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ABSTRACT A simplified pore-to-pore hopping model for the two-phase diffusion problem is developed for the analysis of
the pulsed gradient spin echo (PGSE) attenuation of water diffusion in the condensed cell suspension systems. In this model,
the two phases inside and outside the cells are treated as two different kinds of pores, and the spin-bearing molecules
perform hopping diffusion between them. The size and the orientations of those two respective pores are considered, and
then the diffraction pattern of the PGSE attenuation may be well simulated. Nevertheless, the intensity of the characteristic
peak decreases with increasing membrane permeability, from which the exchange time may be estimated. We then analyze
the experimental 1H PGSE results of the erythrocytes suspension system. The water-residence lifetime in the erythrocyte is
obtained to be 10 ms, which is the same as that estimated from the two-region approximation. Furthermore, the PGSE
attenuation curve of addition of p-Chloromercuribenzenesulfonate (p-CMBS) is also discussed. It predicts that the alignment
of erythrocytes will become normal to the magnetic field direction after the addition of p-CMBS, and inspection using a light
microscope confirms that result.

INTRODUCTION

Pulsed field gradient spin echo (PGSE) nuclear magnetic
resonance technique has been used to probe the structures of
porous materials and the diffusion of the confined spin-
bearing molecules (Tanner and Stejskal, 1968; Callaghan,
1991). It is well known that, inq space experiments there
are diffraction-like patterns shown in the PGSE attenuation
curves for various cases of restricted diffusion (Callaghan et
al., 1991; Balinov et al., 1994; Kuchel et al., 1997; Cal-
laghan, 1995; Codd and Callaghan, 1999). For restricted
diffusion in single pores, the characteristic diffraction-like
pattern may reflect the size of the pore, whereas, for re-
stricted diffusion among well-separated multipores, the pat-
terns reflect the mean distance between the pores.

Kärger (1985) developed an analytical approach to ex-
amining PGSE attenuation through two-region exchange
approximation. Because there is exchange between two
freely diffusing phases, the calculated double exponential
decay profile does not display the diffraction-like pattern as
observed in the PGSE experiment on the erythrocyte sus-
pension system. Stanisz et al. (1998) modified Ka¨rger’s
interpretation for the PGSE attenuation of the erythrocyte
suspension, in which they considered the diffusion within
an erythrocyte as one-dimensional restricted diffusion. They
also estimated an apparent diffusion coefficient from the
PGSE attenuation feature by considering one-dimensional
restricted diffusion and then calculated the profile of PGSE
attenuation using the two-region exchange model. Simi-

larly, Price et al. (1998) derived the apparent diffusion
coefficient from the PGSE attenuation of the restricted
diffusion in a spherical pore. Also, Peled et al. (1999)
applied the same strategy to studying water diffusion in the
frog sciatic nerve and derived the apparent diffusion coef-
ficient from the PGSE attenuation in a cylindrical pore to
mimic the restricted diffusion in the nerve cells. All those
results involve the usage of the apparent diffusion coeffi-
cient to illustrate the effects of the restricted diffusion in the
cells and, in turn, to explain the diffraction-like pattern of
the PGSE attenuation curve.

Kuchel et al. (1997) explored the PGSE experiments for
the erythrocytes suspension system and estimated two phys-
ically significant lengths from the two diffraction-like pat-
terns of the attenuation profile. They assigned the two
lengths obtained to the size of the erythrocyte and the
average distance of extracellular pore spacing. Such a treat-
ment is similar to that adopted by Callaghan et al. (1991) for
the pore-like space between the polystyrene spheres. They
have used this method to derive the PGSE attenuation for
the restricted diffusion among multipores of the same size.
Also, they introduced an effective diffusion coefficient to
describe self-diffusion for long-range migration between
pores. The formulation used by Stanisz et al., (1998), Peled
et al., (1999), and Price et al., (1998) can be used to interpret
the diffraction-like pattern caused by the restricted diffusion
in the erythrocytes, but it cannot be used to explain the first
diffusion-like peak observed by Kuchel et al. (1997). It
implies that there exists some constraint in extracellular
diffusion. Therefore, a new model is needed to include the
effects of the size and the arrangement of the erythrocytes
and the external pores between the erythrocytes. Because
such systems are too complicated to be solved exactly by
the general diffusion equation, the modified pore-to-pore
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hopping model may be used as an approximation for study-
ing the diffusions in the erythrocyte suspension system.

In the present work, we develope a simplified diffusion
model for a two-phase system, represented by the coupled
master equations (Haus and Kehr, 1987) with pore-to-pore
hopping exchange between two different pores. We take
into account the effects of the pore size, the spatial arrange-
ment of the pores, and the variation of water-residing times
in each phase on the PGSE attenuation. Then we calculate
the PGSE attenuation of diffusion among multipores of the
same size and compare the results with those derived by
Callaghan (1995). Also, we applied the proposed model to
analyzing the results of the PGSE experiments for the
erythrocyte suspension system.

THEORY

The general formulation

The formulation of the PGSE attenuation for the molecular
diffusion among multipores can be easily derived based on
the “pore equilibrium” condition (Callaghan et al. 1991).
This assumption is suitable for a porous medium with
well-defined pore–channel structure, i.e., the size of the
channels is much smaller than that of the pores. With the
pore equilibrium condition and the short gradient pulse
approximation (Tanner and Stejskal, 1968; Linse and So¨-
derman, 1995), where the waveform of the gradient pulse is
considered to be ad-function in time domain, the PGSE
attenuation of diffusion among multi-identical pores can be
expressed inq space by (Callaghan, 1991)

E~q, D! 5 O
n
E

V0

dr0E
Vn

drnr~r0!
P~n,D!

