°C. Mock controls
were prepared by performing the in vitro translation reaction in the absence
of ENaC cRNA, and reconstituting the purified reaction products into
proteoliposomes following an identical protocol.

Planar lipid bilayer experiments

Proteoliposomes were fused with the Mueller–Rudin planar lipid bilayers
made of a 2:1 (wt:wt) diphytanoyl-phosphatidyl-ethanolamine/di-
phytanoyl-phosphatidylserine solution inn-octane (final lipid concentra-
tion 25 mg/ml). The bilayers were bathed with symmetrical 100 mM NaCl,
10 mM Tris-MOPS buffer (pH 7.4), supplemented with 100mM EGTA.
Single-channel currents were measured using a conventional current-to-
voltage converter with a 10-GV feedback resistor (Eltec, Daytona Beach,
FL) as described previously (Ismailov et al., 1997b). The identity and
orientation of ENaCs in the membrane was tested at the end of each
experiment by adding 0.5mM amiloride to thetrans compartment of the
bilayer chamber. Single-channel analyses were performed using pCLAMP
6.0 software (Axon Instruments, Burlingame, CA) on current records
low-pass filtered at 300 Hz through an 8-pole Bessel filter (902 LPF,

Frequency Devices, Haverhill, MA) before acquisition using a Digidata
1200 interface (Axon Instruments). The actual number of functional ENaC
channels in each given experiment was determined by transiently activat-
ing them (including those initially “silent”) by establishing a hydrostatic
pressure gradient across the membrane (Awayda et al., 1995; Ismailov et
al., 1996). Bilayers containing multiple channels were not used.

RESULTS

We first tested the hypothesis that the effects of actin on
ENaC conductance were not associated with the elongation
of actin filaments. This hypothesis was based on the fol-
lowing observations: 1) alterations in both the conductance
and thePo of ENaC were evident at concentrations of actin
($0.6 mM) and ionic conditions (100 mM NaCl,;10 mM
[Ca21]free) under which spontaneous polymerization of this
cytoskeletal protein occurs (Carlier et al., 1986a,b; Kinosian
et al., 1991; Cooper et al., 1983). 2) changes inPo, but not
in ENaC conductance, displayed a characteristic time
course that correlated with that expected for actin filament
formation. Because divalent cations are required for the
formation of actin filaments in solution (Pollard and Coo-
per, 1986), we first determined the effects of actin on
a-ENaC when [Ca21]free in the bilayer bathing solution was
buffered to,10 nM. Depletion of [Ca21]free in the solution
increased the fraction of time ENaC remained open from 0.6
to 0.95 (compare first and second traces in Fig. 1A). Sub-
sequent addition of actin at concentrations up to 2.4mM
under these nominally Ca21-free conditions did not change
ENaC conductance or kinetics (Fig. 1A, third trace). To
ensure that actin remained in its monomeric form, we used
deoxyribonuclease I (DNase I), an endonuclease that forms
a tight 1:1 association with G-actin (Mannherz et al., 1975),
thus preventing its polymerization (Hitchcock et al., 1976;
Hitchcock, 1980). Moreover, DNase I can cause depolymer-
ization of any filamentous actin (Hitchcock et al., 1976;
Hitchcock, 1980). Figure 1B depicts representative current
traces ofa-ENaC in the presence of DNase I. No changes in
channel activity were observed after addition of DNase I
under nominally Ca21-free conditions (Fig. 1B, first and
second traces). Addition of up to 2.4mM actin produced no
changes in ENaC properties (third trace), unless [Ca21] was
in the micromolar range (fourth trace).

We next designed experiments to investigate the mecha-
nism(s) underlying the effects of monomeric actin on chan-
nel conductance. We varied [Ca21]free in thea-ENaC bath-
ing solution in the presence or in the absence of actin. If
Ca21 ions were essential for the effect(s) of actin on ENaCs,
a dependence of channel conductance on [Ca21] would be
expected. Figures 2 and 3 illustrate the results of experi-
ments testing this prediction. Increasing the Ca21 concen-
tration in the absence of actin produced relatively long
channel closures, resulting in a dose-dependent (KD 5
20.26 4.6 mM; N 5 4) decrease in single-channelPo (Fig.
2, A and B). Single-channel conductance remained un-
changed (13 pS, Fig. 2C). In contrast, raising [Ca21] in the
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presence of actin caused no apparent change inPo of the
channel (Fig. 3,A andB), but resulted in a dose-dependent
(KD 5 5.86 1.9mM; N 5 5) decrease in the single-channel
conductance (Fig. 3,A andC).

