
Kinetics and Thermodynamics of Protein Adsorption: A Generalized
Molecular Theoretical Approach

Fang Fang and Igal Szleifer
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 USA

ABSTRACT The thermodynamics and kinetics of protein adsorption are studied using a molecular theoretical approach. The
cases studied include competitive adsorption from mixtures and the effect of conformational changes upon adsorption. The
kinetic theory is based on a generalized diffusion equation in which the driving force for motion is the gradient of chemical
potentials of the proteins. The time-dependent chemical potentials, as well as the equilibrium behavior of the system, are
obtained using a molecular mean-field theory. The theory provides, within the same theoretical formulation, the diffusion and
the kinetic (activated) controlled regimes. By separation of ideal and nonideal contributions to the chemical potential, the
equation of motion shows a purely diffusive part and the motion of the particles in the potential of mean force resulting from
the intermolecular interactions. The theory enables the calculation of the time-dependent surface coverage of proteins, the
dynamic surface tension, and the structure of the adsorbed layer in contact with the approaching proteins. For the case of
competitive adsorption from a solution containing a mixture of large and small proteins, a variety of different adsorption
patterns are observed depending upon the bulk composition, the strength of the interaction between the particles, and the
surface and size of the proteins. It is found that the experimentally observed Vroman sequence is predicted in the case that
the bulk solution is at a composition with an excess of the small protein, and that the interaction between the large protein
and the surface is much larger than that of the smaller protein. The effect of surface conformational changes of the adsorbed
proteins in the time-dependent adsorption is studied in detail. The theory predicts regimes of constant density and dynamic
surface tension that are long lived but are only intermediates before the final approach to equilibrium. The implications of the
findings to the interpretation of experimental observations is discussed.

INTRODUCTION

Protein adsorption plays a major role in a variety of impor-
tant technological and biological processes (Clerc and Lu-
kosz, 1997; Denizli et al., 2000; Ghose and Chase, 2000;
Hlady and Buijs, 1996; Montdargent and Letourneur, 2000;
Shi and Ratner, 2000; Slomkowski, 1998; Topoglidis et al.,
1998). For example, blood proteins tend to adsorb into
surfaces of foreign materials. This is the first step on sur-
face-induced thrombosis (Andrade and Hlady, 1986; Hor-
bett, 1993; E. F. and S. 1993; Tanaka et al. 2000). A large
number of biotechnological devices include surface-bound
proteins, e.g., biosensors (Nyquist et al., 2000; Slomkowski
et al., 1996; Sukhishvili and Granick, 1999; Zhou et al.,
2000). Separation of proteins by chromatography involves
the competitive adsorption of the particles (Wang 1993).
The understanding of the fundamental factors that deter-
mine protein adsorption are imperative to improve our abil-
ity to design biocompatible materials and biotechnological
devices. Moreover, protein adsorption is a very important
fundamental problem that involves large competing energy
scales and conformational statistics that may result in re-
versible and irreversible processes.

The adsorption of proteins on surfaces is a complex
process. The adsorbing particles are large, and, thus, the
surface–protein interactions are usually long range and the
strength is many times the thermal energy. Further, due to
the large size and the shape of the particles, the interactions
between the adsorbed particles on the surface are nontrivial
and can be strongly influentiated by the fact that the parti-
cles may undergo conformational changes upon adsorption
(Billsten et al., 1995; Ishihara et al., 1998; Kondo and
Fukuda, 1998; Nasir and McGuire, 1998; Norde and Gia-
comelli, 1999, 2000; Tan and Martic, 1990; Van Tassel et
al., 1998; Gidalevitz et al., 1999). Actually, the kinetics and
thermodynamics of protein conformational changes on the
surface is a very complex subject and their understanding is
at its early stages. The idea behind the work presented here
is an attempt to formulate a molecular theoretical approach
that can be applied to study both the equilibrium and the
kinetic behavior of protein adsorption.

On experimental studies (Green et al., 1999; Malmsten,
1997), it has been observed that, when two or more kinds of
proteins are present in solution, such as in blood plasma, the
adsorption is the result of the competition between the time
scale to reach the surface and the strength of the surface–
protein interaction. For example, in blood plasma solutions
of albumin, immunoglobulin-G (IgG) and fibrinogen (Fgn)
in contact with a polystyrene surface, the initial adsorption
is dominated by the smaller protein (albumin), which are
also at larger concentrations in the bulk, to be later replaced
by the larger proteins like IgG and Fgn. This sequential
adsorption is called the Vroman sequence. In other experi-
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ments (Lassen and Malmsten, 1997), different adsorption
patterns are observed when the surfaces are changed. On the
hydrophobic PP-HMDSO (hexamethyldisiloxane), surface
albumin and IgG dominate the adsorption. However, on
hydrophilic PP-DACH (1,2-diaminocyclohexane) and
PP-AA (acrylic acid) surfaces, Fgn is almost exclusively
found on the surface. These experimental observations dem-
onstrate that the incorporation of the solution conditions and
the protein–surface interactions have to be considered for
the proper understanding and description of the adsorption
process.

One of the most important contributions to the under-
standing of the kinetics of protein adsorption is the random
sequential adsorption (RSA) model (Feder and Giaever,
1980; Schaaf and Talbot, 1989). In this approach, the pro-
teins are assumed to be rigid particles that interact only
through excluded volume interactions. The particles are
assumed to irreversibly adsorb to the surface, and, thus, they
do not have translational degrees of freedom or desorption
on the surface. This model has been very useful in under-
standing why the kinetics of protein adsorption do not
follow the Langmuir predictions. Furthermore, the model
has been extended to consider conformational changes, de-
sorption, and the treatment of mixtures (Van Tassel et al.,
1994, 1996, 1998). The main limitation of this model is that
it is hard to include detailed molecular information of the
proteins and the formulation is based on a kinetic approach.

Some other studies have assumed that the adsorption
kinetics is determined by the diffusion of the proteins to the
surface (Iordanskii et al., 1996), whereas others assume that
the dominant regime is the one controlled by a kinetic
(activated) process (Chatelier and Minton, 1996; Minton,
1999). In a recent study, Cho et al. (1997) formulated a
model in which both the diffusion and kinetic processes
were included. Olson and Talbot (2000) studied the equi-
librium and kinetics of adsorption of a polydisperse mix-
ture. Each of these models has provided important insights
toward the understanding of the adsorption process. How-
ever, none of them can describe both the equilibrium and
kinetics of the adsorption process within the same molecular
approach that can be applied for a large variety of experi-
mental systems.

The theory that we use in this paper is based on the
formulation of the free energy of the system. The minimi-
zation of the free energy provides the equilibrium state of
the system, and, thus, we can study the protein adsorption
isotherms. Furthermore, the free energy formulation enables
the study of possible conformational changes of the protein
on the surface. The equilibrium version of the theory for
protein adsorption was originally formulated to study the
ability of grafted polymer layers to prevent, or reduce,
protein adsorption (Szleifer, 1997b). The predictions of the
theory were shown to be in excellent quantitative agreement
with experimental observations for the equilibrium adsorp-
tion isotherms of lysozyme on surfaces with grafted poly-

ethylene oxide layers (McPherson et al., 1998; Satulovsky
et al., 2000). The theory was later generalized to study the
kinetics of the adsorption process in the same systems
(Satulovsky et al., 2000). The basic idea in the dynamic
version of the theory is to start with an equilibrium bulk
system that, at time zero, is put in contact with a surface.
The presence of the surface induces a distance dependent
chemical potential of the proteins. The free energy of the
new system is formulated, but instead of minimizing to
obtain the new equilibrium state in the presence of the
surface, the time evolution of the density of proteins is
evolved with a diffusion-like equation, with the driving
force being the gradient of chemical potentials arising from
the sudden presence of the surface. These chemical poten-
tials are obtained as derivatives of the time-dependent free
energy with respect to the local density of proteins. Similar
approaches were used for the adsorption of surfactants
(Diamant and Andelman, 1996) and polymers (Fraaije,
1993; Hasegawa and Doi, 1997). Recently, it has been
shown that this kind of dynamic equations can be derived
for the time dependence of the density from density func-
tional theory (Marconi and Tarazona, 1999).

In this paper, we are interested in using the same theo-
retical approach but to the study of protein adsorption on
bare surfaces. The idea is to understand what are the pa-
rameters that determine the different dynamic regimes. Fur-
ther, we are interested in studying in detail the effect of
conformational changes on the kinetics of adsorption and
also the adsorption of proteins mixtures.

The paper is organized as follows: the next section con-
tains a description of the theoretical methodology, including
a detailed presentation of the way the equations are solved.
The following section present a variety of representative
results. Finally, the last section includes our conclusions.

THEORETICAL APPROACH

In this section, we present our theoretical approach to study
the equilibrium and kinetic properties of the adsorption of
proteins to planar surfaces. We will present a general the-
oretical framework for the determination of equilibrium
adsorption isotherms in the case of protein mixtures. The
treatment explicitly includes the possibility that the proteins
have many different configurations. The second part of this
section presents the dynamic theory that we use to study the
kinetics of protein adsorption.

After the presentation of the general thermodynamic and
kinetic approaches, we will show the specific cases for
which we present explicit calculations below. Namely, the
adsorption of proteins that are assumed to have a single
configuration in the bulk but that can undergo conforma-
tional changes upon contact with the surface and those
assumed to be a mixture of proteins of different sizes for a
variety of different bulk conditions and surfaces. Following
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the model, we present details on the numerical methodology
used in solving the equilibrium and kinetic equations.

Equilibrium free energy

Consider a surface of total areaA in contact with a protein
solution, Fig. 1. The solution is composed by a mixture of
proteins characterized by a bulk chemical potentialmi,bulk

pro ,
with i denoting the type of protein. Equivalently, we can
represent the properties of the protein solution by the den-
sity of moleculesri,bulk

pro . Each protein can be in any of its
possible configurations. We denote the set of configurations
of protein of type i by {gi}. Let us define by P(gi; z) the
probability distribution function (pdf) of proteins of type i to
be in configurationgi at distancez from the interface. The
pdf can also be thought as the conditional probability that a
protein of type i at distancez from the surface is in confor-
mationgi.