V

3 exp@i2pq z ~rn 1 Rn 2 r0!#

5 Sp~q!S~q!P(q, D), (1)

whereq 5 gdG/2p, g is the gyromagnetic ratio,d is the
duration of the magnetic field gradient pulses,G is the
strength of the gradient; andr(r0) is the density of the spins
within the 0th pore initially, andD is the interval between
the two pulsed gradients. The subscript 0 represents the 0th
pore, e.g., the pore where the spin is situated at the initial
time, and the subscript n indicates the nth pore where the
spin is situated at timeD. V0 andVn are the internal space of
the 0th and the nth pores, respectively.r0 and rn are the
position vectors of the pore centers at the 0th and thenth
pores, respectively. In Eq. 1, S(q) [ *V dr (1/V)exp(i2pq z
r ) is called the “structure factor” of the pore, where 1/V is
the density of the spins, which normalizes the amount of the
spins in a pore, andV is the volume of a single pore. P(n, D)
is the probability of a spin existing in the nth pore at timeD,

Rn is the position vector of the center of the nth pore relative
to that of the 0th pore, and

P(q, D) 5 O
n

P~n, D!exp~i2pq z Rn!. (2)

Thus P(q, D) describes the arrangement of the pores as
expressed inq space, and one may derive it in terms of the
hopping exchange model described in the master equation
in the next section.

Diffusion among identical pores

For restricted diffusion in a single pore with a permeable
wall, one may treat the boundary as a semi-adsorptive wall
(Barzykin et al. 1995),

D
­P(r 0ur , t)

­r
1 H z P(r 0ur , tur5a 5 0, (3)

whereD is the diffusion coefficient,H is a constant to
represent the transport ability of the boundary;r 0 and r
are the position vectors; P(r 0ur , t) is the probability of
finding a particle initially atr0 and atr after a timet, and
a represents the position where the boundary exists. By
solving the diffusion equation with the boundary condi-
tion described by Eq. 3, the total probability within the
pore, e.g.,*V drP(r0ur, t), gives an exponential decay
form with a characteristic lifetime. By analogy, we
adopted the same idea to the case of the exchange diffu-
sion among multipores and take the lifetime as the time
needed to travel from one pore to another. Then, the
master equation, which is analogous to that of the mul-
tisite jump diffusion (Haus and Kehr 1987), can be con-
structed. The master equation of hopping diffusion
among pores of the same size can be written as

­Pi~t!

­t
5 O

j51

N

WPij~t! 2 NWPi~t!, (4)

where Pi(t) is the probability of a spin existing at theith pore
at timet, Pij(t) is the joint probability of a spin existing at the
jth pore neighboring to theith pore,N is the number of the
first shell of pores, andW 5 1/Nt is the pore-to-pore
exchange rate, wheret is the spin residence lifetime in a
pore.

In Eq. 2, P(q, t 5 D) may be obtained readily by the
Fourier–Laplace transform of Eq. 4 and then solved by
inverse Laplace transform, which yields

P(q, D) 5 exp@2D z NW~1 2 A@q#!#

5 expF2
D

tj
~1 2 A@q#!G , (5)

2494 Jiang et al.

Biophysical Journal 80(6) 2493–2504



where

A@q# ;
1

NO
j51

N

exp~i2pq z Rj!

is called the configuration integral of this multipore sys-
tem andRj is the position vector of the center of the
jth pore in the first shell relative to that of the central
pore.

Equation 5 was in the same form as that derived previ-
ously by Callaghan et al. (1991), except that the termD/tj is
replaced byDeffD/6l2 in their formulation, whereDeff is the
long-time limit (effective) diffusion coefficient among the
pores, andl is the distance between two pores.

Application to cell suspension systems

The formulation may be extended with the help of Eq. 1 to
condensed cell suspension systems. As shown in Fig. 1, the
condensed cell suspension system can be approximated as a
system consisting of two kinds of pores. We denote the cells
as pores C. The space enclosed by the cells can be consid-
ered as the external pores, which are denoted as pores S.
One may suppose that the diffusion of spin-bearing mole-
cules starting from a pore C (or S) initially can be found
either in a pore C or in a pore S at timeD, and thus four
cases must be considered. Particularly, for those spins ex-

isting in pores C initially, and at a later timeD in pores S,
the contribution to the magnetization is given by

MC3 S(q, D) 5 SC(q, D)

3 E
VC

dr Cr~r C!E
VS

dr S

1

VS
exp@i2pq z ~r S 2 r C)], (6)

where

SC(q, D) 5 O
n

SC~n, D!exp~i2pq z RSn!, (7)

and where SC(n, D) is the probability for a spin diffusing from
a pore C initially to thenth pore S at timeD. RSnis the position
vector at the center of thenth pore S relative to that of the
initial pore C.VC andVSare the volumes of a single pore C and
pore S, respectively.rC andrS are the position vectors within
a pore C and a pore S relative to their pore centers, respec-
tively. The expressions for the other cases, C3C (pore C to
pore C), S3C and S3S are similar. Here, the subscript C
means the starting point is a pore C, and the subscript S means
the starting point is a pore S. There are only three hopping rate
constants considered in this system because the cells do not
connect to each other directly. Pores S are all connected to their
neighboring pores S with a hopping rate ofWSS. Pores C are
isolated from the other pores C, but are connected to their
neighboring pores S with hopping rate constantsWCS 5
1/(NtC) and WSC 5 1/(NtS), wheretC and tS are the spin
residence lifetimes of pores C and pores S, respectively.