Another potential contributor to the decrease in single-
channel conductance of ENaC is Mg21, which was intro-
duced into the bathing solution together with actin mostly in
the form of Mg-ATP. If polymerization of actin occurred in
the presence of DNase, hydrolysis of 2.068mM of Mg-ATP
(the maximal concentration that could be achieved at a final
concentration of actin of 2.4mM) could result in the release
of an equivalent amount of Mg21 (Pollard and Weeds,
1984; Korn et al., 1987; Carlier et al., 1987; Carlier et al.,
1988; Carlier, 1990; Estes et al., 1992). In a solution buff-
ered with 100mM EGTA, 90–100% of this Mg21 should
exist as free ion (Brooks and Storey, 1992). However, in
control experiments, the single-channel properties (Po or
conductance) of ENaC in the presence of 2mM of Mg21 in
the bathing solution were statistically indistinguishable
from those measured in the absence Mg21, either in the
absence or presence of actin (data not shown). In addition,
a gradual decrease in conductance was observed when free
Ca21 was elevated, in spite of the [Mg21]free remaining
unchanged (Fabiato and Fabiato, 1979; Tsien, 1980; Bers,
1982; Smith and Miller, 1985; Harrison and Bers, 1989).
Based on these findings, we conclude that the effect of actin
on ENaC conductance can be attributed to monomeric (or
G-) actin, and requires the presence of Ca21 ions in the
bathing solution.

Under nominally Ca21 free conditions, in the absence or
in the presence of monomeric actin (upper panelsin Fig. 4,

A and B, respectively), a single exponential function de-
scribes well both the closed and the open time distributions,
with ;10 ms and 300–400 ms constants, respectively.
Increasing [Ca21]free in the bathing solutions caused a de-
crease in the duration of time spent by the channel in its
open state (in the absence, but not in the presence of actin)
and the appearance of a second, relatively long-lived closed
state (t0c), with no change in the time spent by the channel
in its initial short-lived closed state (t9c) (both in the absence
and in the presence of actin, see Fig. 4,A andB). Table 1
depicts statistically treated numerical data for the open and
closed time constants determined for each experimental
condition.

DISCUSSION

A parsimonious interpretation of these findings is that the
changes in channel behavior observed both in the presence
and in the absence of monomeric actin could arise from a
block of ENaC by Ca21. Consider the blocking scheme,

Closed̂
b

a

Open-|0
kon@Blocker#

koff

Blocked.

SCHEME 1

This model predicts that the reciprocal mean open time
(1/to) is given by the relation,

1/to 5 a 1 kon@Blocker#, (1)

FIGURE 1 Effect of nonpolymerized actin ona-ENaC incorporated into planar lipid bilayer. Bilayers were bathed with symmetrical 100 mM NaCl, 10
mM MOPS-Tris (pH 7.4) solution containing 100mM EGTA. Holding potential was1100 mV referred to the virtually groundedtranschamber. Records
shown were filtered at 300 Hz with an 8-pole Bessel filter before acquisition at 1 ms per point using pCLAMP software (Axon Instruments). The level of
free [Ca21] was calculated using the Bound-and-Determined computer program (Brooks and Storey; 1992). Polymerization of actin (2.4mM, added to the
both compartments) was prevented by buffering [Ca21]free in (A) bilayer bathing solutions with 100mM EGTA, or (B) by addition of 4mM DNase I. Traces
shown in (A) and (B) are representative of at least six and five experiments, respectively.
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and the 1/mean blocked time (1/tblocked) as

1/tblocked5 koff . (2)

In agreement with the predictions of kinetic Scheme 1, the
reciprocal plots of ENaC lifetimes as a function of [Ca21]
showed that the mean channel open time was indeed in-
versely proportional to [Ca21] in the absence of actin (Fig.
5A). In the presence of actin, however, this parameter was
independent of [Ca21] (Fig. 5 D).