The relevant surface free energy density (per unit area) of
the system (Rowlinson and Widom, 1982), assuming inho-
mogeneities in density only in the direction perpendicular to
the surface,z, is given by

bW

A
5 O

i
HEri

pro~z!F ln@ri
pro~z!vs#

1 O
{ gi}

P~gi; z!@ln P(gi; z! 1 bUint(gi) 1 bUps(gi; z)

1 O
j
O
{ gj}

1

2Ebxgigj~uz2 z9u!rj
pro~z9!P(gj; z9)dz9

2 bmi,bulk
pro GdzJ

1 Efs~z!

vs
@ln fs ~z! 2 bms] dz, (1)

where the first and second terms represent thez-dependent
translational (mixing) and the conformational entropy of the
proteins, respectively. The third term is the intramolecular
energy of the proteins. The fourth term includes the average
interaction between the protein atz with the surface,Ups(gi;
z) is the interaction between the protein i in configurationgi

with the surface. The fifth term is the protein–protein at-
tractive interactions.xgigj

(uz 2 z9u) represents the strength of
the interactions between protein in configurationgi at z and
protein in configurationgj at z9. The sixth term is the
chemical potential term necessary because we consider the
surface in equilibrium with a bulk solution, i.e., the surface
is in contact with a bath of proteins. The last two terms
represent the solvent contribution, which include the trans-
lational (mixing) entropy and the chemical potential terms.
fs(z) and ms represent the volume fraction atz and the
chemical potential of the solvent molecules, respectively.
Note that the argument of the first ln term in Eq. 1 contains
the volume of the solvent to make the product dimension-
less. Further, we will usevs as the unit of volume through-
out.

Inspection of Eq. 1 shows that the repulsions between the
molecules are not included in the free energy expression.
These interactions are accounted for by packing constraints.
Namely, for each distancez from the surface, the volume
available betweenz andz 1 dz is filled by the proteins or
the solvent molecules. Thus, the volume constraint equation
reads

EFO
i

ri
pro~z9!O

{ gi}
P~gi; z9!v~gi; z9, z!Gdz9 1 fs~z! 5 1

for all z, (2)

where the first term represents the volume fraction that the
proteins occupy atz, and the second term is the volume
fraction of solvent. Note that the volume fraction of proteins
includes the sum over all the molecules at different dis-

FIGURE 1 Schematic representation of the system containing a mixture
of proteins dissolved in a low-molecular-weight solvent in contact with a
surface. The filled circles are protein molecules with different sizes and the
empty circles are solvent molecules. Thez direction is defined perpendic-
ular to the surface. The protein at positionz9 represents the molecules with
their point of shortest distance with the surface beingz9.
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tances from the surface (z9) that contribute volume toz. v(gi;
z9, z) dz9 is the volume that the protein in configurationgi at
z9 occupies atz.

The next step is to determine the density of proteins and
solvent as a function ofz and the pdf of protein configura-
tions. The systems free energy is a functional ofri

pro(z),
fs(z), P(gi; z). These quantities are found by minimization
of the systems free energy, Eq. 1, subject to the packing
constraints, Eq. 2. The minimization is carried out introduc-
ing a set of Lagrange multipliers,bp(z), to yield for the pdf
of the protein configurations

P(gi; z) 5
1

qi~z!
expF2bUint(gi) 2 bUps(gi; z)

2 Ebp~z9!v~gi; z, z9! dz9

2 O
j
O
{ gj}
Ebxgigj~uz2 z9u!rj

pro~z9!P~gj; z9! dz9G , (3)

whereqi(z) is the normalization constant that ensures for
eachz that¥ P(gi; z) 5 1. The partition function is given by
the sum over all the configurations of the exponential term
in Eq. 3.

The density profile of proteins of type i is

ri
pro~z!vs 5 qi~z!exp@bmi,bulk

pro #, (4)

and, for the solvent volume fraction, we have

fs~z! 5 exp@2bp~z!vs 1 bms#. (5)

The only unknowns are the Lagrange multipliers, which are
obtained by replacing the explicit expressions for the pdf
and density profiles, Eqs. 3, 4, and 5, into the constraint
equation, Eq. 2. The explicit form of the equations solved
will be described below for the specific model systems that
we present in the Results section. The physical meaning of
the Lagrange multipliers can be understood by looking at
the expression for the solvent density profile, Eq. 5. Writing
this expression in the form,

bms 5 ln fs~z! 1 bp~z!vs, (6)

shows that the Lagrange multipliers are related to the (z-
dependent) osmotic pressure necessary to keep the chemical
potential of the solvent constant at allz.

The expressions for the density profiles and the pdf of the
proteins enable us to understand what are the factors deter-
mining the equilibrium amount of protein adsorbed and the
optimal adsorbed conformations. The partition of proteins
as a function of the distance from the surface is determined
by the thermodynamic equilibrium condition of constant
chemical potential at allz. Thus, we can write Eq. 4 in the
form

bmi,bulk
pro 5 ln

ri
pro~z!vs

qi~z!
, (7)

which requires the chemical potential of the proteins at allz
to be that of the bath, i.e., the value given by the bulk
solution. The amount of protein of type i on the surface (z5
0) is determined by the value of the partition function on the
surface,qi(0). Thus, the partition function and the density at
the surface, through Eq. 7, will be determined by the inter-
play between the interactions that increase the value of the
partition function and those that reduce it. The attractive
components (which increaseqi(0)) are the bare surface–
protein interaction and the protein–protein van der Walls
attractions. The repulsions (which decreaseqi(0)) are those
determined by the pressure–volume-like term (PV), given
by the product of the lateral pressuresp(z) by the volume of
the protein as a function ofz. This repulsive term is asso-
ciated with the PV work necessary to bring the protein from
the bulk solution to the surface. Thus, it is not enough to
have a strong attractive interaction with the surface for a
protein to preferentially adsorb, its volume distribution
should be such that the repulsions are not too large. The
same type of argument is obtained to explain the preferen-
tial adsorption of a given conformation. To this end, it is
convenient to define the density of proteins atz in confor-
mationgi, by multiplying the pdf of that conformation, Eq.
3, by the density of proteins of type i atz, Eq. 4, to obtain

rgi

pro~z!vs 5 @ri
pro~z!vs#P(gi; z)

5 exp@bmi,bulk
pro #exp@2bUint(gi! 2 bUps(gi; z)

2 Ebp~z9!v~gi; z, z9! dz9

2 O
j
O
{ gj}
Ebxgigj~uz2 z9u!rj

pro~z9!P~gj; z9! dz9 . (8)

This expression shows that the condition of equal chemical
potential at allz has to be fulfilled for each protein config-
uration. Further, note that the value of constant chemical
potential for each configuration is that of the bulk protein.

We can rewrite the equilibrium condition for each protein
conformation in the form

bmi,bulk
pro 5 ln@rgi

pro~z!vs# 1 bUmf(gi, z), (9)

where

Umf(gi; z) 5 Uint(gi) 1 Ups(gi; z)

1 Ep~z9!v~gi; z, z9! dz9

1 O
j
O
{ gj}
Exgigj~uz2 z9u!rj

pro~z9!P(gj; z9) dz9, (10)
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is the potential of mean force (Chandler, 1987) between the
protein, in conformationgi at distancez, and the surface.
Namely, it is the work required to bring the protein in
conformationgi from the bulk to the distancez from the
surface. This way of writing the chemical potential enables
the understanding of the factors that determine the type of
conformation and protein that adsorbs on the surface, and it
will be useful in the kinetic description presented in the next
section. Note that the potential of mean force, and the last
term in the solvent chemical potential Eq. 6, are the excess
(or nonideal) contributions to the chemical potential.

Using the definition of the potential of mean force, we
can see that the requirement of constant chemical potential,
and thus what determines the amount of proteins in each
conformation that are adsorbed, depends on the cost (or
gain) of bringing a protein from the bulk solution to contact
with the surface. There are four contributions that determine
the potential of mean force. 1) The internal energy of the
conformation. This term is independent ofz. 2) The bare
surface–protein interaction. This is usually a strongly attrac-
tive term. 3) The intermolecular repulsive interaction term.
This term becomes more prominent as the density increases
and therefore favors small densities at the surface. 4) The
intermolecular attractive term, which favors large densities.
The interplay between these contributions will determine
the amount and type of conformation that will adsorb on the
surface. Further, the manipulation of these contributions
may lead to an enhanced (or decreased) adsorption and thus
control of the amount and type of protein adsorbed (Szleifer,
1997a).

In the Results section, we will show explicit examples for
how the interplay between the different interactions deter-
mines the optimal protein and conformation adsorbed. Fur-
ther, we will discuss how this understanding can lead to the
design of surfaces or conditions for optimal adsorption.

Equations of motion

We now treat the process of how the proteins in solution
adsorb into the surface. Consider a solution containing a
mixture of proteins at bulk densitiesri,bulk

pro (or equivalently
chemical potentialmi,bulk

pro ) dissolved in a low molecular-
weight solvent. This homogeneous solution is in equilib-
rium, and, at timet 5 0, is brought in contact with a layer
of pure solvent that is in contact with a surface on the other
end. The direction perpendicular to the surface is denoted as
thez direction. A schematic view of the system is shown in
Fig. 1.

The contact between the pure solvent and the protein
solution induces the diffusion of the proteins toward the
pure solvent. Further, the sudden presence of the surface
implies that the proteins now feel an anisotropic interaction
due to the bare protein–surface attractions. Therefore, the
chemical potential of the proteins closer to the surface is not
the same as that of the proteins in the bulk (far from the

surface). The nonconstant chemical potential of the proteins
as a function ofz is the driving force for mass transport.
Further, the protein–surface interaction and the motion to-
ward the surface will depend upon the conformation of the
protein.

The time evolution of the density of proteins of type i in
conformationgi at distancez from the surface,rgi

pro(z, t),
contains two contributions. The first one is the transport of
the same conformation from neighboring distances. The
second is from conformational changes of proteins at dis-
tancez from the surface. The transport can be described
with a generalized diffusion equation, and the conforma-
tional changes can be written as kinetic master equations.
The result is

­rgi

pro~z, t!