Furthermore, in the PGSE experiment, the time interval
between the two gradient pulses is set shorter than the trans-
verse spin relaxation, and the observed magnitudes of PGSE
attenuation for variousq is normalized by the observed value
at q 5 0. Thus, for this simplified system, the effect of the
transverse spin relaxation processes is cancelled. The master
equation may be written without the spin relaxation term as

­Cn~t!

­t
5 O

i51

N

WSCSni~t! 2 NWCSCn~t!, (8a)

­Sn~t!

­t
5 O

i51

M

WSSSni~t! 1 O
i51

N

WCSCni~t!

2 ~NWSC 1 MWSS!Sn~t!, (8b)

where Cn(t), Sn(t), Cni(t), and Sni(t) are the corresponding
probabilities at timet, N is the coordination number of a
pore C surrounded by S pores, andM is that of a pore S
surrounded by other S pores. For simplicity, we set the same
valueN as the coordination number of a pore S surrounded
by pores C. Then we follow the hopping exchange model
and obtain CC(q, D), SC(q, D), CS(q, D), and SS(q, D) by
solving the coupled master equation after the Fourier–
Laplace transform and the inverse Laplace transform as

FIGURE 1 The pictorial representation of the simplified two-phase
model consisting of the cells (solid circle, pores C, solid line represents the
membrane) and the pores between the cells (dotted circle, pores S).RC and
RS are the radius of pores C and pores S, respectively. The mean distance
between two pores S isd. The mean distance between a pore C and a pore
S is b. The hopping rates between pores are also marked byW with
appropriate subscripts to indicated the exchanging species.
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derived in the Appendix.MC3S may be calculated in ac-
cordance with Eq. 6. By analogy,MC3C, MS3C, andMS3S

can be obtained accordingly. Consequently, for random
pore arrangement, we obtain

CC(q, D) 5 xCCexp~l1D! 1 yCCexp~l2D!, (9a)

SC(q, D) 5 xSCexp~l1D! 1 ySCexp~l2D!, (9b)

CS(q, D) 5 xCSexp~l1D! 1 yCSexp~l2D!, (9c)

SS(q, D) 5 xSSexp~l1D! 1 ySSexp~l2D!, (9d)

where the parametersxi andyi (i 5 CC, SC, CS, and SS) are
defined in the Appendix. They are related to the hopping
rate and the pore-to-pore distance. The exponent parame-
ters,l1, andl2, in Eqs. 9 are given by

wherea is defined by

a 5 NWSC 1 MWSS@1 2 sinc~2pqd!#. (11)

On the basis of the completely random arrangement of pore
C and pore S, the derivation procedures are readily pre-
sented in the Appendix. By summing up the four parts as
given in Eq. 9, we obtain the PGSE attenuation

E~q, D! 5
1

VC 1 VS
HFxCC

VC
FC

2 1 SxSC

VS
1

xCS

VC
DFCFS 1

xSS

VS
FS

2G
3 exp~l1D! 1 FyCC

VC
FC

2 1 SySC

VS
1

yCS

VC
DFCFS

1
ySS

VS
FS

2Gexp~l2D!J , (12)

where the structure integral for a single pore C and a single
pore S are given by

FC ; E
VC

dr Cexp~i2pq z r C)

and

FS ; E
VS

dr Sexp~i2pq z r S),

respectively. 1/(VC 1 VS) is the density of the spins, which
normalizes the amount of the spins in one pair of pore C and
pore S.

MATERIALS AND METHODS

Preparation of erythrocyte suspension

Blood was obtained from a healthy human volunteer. The erythrocytes
were centrifugally washed (30003 g, 10 min) two times in cold glucose-
enriched saline solution (154 mM NaCl, 10 mM glucose, 4°C). The plasma
and the buffy coat were discarded. The appropriate amount of cold glucose-
enriched saline solution was then added to form the erythrocyte suspension.
All erythrocyte suspensions were gently bubbled with carbon monoxide for
5 min to transform the hemoglobin into a stable low-spin diamagnetic state.
For the experiments on inhibiting transmembrane water exchange, p-
Chloromercuribenzenesulfonate (p-CMBS) (Sigma, St. Louis, MO) was

added (1.9 mg to 1 ml of suspension) and the suspension was kept at 37°C
for 1 hr before doing the PGSE experiments.