Understanding the nature of the two closed states of
ENaC observed in the presence of Ca21 both in the presence
and in the absence of actin is complex because of the
difficulty in distinguishing between the times spent by a
channel in a closed versus a blocked state. The basic kinetic
Scheme 1 predicts that the blocked time (which is the
inverse ofkoff) should be independent of the blocker con-
centration. In our analyses, this was true for the short-lived
closed time, both in the presence or in the absence of actin

FIGURE 2 Effect of Ca21 on
a-ENaC in planar lipid bilayers in the
absence of actin. (A) Recording and
acquisition conditions were the same
as for Fig. 1. To ensure that actin
remained in the monomeric form, all
of our experiments studying effects
of varying [Ca21] on ENaC (includ-
ing the control recordings in the ab-
sence of actin) were performed in the
presence of 4mM DNase in the bath-
ing solution. The final free Ca21 con-
centrations indicated above the
traces, were calculated using the
Bound-and-Determined computer
program. Additions of EGTA (100
mM) and Ca21 were made to both
compartments of the chamber. Traces
shown are representative of at least
six experiments. (B) [Ca21]-depen-
dence ofa-ENaC open probability in
the absence of actin. Line in the plot
represents a fit of the data to the
first-order Michaelis–Menten equa-
tion Po 5 Pomax(1 2 [Ca21]/(KD 1
[Ca21])) (Eq. 8) with aKD of 18.2 z

1026 M. (C) Summary plot of single-
channel unitary conductance of
a-ENaC as a function of [Ca21].
Line in the plot is a linear regression
fit of the data.
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(see Fig. 5,B andE). However, short closures with a similar
mean closed time were also present in the nominal absence
of Ca21. If the blocking reaction is slower than the gating
reaction, the appearance of the periods of fast channel
gating (bursts) flanked by slow closures would be expected.
The kinetic pattern of ENaC in the presence (but not in the
absence) of Ca21 resembles this description. If the second,
long-lived, closed state of ENaC induced by Ca21 were the
periods when the channel was blocked, their duration
should be independent of the blocker concentration. The
plot of the reciprocal mean time spent by the channel in the
long-lived closed state in the presence of actin, complied
with this prediction (Fig. 5F). In the absence of actin,
however, the mean time of the channel residing in this state

was a linear function of [Ca21] (Fig. 5 C). This result
suggests the presence of several blocked states in series,

Open^ Blocked1^ Blocked2^ · · ·^ Blockedi ,

SCHEME 2

where the probability of finding the channel in a given
blocked state is dependent on the concentration of [Ca21].
Recall that the duration of the short (;10-ms) closures of
ENaC were independent of [Ca21] and were present even in
the nominal absence of Ca21. Moreover, their frequency
increased as [Ca21] was elevated. This is possible if the rate
constant for entering the blocked state is similar to that of

FIGURE 3 Effect of Ca21 on
a-ENaC in planar lipid bilayers in the
presence of globular actin. (A) Re-
cording conditions were the same as
for Fig. 1. Actin (2.4 mM), EGTA
(100 mM), 4 mM DNase, and Ca21

(shown above the traces) were
present in both compartments of the
chamber. Traces shown are represen-
tative of at least 5 experiments. (B)
Summary plot ofa-ENaC open prob-
ability as a function of [Ca21]. Line
in the plot is a linear regression fit of
the data. (C) [Ca21]-dependence of
single-channel unitary conductance
of a-ENaC in the presence of actin.
Line in the plot represents a fit of the
data to the first-order Michaelis–
Menten equationg 5 gmax(1 2
[Ca21]/(KD 1 [Ca21])) (Eq. 9) with a
KD of 5.1 z 1026 M.
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the gating process itself,

Closed̂
b

a

Open-|0
kon fast@Ca21#

koff fast

Blockedfast-|0
kon slow

koff slow

Blockedslow,

SCHEME 3

wherekon fast' a. In this case, the number of fast blocked
events per unit open timeNB, is