­t
5 Dgi

­

­z Frgi

pro~z; t!
­bmgi

pro~z; t!

­z G
1 O

g 9i
@k~g9i 3 gi)F(g9i 3 gi; z!rg 9i

pro~z, t!

2 k~gi 3 g9i)F(gi 3 g9i; z!rgi

pro~z, t!#, (11)

where the first term represents the mass transport.Dgi
is the

diffusion coefficient of proteins of type i in conformationgi,
which is assumed to be composition independent;mgi

pro(z; t)
is the time-dependent chemical potential, defined as an
extension of the equilibrium quantity. Namely, we define

mgi

pro~z; t! 5
d~W/A!

drgi

pro~z, t!
, (12)

whereW/A is the time-dependent free energy per unit area
of the system. For the time-dependent free energy, we use
the same expression as the equilibrium quantity, but the
protein densities are not the ones that minimize the free
energy but are given by the values obtained by the time-
evolution equation.

The last two terms in the kinetic equation, Eq. 11, rep-
resent the time-dependent conformational changes. There is
a gain and a loss term. The gain term arises from all the
conformationsg9i that can undergo a conformational change
to configurationgi. The last term represents the conforma-
tional change fromgi to any possible configuration. The
constantsk(g9i 3 gi) represent the intrinsic rate of confor-
mational change of the protein fromg9i to gi. Namely, it is
the rate associated with the conformational change of the
protein in the presence of pure solvent. The factorF(g9i 3
gi; z) represents the effect of the intermolecular and surface
interactions to the rate of conformational change fromg9i to
gi. This term can be interpreted as the probability of finding
the necessary space for the conformation to change fromg9i
to gi, modulated by the appropriate energetic gain or loss.
This probability is related to the work necessary to change
the conformation in the given environment. In the terms
defined in the previous section, this quantity will be the
Boltzmann factor of the interaction difference between the
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two conformations in the given environment atz andt. This
quantity is readily obtained from the theory by using the
third term in Eq. 10 with the temporal densities obtained
from the dynamic equations. Note that this term will depend
very strongly on the density distribution, and, therefore, will
be a function of time. We will show some explicit examples
below.

The boundary conditions to solve the dynamics equation
is that the gradient of chemical potential at the surface (and
in the bulk solution) is zero. Namely,

F­bmgi

pro~z; t!

­z G
z50,z5`

5 0. (13)

This boundary condition atz5 0 is, in reality, the condition
that the molecules cannot diffuse behind the surface, i.e., to
negative values ofz.

At this point, it is important to emphasize the difficulties
associated with treating realistic proteins. Eq. 11 requires
the knowledge of the rate of change of the protein confor-
mations from one to another. This is a formidable task,
considering the fact that even the conformational space of
real proteins cannot be properly sampled with the tech-
niques and computer resources available today (Chan and
Dill, 1998; Scheraga, 1996; Yue et al., 1995; Brooks et al.,
1998). Thus, we need to use simplified models. However,
these simplified models are based on the behavior of real
proteins. For example, in many cases, proteins in bulk exist
in a small set of conformations that are close to the native
structure. Thus, the description of a single conformation of
the protein in bulk is a reasonable approximation. There is
clear experimental evidence that proteins undergo confor-
mational changes upon adsorption on surfaces and inter-
faces (Billsten et al., 1995; Ishihara et al., 1998; Kondo and
Fukuda, 1998; Nasir and McGuire, 1998; Norde and Gia-
comelli, 1999, 2000; Gidalevitz et al., 1999; Tan and Mar-
tic, 1990; Van Tassel et al., 1998). There are two kinds of
configurational changes that can happen upon adsorption.
One of them corresponds to the denaturation of the protein
from the native configuration to a random coil. In the
second, the protein undergoes a conformational change to a
very small subset of conformations that are as unique as the
native configuration but with a different structure. Recent
extensive calculations in a simple model system strongly
suggests that the second one is the most common case for
solid surfaces (R. Abdulla, Jr. and I. Szleifer, manuscript in
preparation). The calculations presented below correspond
to this second case. It is important to emphasize that the rate
constants and the protein conformations are input to the
theory. Thus, even in the case of multiple adsorbed config-
urations, if those data are available, the kinetic theory can be
applied without any major additional complications.

To understand the time-dependent adsorption, it is useful
to look at each of the contributions separately. We start with
the mass transport part. The driving force for this motion is

the gradient in (time-dependent) chemical potentials. We
can use the analog of Eq. 9 for the time-dependent chemical
potential to obtain

bmgi

pro~z; t! 5
d~bW/A!

drgi

pro~z, t!

5 ln@rgi

pro~z, t!vs# 1 bUmf(gi; z; t). (14)

Replacing this expression into the transport part of the
equation of motion, we obtain

­rgi

pro~z, t!

­t
5 DgiF­2rgi

pro~z; t!

­z2

1
­

­z Srgi

pro~z; t!
­bUmf(gi; z; t)

­z DG . (15)

The first term in the rhs of the equation is the regular
diffusion term and it arises from the ideal term in the free
energy. The fact that we explicitly consider the interactions
between the molecules and between the proteins and the
surface results in the additional term to the transport equa-
tion. Thus, the motion of the proteins is driven by the
effective interactions between the particles and the surface.
The time scale for the diffusion process will depend on the
explicit form of the potential of mean force,Umf(gi; z; t). As
we will show, this quantity undergoes dramatic changes as
a function of time, and, thus, the adsorption process changes
character.

Throughout the discussion in the Results section, we refer
to two distinct dynamic regimes. We call them diffusion-
controlled regime and kinetic (or activated) regime. The
diffusion-controlled regime refers to the dynamic processes
that are dominated by the first term in the rhs of Eq. 15. This
will be the “ideal” diffusion driven exclusively by the
gradient of densities. We also include in this regime the
“driven” diffusion, which represents the motion that arises
from the bare surface–protein interactions. The kinetic or
activated regime is the one dominated by the nonideal
contribution to the chemical potential arising from the in-
termolecular interactions. This term contains in it any ki-
netic barriers that appear in the system due to the repulsive
interactions between molecules.

At this point, it is important to emphasize one of the main
differences between our approach and the purely kinetic
approaches that can be found in the literature. Even for the
pure transport process, our theory describes the adsorption
and desorption process at once. We do not need to include
an explicit term that considers the possibility of desorption.
Furthermore, according to our theory, there is only one
elementary time scale measured by the diffusion constant.
The different time scales for adsorption and desorption will
depend upon the time andz dependence of the potential of
mean force. Further, our approach warrants the approach to
equilibrium. However, some types of irreversible adsorption
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can also be treated within the same framework, because, in
that case, the time scale of the adsorption process will be
slow in the experimental time scale.

It should be noted that, although we have emphasized the
advantages of our approach, there are many limitations as
well. The main one that we comment upon here is that the
lateral dynamics (within a givenz) are assumed to be
instantaneous as compared to the diffusion to the surface,
Namelyr(x, y, z; t) 5 r(z; t) for all x, y. Although recent
Brownian dynamic simulations have shown that this is a
reasonable approximation (Ravichandran and Talbot, 2000),
it is important to keep its limitation in sight. Additional
important limitations will be discussed in the Conclusions
section.

The second contribution to the time-dependent adsorp-
tion, see Eq. 11, arises from the ability of the molecules to
undergo conformational changes. As mentioned above, this
is a rather complex and yet barely understood process. Thus,
we will use a simple model to understand the effect of
conformational changes on the kinetics of adsorption. This
will be the case in which the conformational change can
only occur upon contact of the protein with the surface.

Eq. 11 shows the need to provide the rate constants for
conformational transformationsg 3 g9 andg9 3 g. How-
ever, because the system will reach thermodynamic equi-
librium, only one is needed. The ratio of the rate constants
is proportional to the product of the ratio of the conforma-
tion populations and the ratio of the repulsive factors at
equilibrium.

In the next subsection, we describe in detail the model
systems that we will study and the parameters used in the
calculations. Further, we present the explicit sets of equa-
tions that we solve and the numerical methodology used.

Model systems

We consider a set of simple systems to apply the theory
developed above for the study of the thermodynamic and
kinetic properties of protein adsorption. We study two dif-
ferent kinds of systems. The first is a binary mixture of
model proteins. Both proteins are modeled as spherical in
shape and they differ in size and in their interactions with
the surface. These proteins can exist in a single configura-
tion even when they are adsorbed on the surface. The
motivation to study this mixture is to understand competi-
tive adsorption in which the proteins differ in size and
surface interaction. Namely, we want to understand the
underlying physical process that is responsible for the Vro-
man sequence (Green et al., 1999). Further, we are inter-
ested in the general properties of competitive adsorption and
under what condition one should expect adsorption of one
or the other species. Thus, we chose a model that contains
the minimal ingredients to study these effects, without too
many complications that may cloud the physical origin of
the observed behavior.

The mixtures are composed by two protein-like particles.
Because both particles can exist in only one configuration,
we takeUint(gi) 5 0. The larger particle is the same size as
our previous model for lysozyme (McPherson et al., 1998).
Namely, it is a particle with a radius of 15 Å. The potential
of interaction between this protein and the surface is shown
in Fig. 2. The distance dependence of the protein–surface
interaction is taken from the atomistic calculations of the
interactions between lysozyme and hydrophobic surfaces as
calculated by Lee and Park (1994). However, the strength of
the attraction is taken to be1⁄3 of the original calculated one.
The reason for this choice is that the extensive kinetic
calculations that will be shown in the next subsection are
less computationally demanding for a weaker potential.
Furthermore, we have found that the predictions of the
kinetic and thermodynamic behavior is qualitatively the
same, and, therefore, we can perform more systematic stud-
ies with the weaker attractive potential.