PGSE experiment

PGSE experiments were performed on a (Bruker Analytik GmbH, Rhein-
steuen, Germany) MSL-500 spectrometer, operating at a 11.4-T magnetic
field, equipped with a Bruker DIFF-25 gradient probe capable of a maxi-
mum gradient of 10 T m21. The use of the actively shielded gradient coil
in the probe and the precompensation function of preemphasis unit greatly
reduce the effect of eddy current on diffusion measurements. A blanking
unit is open 200ms before the gradient pulse and stays on during the
gradient pulse and the ring-down period to allow the preemphasis to work.
The eddy current generated after the gradient pulse is less than 2% of the
static value of the gradient pulse within 150ms. It rings down to less than
1% after 250ms. In all the experiments, the standard PGSE pulse sequence
and phase cycles were used (Kuchel et al., 1997). The duration of the 90°
pulse was 25ms; that of the two gradient pulses,d, was 1.2 or 2 ms.
Because the proton transverse relaxation times inside and outside the
erythrocyte (Stanisz et al., 1998) yield 160 and 400 ms, respectively, to
achieve significant signal in our experiments, one may set the time interval
between the two gradient pulses to be shorter than 160 ms. Here the time
interval between the gradient pulses was set to 15 or 40 ms. The relaxation
delay between transients was 8 s; and the number of transients per spec-
trum was 80. The probe temperature was maintained at 2986 0.3 K to
minimize the convection. TheS/N for full magnetization was higher than
2000 in all the experiments.

Orientation observation

Gelatin solution was prepared by adding an appropriate amount of gelatin
(Sigma, St. Louis, MO) into a saline solution. The erythrocyte suspensions
(with or without p-CMBS treatment) were added to the gelatin solution and
kept at 37°C for at least 3 h within the 11.4-T magnetic field to ensure the

l1,2 ;
2~NWCS 1 a! 6 Î~NWCS 2 a!2 1 4N2WCSWSCsinc2~2pqb!

2
(10)
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formation of gelatin network so that the erythrocytes could become readily
oriented. For the controlled experiments, the samples were kept outside the
magnetic field. The temperature was then cooled to 20°C to make the
sample gel. The orientation of the erythrocytes fixed in the gelatin gel was
observed under a light microscope (original magnification3400).

RESULTS AND DISCUSSION

Permeability effect

Considering the condensed spherical cell (pores C) suspen-
sion systems, the pores (pores S) between pores C may also
be approximated to be a sphere, as shown in Fig. 1. For the
case with the volume ratio of pore C to pore S to beVC:VS 5
0.7, we obtain the radius ratio of pore C to pore S, RC:
RS5=3 0.7. The mean distanceb between pore C and pore
S may be approximated by the sum of their radii because of
the compact stacking of the two kinds of pores (see Fig. 1).
Moreover, if one considers the 3-dimensional cubic packing
of two kinds of pores, the mean distanced between two S
pores may be set to;=3b. Here the same density of spins
is assigned to each pore, i.e.,rC/rS 5 1.0, and thus the
population ratio of the spins in pore C to pore S givesPC/PS

5 VCrC/VSrS 5 0.7, which also implies the ratio of the two
rate constantsWSC/WCS 5 PC/PS 5 0.7 in accordance with
the principle of detailed balance. Then, we setD 5 1.5/
MWSS, which is 1.5 times the lifetime of a spin in pore S. In
the present work, we first considered a situation in which
the spin-bearing molecules may not penetrate the cell mem-
brane, e.g.,WCS 5 WSC 5 0, but WSS Þ 0 because there
must be connections between pores S. In this case, we
obtain exp(l1D) 5 1 and l2 5 2MWSS[1 2 sinc(qd)].
Consequently, the attenuation reduces to

E~k, D! 5
1

VC 1 VS
FFC

2

VC
1

FS
2

VS
exp~l2D!G , (13)

where the first part,FC
2/[VC(VC 1 VS)], results solely

from the restricted molecular diffusion in pores C, and
the second part,FS

2 exp(l2D)/[VS(VC 1 VS)], from the
molecular diffusion in the external pores. Furthermore,
one may enhanceWSC andWCS to the same magnitude of
WSS to investigate the effect of the permeability. How-
ever, whenWSC and WCS are significant, the PGSE at-
tenuation is no longer dominated by the spins in pores C
and pores S only. Instead, the effect of spin diffusion
from pores C(S) into pores S(C) is considered (see Eq. 9).
In those cases, the exp(l1D) versusqb plot is presented in
Fig. 2 A, and the exp(l2D) versusqb plot is presented in
Fig. 2 B. We can clearly see that exp(l1D) oscillates with
the same periods as exp(l2D) does. The position of the
first peak of exp(l1D) and exp(l2D) is situated atqb 5
0.72, which is close toqb 5 0.57 (qd 5 q z =3 b ' 1).
As compared with the PGSE results for the diffusion
among pores of the same size, the position is character-
ized by the length between two pores S, or two pores C.

The increasing oscillation magnitude of the exp(l1D)
term with increasingWSC andWCS shows the effect of the
pore arrangement with the exchange process.

The E(q, D) versus qb curves with differentNWCS

values are plotted in Fig. 3. The individual contribution
to the magnetization, e.g., MC3C, MC3S, MS3C, and
MS3S for three cases,NWSC/MWSS5 0, 0.5, and 1.0, are
shown in Fig. 4 for comparison. Apparently, in Fig. 3,
there are characteristic peaks atqRC or qRS ' q z (b/2) '
1 for all of the five curves with various magnitudes of
NWSC. The intensity of the characteristic peak decreases
as the permeability increases. As shown in Fig. 4, the
PGSE attenuation may be analyzed in detail as follows.
The characteristic peaks result mainly from MC3C, but
not from MS3S, because the high molecular mobility of
the spins in pores S causes more attenuation of MS3S in
q space. Analogously, the intensity of the characteristic
peak in MC3C decreases with increasingWSC (WCS),
which reduces the intensity of the characteristic peak in
E(q, D). The increasing decay rate of E(q, D) at smallq