NB 5 kon fast@Ca21#Po, (3)

where thePo is the conditional probability of the channel
being open, given that it can reside in one of the two states,
open and closed. This conditional open probability is effec-
tively the open probability inside a burst. The experimental
values for these parameters at each given [Ca21] can be
calculated as follows. The number of the fast blocked events
is assumed to be the total number of events spent by the
channel in the short-lived closed state (dotted linesin the
representative closed time histograms in Fig. 4,A and B).
The total time spent by the channel in the open state is given
by the integral of the probability density function fitting the
open time histogram. The open probability inside the burst

can be calculated as a ratio of the total time spent by the
channel in the open state to the total time spent by the
channel in the short-lived closed state (calculated as the
integral of the probability density function fitting the short-
lived component of the closed-time histogram). These anal-
yses demonstrate that, in the absence of actin, the frequency
of the appearance of the fast closed state of ENaC is a linear
function of [Ca21] with a slope of 4.7z 105 M21s21 (Fig.
5 G), which is in good agreement with thekon 5 5.1 z 105

M21s21 calculated as the slope of the 1/to versus [Ca21]
plot. In the presence of actin, however, the slope of the plot
of the frequency of the fast closed state of ENaC was 1.6z
104 M21s21. Thus, we conclude that, at least in the absence
of actin, it is purely coincidental that there is an absence of
a second fast closed state corresponding to the Ca21 block.
Although the experimental data show only two well-defined
closed states, it is possible that other blocked states are
actually present at different [Ca21].

If the long quiescent periods that were virtually absent in
the absence of Ca21 do correspond to Blockedslow in
Scheme 3, some predictions for the duration of bursts of
channel activity can be made. The termination of a burst in

FIGURE 4 Effect of [Ca21] on kinetic properties ofa-rENaC in planar lipid bilayers in the absence and in the presence of actin. Representative
dwell-time histograms were constructed following the events analyses performed using pCLAMP software (Axon Instruments) on single-channel recordings
of 10 min in duration filtered and acquired as described in Fig. 1. The event detection thresholds were 50% in amplitude of transition between closed and
open states, and 3 ms in duration. Closed and open time constants shown were determined by fitting the closed and open time histograms to the probability
density functiong(x) 5 (j51

k ajgo(x 2 sj) (Eq. 10), wheresj is the logarithm of thejth time constant, andaj is the fraction of total events represented by
the jth component (Sigworth and Sine, 1987), and using the Simplex least square routine of pSTAT. The number of bins per decade in all histograms was
16. Numbers of events used for construction of the closed and open time histograms shown were: 2249 and 2248 (0mM Actin; ,10 nM Ca21), 3638 and
3637 (0mM Actin; 10 mM Ca21), 1866 and 1867 (2.4mM Actin; ,10 nM Ca21), 1798 and 1797 (2.4mM Actin; 10 mM Ca21), respectively.
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this case is exiting the set of closed, open, and fast blocked
states, and the rate constant for this transition is the inverse
of the mean burst duration (tburst) times a conditional prob-
ability of being in a burst (Pburst),

kon slow5 ~1/tburst! z Pburst, (4)

where

Pburst5 Pblocked fast5
kon fast@Ca21#

kon fast@Ca21# 1 koff fast
. (5)

The analyses of burst kinetics of ENaC as a function of
[Ca21] are shown in Fig. 6. The distributions of burst times
of ENaC activity at different [Ca21]free in the absence and in
the presence of actin can be fit to a single exponential (Fig.
6, A andB, respectively). Table 2 shows statistically treated
numerical data for duration of bursts at different [Ca21].
The plot of the reciprocal dwell-time constants obtained
from these fits as a function of [Ca21] is shown in Fig. 6C.
In the absence of actin, 1/tburst tends to saturate, just as
predicted from Eqs. 4 and 5. In the presence of actin,
increasing [Ca21]free resulted in an elongation of these burst
periods. This result is possible if the rate of blocking/
unblocking transition is fast compared to the closing reac-
tion (both modified by actin). Burst termination occurs

because the channel enters the closed state,

Closed9-|0
b9

a9

Open9-|0
k9on fast@Ca21# .. a9

k9off fast .. b9

Blocked9fast.

SCHEME 4
The mean burst time is given by,

tburst5 1/a9 z P9burst, (6)

where

P9burst5 P9o 5
k9off fast

k9on fast@Ca21# 1 k9off fast
. (7)

Therefore,tburstwill increase linearly with [Ca21]. Thus, in
the absence of actin, Ca21 acts as a slow-to-intermediate
blocker of an open ENaC; in the presence of actin, this
block becomes fast. If the time scale of “flickering” exceeds
the limit of resolution of the recording system, the unitary
conductance of the channel appears to be lowered (Vergara
and Latorre, 1984; Yellen, 1984; Villarroel et al., 1988;
Green et al., 1987; Wang, 1988).