The small particle has a radius that is3⁄5 that of the large
protein. The distance dependence of the attractive interac-
tion between the surface and the small protein is the same as
that shown in Fig. 2. However, we vary the strength of the
attraction in a wide range of values, as will be explicitly
shown in the Results section. We assume that the solvent is
equally good to both proteins. Thus, we model the intermo-
lecular, protein–protein and protein–solvent interactions as
purely repulsive. Namely,xgigj

5 0 for all gigj.
Some comments are needed here. The choice of purely

repulsive interactions implies that all the attractive intermo-
lecular interactions are the same and not that they are absent
in the system. One can question the validity of this approx-
imation merely on the basis of colloidal interactions, where
it is known that the strength of the attractive interactions
between particles is a function of the size of the particles

FIGURE 2 The distance dependence of the attractive interaction be-
tween one large protein particle and the surface in a binary mixture of
model proteins. The interactions are measured in units ofb 5 1/kT, the
distances are measured in units ofd 5 D/5, whereD is the diameter of the
largest protein that we model.
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(Israelachvili, 1991). We have carried out some calculations
for both the kinetic and the thermodynamic properties of
mixtures of model proteins where the attractive interaction
was explicitly considered. We found that, unless we are
close to a phase separation region, i.e., the two-phase region
where the mixture separates into two solutions with differ-
ent miscibilities for the proteins, the qualitative results are
very similar to the ones obtained for the athermal (good
solvent) systems. Therefore, we decided to concentrate our
attention on these simpler systems.

The equations necessary to study the kinetic and thermo-
dynamic behavior of the mixtures just defined are obtained
from the general equations derived above. Because there are
no conformational changes, only the densities of the pro-
teins as a function of the distance from the surface (and
time) are relevant quantities. The density of particles of type
i at equilibrium is given by

ri
pro~z!vs 5 exp@bmi,bulk

pro #expF2bUps
i ~z!

2 E
z

z12Ri

bp~z9!vi~z, z9! dz9G , (16)

wherevi(z, z9) dz9 is the volume that the protein (sphere) of
type i, with its point of closest distance to the surface atz,
occupies atz9, and Ups

i (z) is the attraction between the
surface and the protein (sphere) of type i shown in Fig. 2 or
its appropriate modification (see above).Ri is the radius of
the protein of type i. To determine the Lagrange multipliers,
bp(z9), we need to solve the constraint equations, which for
the binary mixture considered here, is (see Eq. 2)

E
z22R1

z

r1
pro~z9!v1~z9,z! dz9

1 E
z22R2

z

r2
pro~z9!v2~z9, z! dz9 1 fs~z! 5 1

for all z, (17)

which is solved by replacing Eq. 16 for each density and
then by discretization of thez direction into finite elements.
The volumesvi(z9, z) dz9 are given by the cross-sectional
area of the sphere atz when the bottom of the sphere is at
z9. Namely,vi(z9, z) dz9 5 p{ Ri

2 2 [Ri 2 (z9 2 z)]2} dz9. The
discrete version is obtained by integrating the cross-sec-
tional area over the thickness of the discrete layer. The
solution of these equations is straightforward, and, from
them, we obtain the equilibrium adsorption isotherms. The
bulk conditions of the solution are introduced in the chem-
ical potentials,mi,bulk

pro , which are explicitly given by

bmi,bulk
pro 5 ln@ri,bulk

pro vs# 2
Vi

pro

ns
ln fs

bulk, (18)

whereVi
pro is the total volume of the protein andfs

bulk is the
bulk volume fraction of the solvent. Eq. 18 is obtained from
Eq. 16 by consideringbp(z)vs 5 bpbulkvs 5 2ln fs

bulk and
Ups

i (bulk) 5 0.
It should be noted that, due to the volume-constraint

equations, we have reduced the number of independent
thermodynamic variables by one. Namely, we cannot vary
the volume of the system at a fixed number of proteins and
solvent molecules. Therefore, we do not have absolute
chemical potentials, but the chemical potential of the pro-
tein is, in reality, an exchange chemical potential that mea-
sures the work related with changingVi

pro/vs solvent mole-
cules by one protein molecule of type i. Although we do not
explicitly write the chemical potentials as exchanges, it
should be clear that this is the quantity that we are calcu-
lating throughout this work. Further, for the same reason,
the value of the chemical potential of the solvent is not a
relevant quantity and therefore is not needed (Carignano
and Szleifer, 1994), or, in other words, the chemical poten-
tials of the proteins and the lateral pressures are measured
with respect to the solvent chemical potential.

For the kinetic equations, we can write for protein of type
i,

­ri
pro~z, t!

­t
5 Di

­

­z Fri
pro~z; t!

­bmi
pro~z; t!

­z G , (19)

where the time-dependent chemical potential is given by

bmi
pro~z; t! 5 ln@ri

pro~z; t!vs# 1 bUps
i ~z!

1 E
z

z12Ri

bp~z9; t!vi~z, z9! dz9, (20)

and the time-dependent Lagrange multipliers are obtained
from the time-dependent constraint equation,

E
z22R1

z

r1
pro~z9; t!v1~z9, z! dz9

1E
z22R2

z

r2
pro~z9; t!v2~z9, z! dz9 1 exp@2bp~z; t!vs# 5 1

for all z. (21)

The procedure to integrate the equations of motion, Eq.
19, is to start with the initial condition of a homogeneous
(very low,r 5 10210) density forz # L, and, forz . L, the
proteins are at bulk density and do not change that density
over time. This is to represent a flow cell (Calonder and Van
Tassel, 2001). Att 5 0, the surface–protein interactions are
turned on. Then, using Eq. 20 for each protein, one obtains
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the chemical potential profiles that are needed for a time
iteration of the densities. After the densities for the new time
are obtained, Eq. 21 is used for the time-dependent La-
grange multipliers so that the new chemical potentials can
be obtained to perform the next time iteration. This proce-
dure is continued until all the chemical potentials are the
same, which corresponds to the new equilibrium condition.

The very low density used in the closed vicinity of the
surface, instead of pure solvent, is for numerical conve-
nience. Further, the diffusion of the proteins from the bulk
into the pure solvent region can be calculated analytically
and added to the time-dependent adsorption that we calcu-
late. However, the time scale of this process is so fast,
compared to the processes calculated here, that its inclusion
does not change any of the behavior presented.

An experimentally measurable quantity that we can cal-
culate at equilibrium and as a function of time is the surface
tension. The thermodynamic potential that we use in deriv-
ing the theory is exactly the free energy per unit area that
corresponds to the surface tension (Rowlinson and Widom,
1982) when the bulk value is subtracted. We use the same
excess free energy to calculate the dynamic surface tension.
This is given (for both equilibrium and dynamic surface
tension), by Eq. 1, which, for the binary mixture just pre-
sented, becomes

bP~t! 5 E
0

` F~r1
pro~z; t! 2 r1,bulk

pro ! 1 ~r2
pro~z; t! 2 r2,bulk

pro !

1 Sfs~z; t!

vs
2

fs,bulk

vs
D 1 ~bp~z; t! 2 bpbulk!G dz, (22)

where the values at equilibrium (t 3 `) provide the ther-
modynamic surface tension.

The second system on which we report calculations is
aimed at looking at the effect that surface-induced confor-
mational transitions of the protein have on the equilibrium
and kinetic process of adsorption.

The bulk solution is composed by spherical model pro-
teins with a radiusR5 15 Å, which interact with the surface
with the potential shown in Fig. 3. Upon contact with the
surface, the protein may undergo a conformational change
to a configuration that we call pancake. This conformation
has the shape of a disk with a height equal to2⁄5 the diameter
of the spherical conformation. The cross-sectional area of
the disk is such that the volume of the protein is the same in
the spherical and in the pancake configurations. The attrac-
tion of the pancake conformation with the surface is larger
than that of the sphere. The motivation for studying this case
is that, if the pancake conformation would not be more
favorable on the surface, there will be no reason for the
protein to undergo the conformational change upon contact
with the surface. It is important to note that this type of
configurational change, from a sphere-like conformation to

a more disk-like one, can be related to the conformational
changes observed experimentally in studies of lysozyme
adsorption (Billsten et al., 1995).

As in the case of the binary mixture, we assume that
xgigj

5 0 for all gigj. Further, because there is only one
relevant energy difference, we can takeUint(gi) 5 0. Recall
that the protein is allowed to change its configuration only
at z 5 0. The differenceUsph-s(0) 2 Upan-s(0) contains in it
any difference in the internal energy between the two con-
figurations.

The equations that are solved for the equilibrium system
are

rsph~z!vs 5 exp@bmbulk
pro #expF2bUsph-s~z!

2 E
z

z12R

bp~z9!vsph~z, z9! dz9G , (23)

for all z, and there is an additional equation for the pancake
conformation,

rpan~0!vs 5 exp@bmbulk
pro #expF2bUpan-s~0!

2 E
0

h

bp~z!vpan~z! dzG , (24)

whereUpan-s(0) is the pancake–surface attraction. The equa-
tion for the density of pancake conformations is only atz 5
0 because this configuration is assumed to exist only upon
contact of the protein with the surface.

FIGURE 3 The distance dependence of the attractive interaction be-
tween the surface and one spherical protein for the case of proteins that
may undergo conformational changes upon contact with the surface. Units
are as in Fig. 2.
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The constraint equations to determine the lateral pres-
sures forz # h are

rpan~0!vpan~z! 1 E
0

z

rsph~z9!vsph~z9, z! dz9 1 fs~z! 5 1,

(25)

and, forz . h,

E
z22R

z

rsph~z9!vsph~z9, z !dz9 1 fs~z! 5 1. (26)

Again, as described above, these equations are solved by
discretization of thez direction.

The kinetic equations for the sphere configuration are, for
z Þ 0,

­rsph~z, t!

­t
5 Dsph

­

­z Frsph~z; t!
­bmsph~z; t!

­z G , (27)

and, forz 5 0,

­rsph~0, t!

­t
5 Dsph

­

­z Frsph~0; t!
­bmsph~0; t!

­z G
1 k~pan3 sph!F~pan3 sph;t!rpan~0; t!

2 k~sph3 pan!F~sph3 pan;t!rsph~0; t!, (28)

with the time-dependent chemical potential of the sphere
given by

bmsph~z; t! 5 ln@rsph~z; t!vs# 1 bUps~z!

1 E
z

z12R

bp~z9; t!vsph~z, z9! dz9. (29)

The dynamic equation for the pancake configuration con-
tains no mass transport component because it can only exist
on the surface and as a transformation from an already
adsorbed spherical conformation. Thus, we have

­rpan~0; t!