FIGURE 2 The two exponential terms as expressed in Eq. 9 versusqb
plots. (A) exp(l1D) versusqb plot; (B) exp(l2D) versusqb plot. The solid
curvesa, b, c, d, ande correspond toNWSC/MWSS 5 0, 0.25, 0.50, 0.75,
and 1.00, respectively.
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with increasingWSC (WCS) comes mainly from the change of
the relative proportion of each component. As shown in Fig. 4
A, MC3C decreases with increasingWSC (WCS), whereas the
fast decaying MC3S, MS3C, and MC3C dominate the shape
of the curve at smallq. In addition, whenWSC (WCS) is about
the same magnitude ofWSS, i.e., NWSC/MWSS 5 1.0, repre-
sented by the dotted line in Fig. 4 A, there is also a fast decay
in MC3C at small qb. When NWSC/MWSS , 0.5, because
MC3C is large, the first diffraction-like pattern of MS3S,
reflecting the distance between two pores S, is under the
shadow of MC3C, and therefore it is invisible on the E(q,
D)–qb plot.

Orientation effect

For a nonspherical cell suspension system, the orientations
of the cells may affect the PGSE attenuation. As shown in
Fig. 5, we may consider the disk-shape cells (pores C)
suspension system with disk thicknesst1, radiusR1 and the
spacing between the cellsx. The cells are randomly packed.
We may then simply take the averaged shape of the medium
(pores S) separating the cells as a disk with radiusRS and
thicknesstS estimated from the lattice model shown in Fig.
5 B. The PGSE attenuation for a specific cell orientationu
(see Fig. 5 A) may be derived as

E~q, D, u! 5
1

VC 1 VS

3 HFxCC

VC
FC

2~u! 1 SxSC

VS
1

xCS

VC
DFC~u!FS~u!

1
xSS

VS
FS

2~u!exp~l1D!

1 FyCC

VC
FC

2~u! 1 SySC

VS
1

yCS

VC
DFC~u!FS~u!

1
ySS

VS
FS

2~u!Gexp~l2D!J , (14)

where the cell orientationu is defined as the angle between
the magnetic field and the central axis of the pore C. Other
parameters have been defined previously for Eq. 9. The
structure integral,FC(u), for a pore C with the cell orienta-
tion u is expressed by

FC~u! 5 E
v1

exp~i2pq z r 1!dr 1

5
t1 z sinc@~pqt1cosu!# z 2pR1J1~2pq sin u z R1!

2pq sin u
, (15)

FIGURE 3 The PGSE attenuation E(q, D) versusqb plot. The solid
curvesa, b, c, d, ande correspond toNWSC/MWSS 5 0, 0.25, 0.50, 0.75,
and 1.00, respectively.

FIGURE 4 The magnetization contributed from each part of the spins
with varyingNWSC. (A) MC3C, (B) MS3S, (C) MC3S andMS3C. Solid
lines, NWSC 5 0; dashed lines, NWSC/MWSS 5 0.5; dotted lines,
NWSC/MWSS 5 1.0. There are two features in (C): 1) there is no
contribution ofMC3S andMS3C for the case ofNWSC 5 0; and 2) the
values in the arch withx on it are the absolute values of the negative
calculated results.
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whereJ1(2pq sin u z R1) is the first-order Bessel function of
the first kind. Similarly, the structure integral,FS(u), for a
pore S with the specific cell orientationu may be expressed
as

FS~u! 5

tS z sinc~pqtscosu! z ts]2pRSJ1~2pq sin u z RS!

2pq sin u
. (16)

To demonstrate the effect of the cells orientation, we may
consider the case ofR1 5 1.5l, t1 5 l andx 5 l/4 where the
length,l, is arbitrary. We then setD 5 1.5/MWSSandNWSC

5 MWSS. The PGSE attenuation of different cell orienta-
tions versusql plot is presented in Fig. 6. We can find that
the characteristic peak shifts fromql 5 0.56 to a higherql
value while the cell orientation changes from 90° to 45°.
The characteristic peak shifts to an even higherql value
while u 5 0° and cannot be seen in the lowql region.
Moreover, the PGSE signal attenuates slower in the lowql
region whileu 5 0° as compared to the cases ofu 5 90° and
u 5 45°. The effects of cell orientation merit attention.

Observation of erythrocyte orientation

As shown in Fig. 7 A, pure erythrocytes are oriented with
their disk plane parallel to the magnetic field direction. For
the controlled experiments in the absence of magnetic field,
the erythrocyte orientations were random. These results

were the same as those obtained by Higashi et al. (1993).
Besides, Kuchel et al. (2000) used the diffusion tensor
method to analyze the PGSE attenuation of the erythrocyte
suspension system, and they found that the diffusion tensor
component atz-direction (the direction parallel to the mag-
netic field of the NMR spectrometer) is larger, which also
verifies the anisotropic orientations of the erythrocytes. The
erythrocytes with p-CMBS added, as shown in Fig. 7 B, are
oriented with their disk plane perpendicular to the magnetic
field direction.