To conclude, we have found that the reduction of the
single-channel conductance of ENaC in the presence of
actin is independent of polymerization of this cytoskeletal
protein, but depends on the presence and concentration of
Ca21 ions in the bathing solution. The results of analyses of

TABLE 1 Effect of [Ca21]free on kinetic properties of a-ENaC in bilayers in the absence and in the presence of actin

[Ca21]free

(mM)

State Minimum total
number of single
channel events

fitted in a single
experiment

Number of
experiments

Opento

(M 6 m, ms)

Closed,
short-livedt9c
(M 6 m, ms)

Closed
Long-lived t0c
(M 6 m, ms)

0 mM Actin
,0.01 3436 31 96 5 — 3305 13
0.01 2936 38 106 7 906 24 3225 9
0.1 3156 33 96 4 1006 27 3266 9
0.491 2646 34 106 5 1116 29 3873 8
0.983 2316 29 96 5 1066 32 4083 7
1.44 2226 43 106 5 1146 41 5012 5
5 1326 31 126 6 1366 39 5579 4
10 1096 27 106 5 2206 38 6488 6
25 666 21 116 6 3106 49 6528 7
50 346 13 106 4 9096 161 9497 6
100 166 8 96 5 42036 647 6785 4

2.4 mM Actin
,0.01 3386 35 106 6 — 3351 17
0.01 3366 42 96 7 — 3403 12
0.1 2846 34 106 5 956 12 3612 11
0.491 2986 41 116 6 996 16 3421 5
0.983 3286 34 106 7 1046 13 3181 7
1.44 2936 45 96 6 1046 18 3229 6
5 2956 40 106 5 946 13 3413 6
10 3186 37 116 4 1026 17 3087 7
25 2946 44 106 5 906 19 3524 4
50 3076 34 116 4 1086 21 3514 5

2182 Berdiev et al.
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FIGURE 5 Analyses of the times spent bya-ENaC in open and closed states versus [Ca21]. Data points represent the reciprocals of the dwell time
constants of ENaC in the (A—C) absence, and (D—F) presence of actin determined as described in Fig. 4. Numbers next to the plots represent the slopes
of the first-order regression fits of the data (if different from zero). (G) The frequency of appearance of the short-lived closed state per unit open time was
calculated as the total number of events spent by the channel in the short-lived closed state (the sum of the probability density function fitting the short
lived component of the closed time histogram, see dotted lines in the histograms in Fig. 4), normalized for the time spent by the channel in the open state
(the integral of the probability density function fitting the open time histogram). Numbers next to the plots represent the slopes of the first-orderregression
fits of the data.
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FIGURE 6 Effect of [Ca21] on duration of bursts ofa-rENaC activity in the absence and in the presence of actin. Burst dwell time histograms were built
from the events lists constructed by the pCLAMP software (Axon Instruments) for single-channel recordings of 20 min in length acquired as described in
Fig. 1. The bursts were recognized by setting the closed-time duration threshold at one-third of the mean dwell time spent by the channel in the second
closed state (defined as a Ca21-blocked state), and the 50% amplitude crossing threshold. Burst-time constants shown were determined by fitting the data
to the probability density function (Eq. 10) using the simplex least square routine of pSTAT. Numbers of events used for construction of the histograms
shown in (A) (in the absence of the actin) were: 255 (0.1mM Ca21), 614 (1mM Ca21), 799 (10mM Ca21), and 752 (100mM Ca21). Histograms shown
in (B) (in the presence of the actin) were constructed from 328 (0.1mM Ca21); 207 (1mM Ca21), 160 (10mM Ca21), and 110 (50mM Ca21) events.
Number of bins per decade in all histograms was 16. (C) Lines in the graph represent the second- and the first-order regression fits of the reciprocal burst
time constants determined as shown in (A) and (B), respectively.
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single-channel kinetics are consistent with the idea that, in
the presence of actin, Ca21 acts as a fast-to-intermediate
open channel blocker of ENaC.
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