­t
5 2k~pan3 sph!F~pan3 sph;t!rpan~0; t!

1 k~sph3 pan!F~sph3 pan;t!rsph~0; t!, (30)

where for both Eqs. 28 and 30, the blocking functions, are
given by

F~pan3 sph;t! 5 exp@b~Urep~pan;t! 2 Urep(sph;t!!],
(31)

with the repulsive contribution to the potentials of mean
force given by

Urep~pan;t! 5 E
0

h

p~z; t!vpan~z! dz, (32)

for the pancake, and

Urep(sph;t) 5 E
0

2R

p~z; t!vsph~z! dz, (33)

for the sphere, whereR is the radius of the spherical protein.
The intrinsic rates of conformational change,k(pan3

sph) andk(sph3 pan) are input for the theory. However,
due to the condition of thermodynamic equilibrium, we only
need to provide one. The equilibrium condition from which
the constant is determined is

rpan(0, equil)

rsph~0, equil!
5

k~sph3 pan!

k~pan3 sph!

F~sph3 pan; equil)

F~pan3 sph; equil)
,

(34)

where the equilibrium values of the densities and potentials
of mean force for the blocking functions are determined
from the equilibrium lateral pressures and chemical poten-
tials as shown above (see Eqs. 23–26). In the results pre-
sented below, we provide, as input,k(sph3 pan).

Numerical methodology

The equilibrium equations require the discretization of
space in thez direction. The way these equations are solved
has been presented in detail in Szleifer (1997b). For clarity,
we just mention some of the most important points. We
discretizez into layers of thicknessd 5 D/5, whereD is the
diameter of the largest protein that we model. This partic-
ular choice of the discretization has been shown to provide
excellent results for the solution of the equilibrium equa-
tions (Szleifer, 1997b; McPherson et al., 1998; Satulovsky
et al., 2000). Further, changes in the value ofd does not
change any of the results presented throughout this paper.d
is the unit length used throughout.

With this discretization, we call layer i as the region
between (i 2 1)d # z , id. Thus, all the integrations along
z are transformed into sums overi. The next step is to
determine the volume that a protein at layerk contributes to
layer j. We consider a protein at layerk as the particle that
has its point of closest approach to the surface at (k 2 1)d.
Then the volume that it occupies at layerj depends upon the
geometry of the protein, as described in the Model Systems
section. For example, for a spherical protein withD 5 5d
the volumes arevp(1)/vs 5 vp(5)/vs 5 23.5488;vp(2)/vs 5
vp(4)/vs 5 56.1547; andvp(3)/vs 5 67.0234. The unit vol-
ume used in all the calculation is the volume of the solvent,
which is taken asvs 5 d3/1.862.

To exemplify a case of what the discrete equations that
we solve for the equilibrium adsorption look like, we show
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the example of a single type of spherical protein of diameter
D 5 5d that is in solution with chemical potentialmp. The
discrete equations are

O
k51

5 H@rpro~j 2 k 1 1!vs#Svp~k!

vs
DJ 1 exp@2bp~j!vs# 5 1

1 # j # jmax, (35)

where

rpro~i!vs 5 expFbmp 2 bUps~i! 2 O
l51

5

@p~i 1 l 2 1!vs#

3 Svp~l!

vs
DG , (36)

whereUps(i) is the strength of the protein–surface interac-
tion at distance (i 2 1)d from the surface.rpro(i)vs is the
dimensionless density that we use throughout the Results
section. In particular, what we callr(0) in all the figures
refers torpro(0)vs.

Eqs. 35, with Eq. 36, represent a set ofjmax-coupled
nonlinear equations for thep(j) that are solved by numerical
iterative methods (IMSL, 1989, Press et al., 1990). In most
applications, we usejmax 5 30. In practice, it is actually
more convenient to solve forx(j) 5 exp[2bp(j)vs]. The
reason being thatbp(j)vs is a positive quantity, and, there-
fore, x(j) is bound between 0 and 1. The explicit set of
equations that we solve are

O
k51

5 Hexp@bmp 2 bUps~j 2 k 1 1!# P
l51

5

@x~j 2 k

1 l!#vp(l)/vs
vp~k!

vs
J 1 x~j! 5 1 1# j # jmax. (37)

For the dynamic calculations, we can solve the kinetic
equations, Eq. 19 and its analogs, Eqs. 27 and 28, by
discretizing space as explained for the equilibrium equa-
tions and finite difference for the time domain. Namely, we
calculate the rhs of the kinetic equations at timet and use it
to solve for the values at the next timet 1 Dt.

For example, Eq. 19, for layerj, using finite differences
for the time derivative, becomes

ri
pro~j, t 1 Dt! 2 ri

pro~j, t!

Dt
5 f~t!, (38)

with

f~t! 5 DiFri
pro~j 1 1, t! 2 ri

pro~j, t!

d G
3 Fmi

pro~j 1 1, t! 2 mi
pro~j, t!

d G 1 Diri
pro~j, t!

3 Fmi
pro~j 1 1, t! 2 mi

pro~j, t!

d2 G j 5 1; (39)

and

f~t! 5 DiFri
pro~j 1 1, t! 2 ri

pro~j, t!

d GF
3

mi
pro~j 1 1, t! 2 mi

pro~j, t!

d G 1 Diri
pro~j, t!

3 Fmi
pro~j 1 1, t! 2 2mi

pro~j, t! 1 mi
pro~j 2 1, t!

d2 G j . 1,

(40)

where we have used the dimensionlessmi
pro and ri

pro.
Namely,mi

pro 5 bmi
pro, ri

pro 5 ri
provs. The chemical poten-

tials are given by the discrete versions of Eq. 20. In this
explicit way of solving the dynamic equations, all the values
at timet are known. Using Eq. 38, we obtainri

pro(z, t 1 Dt).
The most important issue to consider now is how to choose
the properDt so that the integration is correct.

Under optimal conditions, one would like to choose a
very small time stepDt so that the finite difference is as
close as possible to the derivative. However, ifDt is too
small, it will take a long time to integrate the equations up
to the new equilibrium state. Note that, in some cases, we
integrate the equations of motion over many orders of
magnitude in time. Thus, the proper balance needs to be
found when choosing a goodDt. The way we obtain the
optimal Dt is by an adaptive method that is schematically
shown in Fig. 4. The basic idea is to attempt to integrate
with the largest possible time step for which the integration
is correct. We found that the particular choice of the incre-
ment ofDt shown in the figure enables the integration of the
equations of motion in a reasonable amount of computer
time for our calculations.

Using this procedure and its straightforward generaliza-
tion for the case of conformational changes, we calculated
all the dynamic results presented in this report. It should be
stressed that we have not attempted to optimize the method
to achieve optimal computational performance. Our main
concern in all the calculations was the correct integration of
the equation of motions in a reasonable amount of computer
time. Future work, including proteins and polymers at sur-
faces, may require the optimization of the methodology,
because the integration will need to be carried out over
many more orders of magnitude in time, as a recent example
shows (Satulovsky et al., 2000).

RESULTS

Thermodynamic behavior

We first present the results of the calculations for the
equilibrium adsorption isotherms. For the binary mixture,
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Fig. 5 shows the equilibrium amount of large and small
proteins adsorbed as a function of the bulk composition of
the mixture. The different curves in each graph represent
different ratios of the strength of the protein–surface attrac-
tion for the small protein, for fixed attraction of the large
one. The lowest ratio is 1.67, which is exactly the ratio of
the radii of the proteins. The reason for considering this
particular ratio is that, if the surface–protein attraction were
dominated by van der Walls interactions, then the strength
of these interactions is proportional to the radius of the
particle (Israelachvili, 1991). For this case, even though the
attraction is stronger for the large protein, the smaller pro-

teins adsorb in much larger amounts for all compositions.
This shows the dominant effect of the repulsive interactions
in determining the amount of protein adsorbed for this
particular mixture.

Decrease of the strength of the small protein–surface
attraction (increase of the ratio) results in an increase of the
amount of large proteins adsorbed at the expense of the
small ones. Note, however, that the change in the number of
large proteins adsorbed going from a ratio of 3 to 5 is not
very large. The main effect is to replace small proteins. This
effect is best seen by showing the adsorption isotherm of the
mixture in the form of surface mole fraction against the bulk
mole fraction. This is shown in Fig. 6. For a ratio of
attractive interactions of the order 2.5 and larger, the surface
is dominated by the attractive strength of the large protein.

It is clear that the amount of protein adsorbed at equilib-
rium is the result of the balance between three competing
thermodynamic forces. There is the bare surface–protein
attraction that will favor the largest proteins. There is the
entropy of mixing that will favor an equimolar mixture (this
is not a major contribution but it cannot be neglected). The
last contribution is the repulsive interactions between the
adsorbed proteins. The larger proteins feel a stronger repul-
sive interaction upon contact with the surface due to their
larger volume. These three contributions are further con-

FIGURE 4 Flowchart representing the adaptive method used in the
dynamic simulations.

FIGURE 5 The equilibrium amount of large and small proteins adsorbed
as a function of the mole fraction of the large protein in bulk. The different
curves in each graph represent different ratios ofUps

large/Ups
small, for fixed

large protein–surface attraction.Ups
large is as shown in Fig. 2. The different

ratios are:solid line, Ups
large/Ups

small 5 5; dashed line, Ups
large/Ups

small 5 3;
long-dashed line, Ups

large/Ups
small 5 2; dot-dashed line, Ups

large/Ups
small 5 1.67.
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strained to the need to have the protein chemical potential
on the surface equal to that in the bulk. Figures 5 and 6 show
examples in which each of the different contributions dom-
inate the adsorption. The isotherms can be used to design
the proper surface chemistry to tune the protein–surface
interaction, and the compositions that are optimal for pref-
erential equilibrium adsorption of small or large proteins.