Applications to the erythrocyte suspension
system

Experimental PGSE results

Erythrocyte suspension systems prepared as described in
Materials and Methods were considered as model cell sus-
pension systems. Here, we have repeated the PGSE exper-
iments of the erythrocyte suspension system studied by
Kuchel et al. (1997) but with enhancement of the magnetic
field gradient. The PGSE attenuation curve in theq space
plot is shown in Fig. 8. For the pure erythrocyte suspension
system, we performed PGSE experiments withd 5 1.2 ms
and d 5 2 ms. These two experiments showed the same
results in PGSE experiments; short gradient pulse approxi-
mation may be applied accordingly. For the system of
erythrocyte suspension with p-CMBS added, the PGSE
signal attenuates more slowly than that of a pure erythrocyte
suspension system. Moreover, there was no characteristic
peak found (see Fig. 8). These two features may account for
the change of erythrocyte orientation as compared to those
of the orientation effects. The results of the erythrocyte

FIGURE 5 (a) The cell orientationu is defined as the angle between the
magnetic field direction (q direction) and the central axis of the cell. (b)
The lattice model of the equally separated disk-shaped cells with disk
radiusR1 and thicknesst1. The averaged shape of the medium (pores S) can
be approximated as a disk with radiusRS and thicknesstS. There is one pair
of pore C and pore S in a unit cell. The distance between a pore C and a
pore S is denoted byb. The distance between two pores S is denoted byd.
The distance between cells is denoted byx. RS is the radius of a pore S.b 5
=(b1cosu)2 1 (b2sin u)2, d 5 =(d1cosu)2 1 (d2sin u)2, RS 5 (l1 1 l2)/2,
l1 5 =2 b1 2 R1, l2 5 b1.

FIGURE 6 The PGSE attenuation E(q, D) versusq plot. The curvesa, b,
c represent the simulation data of a 51% hematocrit erythrocyte suspension
at u 5 90°, u 5 45° andu 5 0°, respectively. The simulation parameters
for curve a, a 5 3.06mm, b 5 4.12mm, andd 5 8.24mm; curve b, a 5
3.06mm, b 5 3.1 mm, andd 5 6.2 mm; andcurve c, a 5 3.06mm, b 5
1.51mm, andd 5 3.01mm. The parametersNWCS5 100 s21 andMWSS5
120 s21 are for all three curves.
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orientation were observed by light microscope, confirming
this prediction.

Analysis of the experimental results

The disk-shaped cell suspension model can be used to
analyze the PGSE experimental results. The erythro-
cytes can be approximated as a biconcave disk (Beck,
1978; Higashi et al. 1993; Kuchel et al., 1997) with
diameters ranging from 6.7 to 8.7mm. To take into
account the differences in the erythrocytes radii, we then

consider that the radii of erythrocytes follow the distri-
bution

P~R1! 5 NCexp@2~R1 2 Rm!2/2s2#, (17)

whereRm 5 3.85mm is the mean radius ands 5 0.5 mm
is the standard deviation of radius distribution. Thus, by
considering the radius distribution of erythrocytes, the
PGSE attenuation can be modified from Eq. 14 as

Ẽ~q, D ,u! 5 O
R1

P~R1!E~q, D ,u, R1!, (18)

where

E~q, D, u, R1! 5
1

rWVC 1 VS

3 HFrW

xCC

VC
FC

2~R1, u! 1 SrW

xSC

VS
1

xCS

VC
DFC~R1, u!FS~R1, u!

1
xSS

VS
FS

2~R1, u!Gexp~l1D! 1 FrW

yCC

VC
FC

2~R1, u! 1 SrW

ySC

VS

1
yCS

VC
DFC~R1, u!FS~R1, u! 1

ySS

VS
FS

2~R1, u!Gexp~l2D!J
(19)

HereFS(R1, u) means that the size and the structural integral
of an external pore depends on the radius of the erythrocyte in
each subsystem, because the hematocrit value is set to be
constant in all of the subsystems. It is known that the density

FIGURE 7 (a)Pure erythrocytes and (b) erythrocytes with p-CMBS
added inside a 11.4-T magnetic field. The magnetic field direction is
normal to the test plane. Pure erythrocytes were photographed on their
edge so that they were orientated with their disk plane parallel to the
magnetic field direction. Erythrocytes with p-CMBS added were pho-
tographed on their edge so that they were orientated with their disk
plane normal to the magnetic field direction. For the controlled exper-
iments in the absence of magnetic field, the erythrocyte orientations
were random. The controlled results were the same as those obtained by
Higashi et al. (1993).

FIGURE 8 The experimental PGSE attenuation E(q, D) versusq plot and
the simulated results.Solid circlesand dashed linestand for the experi-
mental and fitted results, respectively, for the 48% hematocrit erythrocyte
suspension with p-CMBS added (NMR parameters:d 5 1.2 ms andD 5
40 ms).Open circlesandsolid squaresstand for the experimental result of
d 5 2 ms andd 5 1.2 ms, respectively, for the 51% hematocrit pure
erythrocyte suspension.Solid line is the fitted result for 51% hematocrit
pure erythrocyte suspension. The time interval of the two gradient pulses
was set to 15 ms.Open inverted trianglesand dotted linestand for the
experimental and fitted results, respectively, for the 40% hematocrit pure
erythrocyte suspension (NMR parameters:d 5 2 ms andD 5 40 ms).
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of the erythrocyte is almost the same as that of the outer
medium, and the weight percentage of waterrW in the eryth-
rocyte is about 70% (Grimes, 1980). In addition, for a constant
hematocrit value, asR1 varies according to the Gaussian dis-
tribution, Eq. 17, it is noted that the radiusa of the external
pore follows linearly with the relation, (a 2 am)/am 5 (R1 2
Rm)/Rm, wheream is the mean value ofa. All other parameters
in Eq. 19 have been defined already in the previous sections.