We now turn to the equilibrium adsorption isotherm of
the protein that may undergo a conformational change upon
adsorption on the surface. Figure 7 shows the density of
sphere and pancake conformations adsorbed as a function of
the bulk concentration of proteins for 4 different strengths
of the pancake–surface interaction. As the attraction be-
tween the pancake and the surface increases, there is a larger
number of pancake configurations on the surface. Note,
however, that the slope of increase of the pancake config-
uration as a function of the bulk concentration of proteins is
smaller than that of the spherical conformation. Therefore,
as shown in Fig. 7C, the total number of adsorbed proteins
is not always larger when the pancake–surface attraction is
maximal. Recall that all these calculations are for fixed
sphere–surface interaction. At very low bulk concentrations
of proteins, the maximal number of proteins on the surface
corresponds to the case of maximal pancake–surface attrac-
tion. As the concentration of bulk protein increases, the
amount of adsorbed proteins increases in all cases. How-
ever, the rate of increase of adsorbed proteins with bulk
concentration is larger for the smallest pancake–surface
attraction. The reason is that the pancake configuration has
a much stronger repulsive component because most of its
volume is localized in the close vicinity of the surface. (A
schematic representation of the different repulsions in the
pancake versus the spherical configuration is presented in
Fig. 8.) The sphere conformation has the strongest repul-

sions at a distanceR from the surface, which is larger than
the thickness of the pancake. Further, due to the volume
distribution in the sphere, the repulsive interactions are
smaller than for the pancake. Thus, as the concentration
increases, the sphere becomes more favorable than the pan-
cake, even though the latter has a stronger bare surface–
protein attraction.

An easy way to visualize the strength of the repulsive
interactions is by considering only the adsorbed molecules
at the surface and looking at the excluded volume of each of
the conformations. As can be seen from Fig. 8, the pancake
has a much larger excluded area than the sphere. Further,

FIGURE 8 Schematic representation of the relevant repulsive interac-
tions for the pancake and spherical configurations. The pancake has the
strongest repulsion in the close vicinity of the surface. The sphere confor-
mation has the strongest repulsions at a distanceR from the surface, which
is larger than the thickness of the pancake (R is the radius of the spherical
configuration).

FIGURE 6 The surface mole fraction of the large protein as a function of
the bulk mole fraction of the large protein. The different curves are as in
Fig. 5.

FIGURE 7 The equilibrium density of adsorbed sphere, pancake, and
total (sphere1 pancake) as a function of the bulk concentration of proteins
for four different strengths of the pancake–surface interaction. In all cases,
the sphere–surface attraction is fixed and as shown in Fig. 3. The four
different pancake–surface interactions are:solid line, Upan-s(0) 5 4Usph-

s(0); dashed line, Upan-s(0) 5 3Usph-s(0); long-dashed line, Upan-s(0) 5
2Usph-s(0); anddot-dashed line, Upan-s(0) 5 1Usph-s(0).
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the relevant excluded area of the spherical configuration
with respect to the pancake is smaller than that with respect
to the sphere. This is because the cross-sectional area of the
sphere interacting with the pancake is at a distance from the
surface that is smaller than the sphere radius.

From the examples on the binary mixture and the con-
formational preferential adsorption, we see that it is very
important to include the strength of the surface–protein
attraction and the intermolecular repulsions. Further, the
repulsions depend very strongly on the shape and size of the
molecules, and, therefore, a proper treatment of the equi-
librium adsorption isotherms requires a theoretical descrip-
tion that is able to include all these components at the
molecular level. Thus, we expect the theory to provide
accurate adsorption isotherms if explicit information on the
size and shape of the adsorbing proteins is given as input,
when they become available.

We now have an understanding of what is the optimal
final amount of protein adsorbed. The next step is to study
how the system can reach that condition. We now present
results for the kinetics of protein adsorption for the different
cases of interest.

Kinetic adsorption

We start the discussion of the time-dependent adsorption for
the case of mixtures. There is clear experimental evidence
that, in the adsorption of blood proteins, there is exchange.
In some cases, the smallest protein adsorbs first and, later,
it is replaced by a larger protein. This kind of sequential
adsorption is called the Vroman sequence (Green et al.,
1999). We have seen that, from the equilibrium point of
view, the optimal partition of the proteins on the surface
depends upon the size of the particles, the bulk composition,
and the surface–protein interaction. We expect these vari-
ables to be also important for the kinetic sequence, and we
present the most representative results now. For all the
mixtures that we show below, we consider the ratio of the
diffusion coefficients to be inversely proportional to the
ratio of the radius of the spheres. Namely, we use the
Stokes–Einstein relation between the diffusion constant and
the radius and assume that the viscosity coefficient is con-
stant at all compositions.

Before we present the results, it is important to remember
what is the initial condition in our system. In our kinetic
studies, we assume that, at timet 5 0 in the vicinity of the
surface, the solvent molecules are homogeneously distrib-
uted at allz(z , 6Dlarge) and the density of the protein is
very small. Further, we assume that, at a distancez $
6Dlarge, the composition does not change with time. In other
words, at that distance, it is assumed that the proteins are
always at their bulk composition. This is aimed to represent
experiments of adsorption where the bulk solution is driven
by a flow cell. Clearly, the distance from the surface where
the density is constant is not known, and our choice is based

only on computational convenience. However, moving that
distance to larger values will have an effect only on the
diffusion-controlled regime of the kinetics. Recall the def-
inition of the different kinetic regimes defined following
Eq. 15. We believe that the qualitative features that we
present below will not change. Only the time at which the
kinetic-controlled regime stars will be modified. However,
because the most interesting part is in the kinetic-controlled
regime, and also the diffusion controlled-regime could be
added analytically, we have chosen to keep the distance
fixed at this relatively small value.

Figure 9 shows the time-dependent adsorption for each of
the two proteins and the total amount of protein on the
surface for three different bulk compositions for the largest
attraction difference between the two proteins that we stud-
ied in the equilibrium case. For an equimolar solution, the
kinetics show that the two proteins start to adsorb together.
After a relatively short time, the small proteins’ rate of
adsorption decreases while that of the large protein contin-
ues to increase. The initial increase in the amount of small
proteins adsorbed is because there is plenty of free surface
accessible to the proteins. Once there are enough large
proteins to exert a significant repulsive interaction on the

FIGURE 9 The time-dependent adsorption of large (dot-dashed line)
and small (solid line) proteins on the surface for three different bulk
composition and forUps

large/Ups
small 5 5. The total density of adsorbed

proteins is represented by the dashed line. The bulk compositions are: (A)
y 5 0.5; (B) y 5 0.05; (C) y 5 0.005, wherey is defined as the mole
fraction of the large proteins in bulk. The time is measured in units of the
diffusion coefficient of the small protein,D, D 5 5⁄3Dlarge. The time axis is
in a logarithmic scale.
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small proteins, the smaller particles start to desorb. For this
equimolar mixture, there are plenty of large proteins close to
the surface to adsorb at the initial steps of the adsorption
process. Thus, there is no real competitive adsorption, but,
essentially, free adsorption of the two different proteins
until the repulsive interactions are strong enough that there
is no gain for the small proteins to reach or stay on the
surface. Recall that the large protein–surface attraction is
rather large.

The other two bulk compositions show a rather different
kinetic behavior. Namely, there is an initial large adsorption
of the small particles before the large proteins start to adsorb
and displace the small ones. This is the result of the smaller
number of large proteins in the bulk solution, and, thus,
there is a delay for the larger particles to reach the surface.
These cases are in line with the experimentally observed
Vroman sequence. Thus, we conclude that, to observe the
Vroman sequence, the necessary conditions are that the bulk
solution is at a composition with an excess of the small
protein, and that the interaction between the large protein
and the surface is much larger than that of the smaller
protein.

The question that arises is what is the driving force for the
desorption of the small proteins. Recall that, in our theoret-
ical approach, the desorption is not added as a term in a
kinetic equation, but, if observed, it is the result of the
competing interactions that determine the dynamic path.
The motion of the proteins is driven by the gradient in
chemical potential. The chemical potential has three contri-
butions (see Eq. 20). The contribution of the surface–protein
attraction to the gradient of chemical potential is indepen-
dent of time, and it is at all times the driving forces for the
proteins to go to the surface. The desorption is the result of
the other two contributions and the changes in these quan-
tities when the large proteins start to adsorb on the surface.
It turns out that the repulsive potential of mean force is
relatively small in magnitude compared to the other contri-
butions under these conditions. The term arising from the
ideal translational entropy is large. This term, which by
itself will tend to drive the motion to have a uniform density
profile (maximal entropy), acts in opposite direction to the
attractive interaction term.

To see the differences with single-protein adsorption and
to understand the origin of the desorption process in mix-
tures, we show, in Fig. 10, the adsorption of a single protein
from solution. In this case, the amount of protein at the
surface as a function of time is monotonic (as shown in Fig.
10 A). The rate of adsorption is not monotonic, and, as is
shown in Fig. 10B, it has a very fast regime at short times.
The fast regime is dominated by the time that it takes the
proteins to reach a distance of the order of the protein
diameter from the surface. At this distance, the strength of
the attractive interaction is very large and thus the surface
acts as a sink. Note that this will be the case only for dilute

surfaces, so that there are no repulsive interactions acting on
the system.

As proteins adsorb, the repulsive term due to the already
adsorbed proteins becomes more important, and there is a
maximum in the rate followed by a long tail of decreasing
rate as the repulsions become more and more dominant. The
rate, however, remains positive at all times. This is the same
behavior as has been recently observed experimentally by
C. Calonder and P. R. Van Tassel (2001) for the adsorption
of human fibronectin.

In the case of mixtures, as shown in Fig. 9, at the
beginning of the adsorption process, the adsorbing small
proteins do not feel at all the presence of the large ones, and,
thus, the adsorption rate and total adsorption is very similar
to that of the single small protein in solution, shown in Fig.
10. However, as the large proteins start to adsorb, the
environment for the small ones changes completely as com-
pared to the single-component case. We find that the main
change that drives the desorption is the result of the pushing
of the small proteins that are close to the surface but not yet
adsorbed by the large adsorbed proteins. This results in a
relatively large gradient of the density of small proteins that
drives the small adsorbed proteins out of the surface.

An interesting aspect of the different kinetic behavior
observed for the different compositions can be obtained by
looking at the total surface density (adsorption) as a func-
tion of time. This is shown in Fig. 11, together with the
change in the dynamic surface tension for the three cases.
We see that, in the case where the large proteins replace the
adsorbed small ones, the total adsorption shows a plateau
region. This is also observed in the dynamic surface tension.
The duration of the plateau depends upon the rate of ex-
change between the large and the small proteins. Note that,
in both cases, the plateau is at exactly the same total density,
and also total lateral pressure.

The results presented in Fig. 11 suggest that experimental
observations of the dynamic surface tension in protein mix-

FIGURE 10 The time-dependent adsorption of pure small proteins. (A)
Density of proteins adsorbed on the surface as a function of time; (B) the
rate of adsorption as a function of time; (C) the rate of adsorption as a
function of the density of adsorbed proteins. The time is measured in units
of the diffusion coefficient of the protein,D. The time axis in Panel A is
in a logarithmic scale.
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tures should be interpreted with special care. In particular, it
is clear that the presence of a constant surface tension over
a relatively long time is not necessarily an indication of the
system reaching thermodynamic equilibrium. Our calcula-
tions suggest that a way to check whether constant surface
tension indicates equilibrium is to carry out the experiments
at a different bulk composition. The reason being that the
equilibrium surface tension depends upon the composition,
whereas the plateau is independent of the bulk value and it
is the same for all compositions. The value of the plateau
seems to depend only upon the kinds of proteins in the
mixture and the protein–surface interactions.

The next question that we address is the effect of the
strength of the protein–surface interactions on the kinetics
of adsorption. Figure 12 shows the amount of protein ad-
sorbed as a function of time for four different strengths of
the small protein–surface attraction. The different interac-
tions are as those used in the equilibrium calculations shown
in Fig. 5. For the largest attraction for the small protein,
there is almost no large protein adsorption. The time-depen-
dent adsorption looks very similar to that of the pure small
protein (Fig. 10). The reason is that, under these conditions,
there is a very small amount of large proteins reaching the
surface both in the equilibrium structure and on the kinetic
pathway. As the interaction of the small protein decreases,
there is a more important presence of the large protein at

equilibrium and in the kinetic adsorption. In all cases there
is a much larger concentration of small particles in the bulk
solution, and, thus, they adsorb first at a fast rate. Only after
the large proteins start reaching the surface do the small
proteins start to desorb to leave enough room on the surface
for the large proteins. Note that, even though, in all cases,
there is an overshoot of the small proteins on the surface at
intermediate times, only at the smallest surface–small pro-
tein interactions does one see the typical Vroman sequence
that results in more large proteins adsorbed at the end of the
process.

The results presented in Fig. 12 show that one could
control the temporary composition of proteins on the sur-
face by controlling the flow of proteins and the surface–
protein interactions. Furthermore, surface modification can
lead to yet another degree of freedom to control the equi-
librium and kinetic composition of the adsorbed layer.

A detail understanding of the different stages of adsorp-
tion for both types of proteins can be obtained by looking at
the potential of mean force (see Eq. 10). Figure 13 shows
the average potential felt by the large and small proteins at
two different times in the adsorption process, for the cases
shown in Fig. 12,C andD. For the case with the smallest
strength of interaction between the small protein and the
surface, the potentials of mean force at relatively short times
looks very similar to the bare surface–protein interaction.
This is basically the diffusion-controlled regime where the
driving force for adsorption is just the strong protein–
surface attraction. The potentials for the latter time show a
qualitative different behavior. For both the small and large

FIGURE 11 The dynamic surface tension as a function of time (top) and
the total amount of proteins adsorbed as a function of time (bottom) for
three different bulk compositions of mixtures of proteins.Solid line, y 5
0.005;dashed line, y 5 0.05; anddot-dashed line, y 5 0.5. The time is
measured in units of the diffusion coefficient of the small protein,D. The
time axis is in a logarithmic scale.

FIGURE 12 The time-dependent adsorption of large (dot-dashed line),
small (solid line), and the total amount (dashed line) of proteins on the
surface, for fixed bulk composition (y 5 0.005) and four different ratios of
strength of protein–surface attractions between large and small proteins:
(A) Ups

large/Ups
small 5 1.67; (B) Ups

large/Ups
small 5 2; (C) Ups

large/Ups
small 5 3; and

(D) Ups
large/Ups

small 5 5. The time is measured in units of the diffusion
coefficient of the small protein,D. The time axis is in a logarithmic scale.
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proteins, there is a maximum in the potential of interaction.
For the smallest protein, this is a repulsive maximum that
makes the dynamic process to be now kinetically controlled.
The time-dependent behavior is dominated by the time scale
of crossing the barrier. Note that, even for the large protein,
the approach to the surface requires a “jump” over a max-
imum in the potential. The position of the maxima in the
potential corresponds to the size of the small proteins, and
its presence reflects the repulsive interactions that the al-
ready adsorbed small proteins present to the proteins at-
tempting to reach the surface from the solution.

The shape of the repulsive potential reflects the molecular
structure of the adsorbed proteins and their organization on
the surface. This can be seen in the cases shown in Fig. 13
C, where the barriers are more pronounced due to the larger
density of molecules already adsorb at the times shown. In
all cases, the presence of the barriers due to the already
adsorbed (mostly small) proteins makes for the slow kinet-
ics of the system to achieve final equilibrium. The shape and
size of the potential of mean force is seen to change with
time. This has two very important consequences. The first is
that the type of kinetic process that determines the adsorp-
tion depends upon the molecular organization of the pro-
teins close to the surface and the specific properties of the
adsorbing proteins. Second, it demonstrates why the kinet-
ics of protein adsorption is not a simple kinetic process,
since the effective size and shape of the protein–surface
potential changes as a function of time.

We now turn to the problem of the kinetics of adsorption
on systems that the proteins may undergo conformational
changes upon adsorption on the surface. We will consider
solutions with a single kind of protein that, upon adsorption,
can transform from its spherical conformation to the pan-
cake. We have shown in Fig. 7 what is the partition between
the two configurations at equilibrium. How the system
reaches that equilibrium depends upon the rate of change
from one conformation to the other. Inspection of Eq. 28
shows that there are two factors that determine the rate of
change from the sphere to the pancake configuration. The
first is the intrinsic rate of changek(sph3 pan), which
measures the rate of conformational transformation for the
isolated molecule. The second is the factor that depends
upon the environment on the surface,F(sph3 pan; t).
From these two factors, only the first one can be changed a
priori to check the effect of different intrinsic rates on the
kinetics of adsorption. The effect of the environment de-
pends on the time evolution of the density of the different
species on the surface, and, thus, it is, in essence, the result
of how the system evolves in time.

Figure 14 shows the adsorption as a function of time for
four different values of the intrinsic rate of change from the
sphere to the pancake. The change in rate results in dramatic
changes in the qualitative shape of the adsorption curves.
For very fast intrinsic rates of transformation from sphere to
pancake, the proteins change their configuration in a time
scale faster than they are adsorbed. Thus, up toDt 5 104,
there are only pancake configurations on the surface. Recall

FIGURE 13 The potential of mean force felt by the large (dot-dashed
line) and small (solid line) proteins at two different times in the adsorption
process. (C1) and (C2) correspond to the case shown in Fig. 12C, and (D1)
and (D2) correspond to the case shown in Fig. 12D. (C1) and (D1)
correspond to timeDt 5 22025, and (C2) and (D2) correspond to time
Dt 5 1202541. The time is measured in units of the diffusion coefficient
of the small protein,D. The dashed line corresponds to zero potential.

FIGURE 14 The time-dependent adsorption of sphere (dot-dashed line),
pancake (solid line), and their sum (dashed line) for four different values
of the intrinsic rate of conformational change from sphere to pancake. (A)
ksp

int/D 5 4.85p 104; (B) ksp
int/D 5 4.85p 100; (C) ksp

int/D 5 4.85p 1024; and
(D) ksp

int/D 5 4.85 p 10212. D is the diffusion coefficient of the spherical
proteins. The time axis is in a logarithmic scale.
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that the pancake has a much stronger attraction with the
surface than does the sphere. At this time there is a large
enough concentration of proteins adsorbed (all in pancake
configuration) that the rate of transformation from sphere to
pancake decreases dramatically due to the excluded volume
term. Namely, the pancake requires more free space on the
surface than does the sphere. Thus, the relatively high
density on the surface prevents the fast transformation, and,
thus, the spheres’ density starts to increase up to the point
that the system reaches equilibrium with the ratio of sphere
to pancakes that minimizes the free energy.

When the ratek(sph3 pan) is decreased by four orders
of magnitude (Fig. 14B), it can be seen that the beginning
of the adsorption process is very similar to the faster one
(Fig. 14 A). However, once the density on the surface is
large enough for the excluded volume term to become
relevant, the compound rate of transformation is slow
enough that there is an overshoot on the adsorption of the
spherical configuration that decays over two orders of mag-
nitude in time until the system reaches thermodynamic
equilibrium. Note that the time to reach equilibrium is two
orders of magnitude slower than that in the case shown in
Fig. 14A.

A further decrease of the bare rate constant makes the
diffusion of the particles to the surface much faster than the
transformation to pancake. Thus, as can be seen in Fig. 14
C, the beginning of the adsorption process changes as com-
pared to the faster ones, because the number of spherical
proteins is larger than those of pancake for a very long
period of time. Actually, the number of pancake configura-
tion becomes equal to that of spheres only afterDt 5 106,
which corresponds to a time longer than what the systems in
Fig. 14,A andB, take to reach thermodynamic equilibrium.

Figure 14D shows the adsorption in the case of a very
low value for the rate constantk(sph3 pan). As can be seen
up to Dt 5 108, the system behaves as if there are only
spherical proteins. Our calculation did not reach equilib-
rium, and we believe that the system is several orders of
magnitudes off equilibrium. The reason that we show this
example is that it represents an interesting case where the
system shows indications of irreversible behavior, even
though the formulation of the theory is such that the systems
eventually will reach thermodynamic equilibrium. An inter-
esting result of this behavior is shown in Fig. 15, where the
dynamic surface tension is shown as a function of time for
the same cases shown in Fig. 14. The initial fast decrease of
the dynamic surface tension is determined by the diffusion-
controlled regime of the adsorption, namely, the time that it
takes the particles to diffuse to the surface. If the rate of
transformation to pancake is fast enough, then there is no
change in the curvature of the dynamic surface tension.
However, once the rate of transformation is small enough
that the lateral repulsive interactions play a role, there is a
slowdown on the decrease of the dynamic surface tension.
In the limiting case of very slow transformation, we see a

plateau that may be confused with the system reaching
thermodynamic equilibrium.