As shown in Fig. 9, considering the shape of erythrocyte,
according to the definition of the structure integral for a
pore C, it can be calculated as

FC~R1, u!

; E
VC

exp~i2pq z rC!drC

5 E
n1

exp~i2pq z r1!dr1 2 E
n2

exp~i2pq z r2!dr2

1 E
n3

exp~i2pq z r3!dr3

5
t1 z sin c@~2pq cosu/2! z t1# z 2pR1J1~2pq sin uR1!

2pq sin u

2
t1 z sin c@~2pq cosu/2! z t1# z 2pR2J1~2pq sin uR2!

2pqsinu

1
t2 z sinc@~2pq cosu/2! z t2# z 2pR2J1~2pq sinuR2!

2pq sinu
.

(20)

The fitting parameters are described as follows. The ratio of
WCS to WSC is obtained by the principle of detailed balance
PCWCS 5 PSWSC, wherePC andPS are the populations of
the water inside and outside the erythrocytes, respectively.
The ratio is given byPC:PS 5 rWh:(1 2 h) because the
hematocrit valueh is defined as the ratio of the volume of
a disk and the volume of the total suspension.

Because the shape of the erythrocyte resembles a disk, the
mean distance between pore C and pore S and that between
two pore S are not as easily described as in the case of the
spherical-cell suspension. Therefore, we constructed a pe-
riodically stacked structure for pore C and pore S, as shown
in Fig. 5 B, where the distances between all pairs of pores
C are the same. By the definition of the hematocrit content,
h 5 VC/Vu.c., the spacingx between the erythrocytes may be
evaluated. For 40% (or 51%) hematocrit, it yieldsx 5 0.98
mm (or 0.54 mm). This is about the size of the channel
between pores, which is small compared to the diameter of
erythrocyte,R1 5 7.7mm and to that of pore S,a 5 6.6mm
(or 6.1 mm). The differences between the sizes of channel
and the pore confirm the validity of pore equilibrium con-

ditions. Moreover, the estimations of the averaged values of
distance parametersb (the distance between the adjacent
pore C and pore S),d (the distance between two adjacent
pores S), and the mean sizeam of a pore S can also be made
from this model. The results for different erythrocyte solu-
tions are listed in Table 1.

For the pure erythrocyte suspension system, the erythro-
cytes preferably align with a magnetic field of 11.4 T
(Higashi et al. 1993). Then the orientation was determined
asu 5 90°. Finally, only the hopping rates,MWSS, NWCS,
andNWSC, remain to be determined, and only eitherNWCS

or NWSC needs to be solved, according to the detailed
balance principle.

Based on the theoretical analysis, the hopping rateNWSS

between pores S, which represents the diffusivity of water
outside the erythrocytes, can be determined from the slope
of the early part, i.e., the fast-decaying part of the curve. The
hopping ratesNWSCandNWCSbetween the two phases may
be calculated from the intensities of the slow-decaying part
of the curve and the characteristic peak. For the erythrocyte
suspension with p-CMBS added, as mentioned previously,
the erythrocyte orientation becomes normal to the magnetic
field direction, so we can setu 5 0°. In the two cases (u 5
0° and 90°), the hopping rateNWSS was kept unchanged,
and the hopping rateNWSC varies to fit the result, whereas
the water residence timestC inside an erythrocyte corre-
spond to the inverse of the fitting parameterNWCS.

The fitting results are shown in Fig. 8, and all the fitting
parameters are listed in Table 1. In addition, the magneti-
zation contributed from each part of the spins in the 51%
and 40% hematocrit erythrocyte suspensions are shown in
Figs. 10 and 11, respectively. From Figs. 10 and 11, it is
obvious that the slow decaying is attributed to bothMC3C

FIGURE 9 The side view and the front view of the erythrocyte and the
approximated shape of the erythrocyte.
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andMS3S, i.e., the signal intensity from the water inside the
erythrocytes and the external pores. That is, the diffraction-
like pattern at lowq (' 105 m21), which is indicative of the
mean distance between two pores S as proposed by Kuchel
et al. (1997), is actually caused by the combination of the
restricted diffusion between multi-external pores and the
restricted diffusion within the erythrocytes. In addition, the
lifetime of the water in the erythrocytetC is equal to
1/NWCSaccording to the definition in Eq. 8a (or 8b), thustC

ranges from 9 to 11 ms, which is close to the mean value of
10 ms obtained from the original two-phase exchange
model without considering the restriction effect (Andrasko,
1976) and also close to that obtained from the modified
two-phase model when including the restricted effect
(Stanisz et al., 1998). In other words, the same exchange
rate can be obtained by one of the three models, but the
diffraction-like peak caused by the restricted diffusion can
only be interpreted by the modified two-phase model and
ours. However, our model can be used to investigate the
restricted diffusion between external pores connecting to
each other, which is especially useful when the cells in a cell
suspension are concentrated enough to generate the pore-
like external space. The sufficient cell concentration for a
cell suspension is necessary if one wants to measure the

weak diffraction-like peak and obtain directly the size of the
cell from the position of the diffraction-like peak.