The results of Fig. 15 are interesting because they show
that measurements of the dynamic surface tension may
provide indications that the proteins undergo conforma-
tional changes upon adsorption. This is particularly evident
in the case of relatively slow rate of conformational change,
but fast enough that the system reaches equilibrium in a
reasonable amount of time.

The total rate of conformational change, and, thus, the
time that it takes the system to reach equilibrium, is deter-
mined by two factors. The first is the absolute rate of
conformational transition, and it is independent of the state
of the surface. The second is the effect of the surface
density, and it measures the repulsive interactions differ-
ence between the two configurations and the neighboring
molecules. This second factor is a strong function of the
surface density and composition and it varies with time.
This is the term that is responsible for the sharp slowdown
and for the change in the rate of adsorption. To visualize this
effect, Fig. 16 shows the variation of the repulsive term as
a function of time for the four cases shown in Fig. 14. The
figure clearly demonstrates the decrease by more than five
orders of magnitude in the rate due to the repulsive inter-
actions. It is interesting to note that, as the population of

FIGURE 15 The total amount of protein adsorbed (upper graph) and the
dynamic surface tension (lower graph) as a function of time for four
different values of the intrinsic rate of change from sphere to pancake.
Dotted line, ksp

int/D 5 4.85 p 104; dashed line, ksp
int/D 5 4.85 p 100;

dot-dashed line, ksp
int/D 5 4.85p 1024; andsolid line, ksp

int/D 5 4.85p 10212.
The time is measured in units of the diffusion coefficient of the spherical
proteins,D. The time axis is in a logarithmic scale.
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pancake on the surface increases, there is a very sharp
decrease of the rate. This is because the pancake conforma-
tion occupies more surface area than does the sphere.

CONCLUSIONS

We have presented a general theoretical approach to study
the thermodynamic and kinetic behavior of adsorbing pro-
teins on solid surfaces. We have derived the theory in its
most general form for both the equilibrium and kinetic
studies. The theory was then applied to simple cases to
study the effect of size, composition, surface–protein inter-
actions, and protein conformational changes to the adsorp-
tion isotherms and the kinetics of protein adsorption.

The formulation of the theory does not require the spe-
cific introduction of the kinetic pathways that may happen
through the adsorption process, but it predicts them. For
example, adsorption and desorption will be predicted if the
local thermodynamic environment is optimal for that pro-
cess. Further, the kinetic version of the theory is formulated
such that the system will eventually reach thermodynamic
equilibrium. However, the theory is capable of predicting
some kind of irreversible adsorption for cases of very slow
dynamic processes. The theory describes the adsorption
process from the bulk solution to the surface, including a
detailed description of the region in the vicinity of the
surface. Further, although the theory was presented here
assuming that the only inhomogeneous direction is that
perpendicular to the surface, it can be easily extended to
treat inhomogeneous three-dimensional systems (Seok et al.
2000). The theory enables the study of the changes of the
structure of the adsorbed layer, with molecular detail, as a
function of time. This molecular description allows the
understanding of the factors that determine the different
kinetic regimes.

The theory requires, as input, the intermolecular and
surface–protein interactions, and the possible conformations
of the proteins. The intrinsic rate of transformation from one
conformation to another also needs to be given. These are
very difficult quantities to obtain, and, therefore, we applied
the theory to simple systems to study the main factors
determining the adsorption behavior. Although the applica-
tion of the theory was done for simple geometries for the
proteins, the real configuration of the protein could be
included if they are known. As more microscopic under-
standing of the structure and conformational properties of
proteins are learned, they can be incorporated into the
theoretical framework. Actually, the lack of knowledge of
the conformational properties of proteins may be one of the
most important limitations in the application of the theory.

The complete understanding of the adsorption process
should optimally permit description of the dynamic changes
from the nanosecond time scale, which is the time scale for
local conformational changes, to hours, which is the time
scale of the whole adsorption process. Clearly, this is an
impossible computational task with current methodologies
and hardware. Note that atomistic simulations can be run for
a single solvated small protein for nanoseconds. The theory
presented here is aimed at bridging the gap between micro-
seconds and hours. We hope, in the future, to be able to
introduce the input necessary for the theory from molecular
dynamic simulations of single proteins and, thus, bridge the
gap between the atomistic time scale to the macroscopic
one. It is important to emphasize that, to describe the very
large range of time scales that the theory can treat, one
needs to compromise in atomistic detail. Thus, the descrip-
tion of the solvent and basic elements forming the proteins
are coarse grained. The level of coarse graining depends
upon the level of detail that is of interest and the time scale
of the overall process.

It is important also to emphasize the limitations of the
approach presented here. First, although the theory has
shown the ability to quantitatively predict the adsorption
isotherms of lysozyme and fibrinogen on hydrophobic sur-
faces with grafted PEO (McPherson. et al., 1998; Satu-
lovsky et al., 2000), it is still a mean-field theory with all its
limitations, in particular with respect to the lateral interac-
tions. The applicability of the theory can be improved by
considering inhomogeneous densities in all three dimen-
sions, (see, e.g., Seok et al., 2000). However, even though
some correlations will be accounted for, the theory will
remain, in essence, a mean-field approach. Second, for the
kinetic behavior, we have assumed that the diffusion in the
plane of the surface is much faster than the motion perpen-
dicular to it. Although Brownian Dynamics simulations
(Ravichandran and Talbot, 2000) show that this is a valid
approximation for layers that are not very dense, we cannot
predict a priori whether this is going to be the case gener-
ally. Again, this limitation may partially be overcome by
considering the motion in all three directions. However, this

FIGURE 16 The variation of the blocking function as a function of time
for the four cases shown in Fig. 15. The time is measured in units of the
diffusion coefficient of the spherical proteins,D. The time axis is in a
logarithmic scale.
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will require an extremely large computational effort. Third,
the theory requires, as input, the information on the molec-
ular details of the proteins. This information has to be coarse
grained to be able to integrate the equations of motion.
Therefore, some of the detailed structural information is
lost. Fourth, the theory assumes that there is a separation of
time scales between the diffusion of the proteins (slow
motion) and the rearrangement of the solvent molecules
(fast motion). Although this is generally a reasonable ap-
proximation, it may have important consequences, in par-
ticular regarding solvent rearrangements upon conforma-
tional changes of the protein. Atomistic studies of single
proteins in solvents may shed light on the cases in which
this approximation breaks down. Fifth, we have assumed
that the diffusion constant of the protein does not change
with composition. Further, the approach assumes that there
are no flow effects.

The advantages of the theory, such as the ability to study
kinetic processes over many orders of magnitude in time,
the ability to follow the adsorption with a large degree of
molecular detail, and the wide range of applicability of the
approach, should be balanced against its limitations to apply
this approach in the appropriate cases where the theory is
valid. The conclusions presented here are kept within that
context, and we believe that the generic behaviors that we
have found are applicable in a large range of systems in
which adsorption of proteins takes place.

We have found that the competitive adsorption of pro-
teins from solution can show a variety of different behaviors
depending upon the protein–surface interactions, the com-
position of the bulk solution, and the ratio of sizes between
the proteins. We found, in agreement with experimental
observations, that the Vroman sequence is obtained when
the large proteins have a much stronger attractive interac-
tion with the surface than the smaller ones and the bulk
solution is rich in the small proteins. Changing the compo-
sition of the bulk solutions puts the large proteins at a larger
concentration on the surface at all times. The results pre-
sented here show the different conditions under which one
can temporarily and thermodynamically control the adsorp-
tion of proteins on surfaces. Thus, they can serve as one of
the building blocks in the design of optimal surfaces for
protein separations. Our findings on the plateau of the
dynamic surface tension suggest that changing the bulk
composition of the protein mixture may be a good indicator
of whether the system has achieved thermodynamic equi-
librium. The equilibrium value of the surface tension will
depend upon bulk composition, whereas the dynamic pla-
teau will not.

The ability of the protein molecules to change their
conformation upon adsorption has dramatic effects on the
kinetics of protein adsorption. Depending upon the intrinsic
rate of conformational change compared to protein diffu-
sion, one can observe different adsorption patterns that are
determined also by the intermolecular interactions. These

interactions, in turn, depend on the population of different
conformers on the surface. Our findings suggest that mea-
surements of dynamic surface tension versus time may give
an indication of possible conformational changes upon ad-
sorption. Slow conformational changes seem to be associ-
ated with changes in the slope of the dynamic surface
tension versus time. Further, the intermolecular interactions
play a key role in the rate of conformational transformation
once a certain density threshold of proteins is found on the
surface. These results may lead to ways of surface modifi-
cation that can be used to selectively adsorb proteins in a
given configuration.

To summarize, the work presented here is one more step
toward the systematic understanding of the molecular fac-
tors that determine the adsorption of proteins on surfaces.
The complexity in the dynamic and equilibrium behavior
calculated even for our simple protein models are compa-
rable to those observed experimentally. Further, it demon-
strates that explicit incorporation of the size, shape, com-
position, and strength of the intermolecular and surface
interactions are necessary for the proper description of these
complex systems. For example, the complex and time-
dependent shape of the potentials of mean force demon-
strate that the kinetics of adsorption is a process associated
with multiple relaxation times that are strongly dependent
upon the size and shape of the molecules.

We are currently working on simple detailed models of
proteins that will enable us to include more molecular and
conformational detail as input to the theory. In parallel, we
plan to compare the predictions of the theory with available
experimental data to build up a database of useful models of
proteins with which the theory can predict the behavior of
real systems.

We thank Drs. M. A. Carignano and J. Satulovsky for very enlightening
discussions. The work presented here is supported by the National Science
Foundation. I.S. is a Camille Dreyfus Teacher-Scholar.
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