APPENDIX

One may solve C(q, D) and S(q, D) with the help of the Fourier–Laplace
transform of Eqs. 8a and 8b. We obtain

sC[q, s] 2 C(q, t 5 0)

5 WSCO
i51

N

exp~i2pq z RSCi!S[q, s] 2 NWCSC[q, s],

(A1a)

sS[q, s] 2 S(q, t 5 0)

5 WSSO
i51

M

exp~i2pq z RSSi!S[q, s]

1 WCSO
i51

N

exp~i2pq z RCSi!C[q,s]

2 ~NWSC 1 MWSS!S@q, s#, (A1b)

FIGURE 10 The magnetization contributed from each part of the spins
in the 51% hematocrit erythrocyte suspension, and the experimental PGSE
attenuation E(q, D) versusq plot (solid circles) and the simulated results.
(a) E(q, D), (b) MC3C, (c) MS3S, (d) MC3S andMS3C.

FIGURE 11 The magnetization contributed from each part of the spins
in the 40% hematocrit erythrocyte suspension, and the experimental PGSE
attenuation E(q, D) versusq plot (solid circles) and the simulated results.
(a) E(q, D), (b) MC3C, (c) MS3S, (d) MC3S andMS3C.

TABLE 1 Results of fitting the experimental PGSE attenuation curves of pure erythrocyte suspensions and the erythrocyte
suspension with p-CMBS added

Sample

Predefined Parameters Fitted Parameters

u
am*
(mm)

b
(mm)

d
(mm)

MWSS

(s21)
NWCS

(s21)

Pure erythrocyte suspension (Ht5 51%) 90° 3.05 4.12 8.24 110 90
Pure erythrocyte suspension (Ht5 40%) 90° 3.31 4.34 8.68 110 110
Erythrocyte suspension with p-CMBS

(Ht 5 48%)
0° 3.09 1.54 3.05 140 35

*am is the mean radius of an external pore, and the radius of an external pore is proportional to the radius of an erythrocyte in the simulation program.
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where RXYi (X, Y 5 S, C) is the position vector at the center of theith
neighboring poreX relative to that of the central poreY. The arrangement of
pores C and pores S must be defined for the calculations of the three config-
uration integrals in Eqs. A1a and A1b. Considering the nature of a cell
suspension system, the stacking of pores C and pores S is presumably random.
If the distance between a pair of neighboring pore C and S isb, and that
between two neighboring pores S isd (see Fig. 1), the mean configuration
integrals in Eqs. A1a and A1b for the randomly packed pores are

KO
i51

N

exp~i2pq z RCSi!L 5 N z sinc~2pqb!

and

KO
i51

M

exp~i2pq z RSSi!L 5 M z sinc~2pqd!

(Callaghan et al., 1991). If the spin initially exists in a given pore A with
its center at origin (case A), the initial condition is

C(q, t 5 0) 5 1 z exp~i2pq z 0! 5 1,

S(q, t 5 0) 5 O
n

0 z exp~i2pq z RSn! 5 0

according to Eq. 4, whereRSn is the center of thenth pore S. Similarly, if
a spin exists at a pore S at the initial timet 5 0 (case B), the initial
condition yields C(q, t 5 0) 5 0 and S(q, t 5 0) 5 1. Because the present
system is isotropic, C(q, t) and S(q, t) can be replaced by C(q, t) and S(q,
t). Eqs. A1a and A1b then reduce to

~s1 NWCS!C@q, s# 2 N sinc~2pqb!WSCS@q, s#

5 C~q, t 5 0! 5 H 1 for case A
0 for case B (A2a)

2N sinc~2pqb!WCSC@q, s# 1 ~s1 a!S@q, s#

5 S~q, t 5 0! 5 H 0 for case A
1 for case B (A2b)

where

a 5 NWSC 1 MWSS@1 2 sinc~2pqd!#. (A3)

The solutions of the coupled Eqs. A2a and A2b are given by

CC@q, s# 5
xCC

~s2 l1!
1

yCC

~s2 l2!
,

(A4a)

xCC ;
l1 1 a

l1 2 l2
, yCC ;

l2 1 a

l2 2 l1
,

SC@q, s# 5
xSC

~s2 l1!
1

ySC

~s2 l2!
,

(A4b)
xSC ;

NWCS z sinc~2pqb!

l1 2 l2
,

ySC ;
NWCS z sinc~2pqb!

l2 2 l1
,

CS@q, s# 5
xCS

~s2 l1!
1

yCS

~s2 l2!
,

(A4c)
xCS ;

NWSC z sinc~2pqb!

l1 2 l2
,

yCS ;
NWSC z sinc~2pqb!

l2 2 l1
,

SS@q, s# 5
xSS

~s2 l1!
1

ySS

~s2 l2!
,

(A4d)

xSS;
l1 1 NWCS

l1 2 l2
, ySS;

l2 1 NWCS

l2 2 l1
,

where

l1,2 ;

2~NWCS 1 a! 6 Î~NWCS 2 a!2 1 4N2WCSWSCsinc2~2pqb!

2
.

(A5)

CC(q, D), SC(q, D), CS(q, D), and SS(q, D) can be obtained by the
inverse Laplace transform of CC[q, s], SC[q, s], CS[q, s], and SS[q, s]; then
the four parts of the magnetizations,MC3C, MC3S, MS3C, and MS3S,
may be calculated in accordance with Eq. 6. By summing the four parts, we
obtain the PGSE attenuation E(q, D) as given in Eq. 12.
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