Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jun;80(6):2590–2596. doi: 10.1016/S0006-3495(01)76229-7

Mutations in calpain 3 associated with limb girdle muscular dystrophy: analysis by molecular modeling and by mutation in m-calpain.

Z Jia 1, V Petrounevitch 1, A Wong 1, T Moldoveanu 1, P L Davies 1, J S Elce 1, J S Beckmann 1
PMCID: PMC1301447  PMID: 11371436

Abstract

Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by selective atrophy of the proximal limb muscles. Its occurrence is correlated, in a large number of patients, with defects in the human CAPN3 gene, a gene that encodes the skeletal muscle-specific member of the calpain family, calpain 3 (or p94). Because calpain 3 is difficult to study due to its rapid autolysis, we have developed a molecular model of calpain 3 based on the recently reported crystal structures of m-calpain and on the high-sequence homology between p94 and m-calpain (47% sequence identity). On the basis of this model, it was possible to explain many LGMD2A point mutations in terms of calpain 3 inactivation, supporting the idea that loss of calpain 3 activity is responsible for the disease. The majority of the LGMD2A mutations appear to affect domain/domain interaction, which may be critical in the assembly and the activation of the multi-domain calpain 3. In particular, we suggest that the flexibility of protease domain I in calpain 3 may play a critical role in the functionality of calpain 3. In support of the model, some clinically observed calpain 3 mutations were generated and analyzed in recombinant m-calpain. Mutations of residues forming intramolecular domain contacts caused the expected loss of activity, but mutations of some surface residues had no effect on activity, implying that these residues in calpain 3 may interact in vivo with other target molecules. These results contribute to an understanding of structure-function relationships and of pathogenesis in calpain 3.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur J. S., Gauthier S., Elce J. S. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett. 1995 Jul 24;368(3):397–400. doi: 10.1016/0014-5793(95)00691-2. [DOI] [PubMed] [Google Scholar]
  2. Belcastro A. N., Shewchuk L. D., Raj D. A. Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem. 1998 Feb;179(1-2):135–145. doi: 10.1023/a:1006816123601. [DOI] [PubMed] [Google Scholar]
  3. Carafoli E., Molinari M. Calpain: a protease in search of a function? Biochem Biophys Res Commun. 1998 Jun 18;247(2):193–203. doi: 10.1006/bbrc.1998.8378. [DOI] [PubMed] [Google Scholar]
  4. Chou F. L., Angelini C., Daentl D., Garcia C., Greco C., Hausmanowa-Petrusewicz I., Fidzianska A., Wessel H., Hoffman E. P. Calpain III mutation analysis of a heterogeneous limb-girdle muscular dystrophy population. Neurology. 1999 Mar 23;52(5):1015–1020. doi: 10.1212/wnl.52.5.1015. [DOI] [PubMed] [Google Scholar]
  5. Dutt P., Arthur J. S., Grochulski P., Cygler M., Elce J. S. Roles of individual EF-hands in the activation of m-calpain by calcium. Biochem J. 2000 May 15;348(Pt 1):37–43. [PMC free article] [PubMed] [Google Scholar]
  6. Elce J. S., Hegadorn C., Gauthier S., Vince J. W., Davies P. L. Recombinant calpain II: improved expression systems and production of a C105A active-site mutant for crystallography. Protein Eng. 1995 Aug;8(8):843–848. doi: 10.1093/protein/8.8.843. [DOI] [PubMed] [Google Scholar]
  7. Fardeau M., Hillaire D., Mignard C., Feingold N., Feingold J., Mignard D., de Ubeda B., Collin H., Tome F. M., Richard I. Juvenile limb-girdle muscular dystrophy. Clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain. 1996 Feb;119(Pt 1):295–308. doi: 10.1093/brain/119.1.295. [DOI] [PubMed] [Google Scholar]
  8. Hosfield C. M., Elce J. S., Davies P. L., Jia Z. Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. EMBO J. 1999 Dec 15;18(24):6880–6889. doi: 10.1093/emboj/18.24.6880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinbara K., Ishiura S., Tomioka S., Sorimachi H., Jeong S. Y., Amano S., Kawasaki H., Kolmerer B., Kimura S., Labeit S. Purification of native p94, a muscle-specific calpain, and characterization of its autolysis. Biochem J. 1998 Nov 1;335(Pt 3):589–596. doi: 10.1042/bj3350589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Minami N., Nishino I., Kobayashi O., Ikezoe K., Goto Y., Nonaka I. Mutations of calpain 3 gene in patients with sporadic limb-girdle muscular dystrophy in Japan. J Neurol Sci. 1999 Dec 1;171(1):31–37. doi: 10.1016/s0022-510x(99)00245-2. [DOI] [PubMed] [Google Scholar]
  11. Ono Y., Shimada H., Sorimachi H., Richard I., Saido T. C., Beckmann J. S., Ishiura S., Suzuki K. Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem. 1998 Jul 3;273(27):17073–17078. doi: 10.1074/jbc.273.27.17073. [DOI] [PubMed] [Google Scholar]
  12. Ono Y., Sorimachi H., Suzuki K. New aspect of the research on limb-girdle muscular dystrophy 2A: a molecular biologic and biochemical approach to pathology. Trends Cardiovasc Med. 1999 Jul;9(5):114–118. doi: 10.1016/s1050-1738(99)00018-3. [DOI] [PubMed] [Google Scholar]
  13. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  14. Richard I., Brenguier L., Dinçer P., Roudaut C., Bady B., Burgunder J. M., Chemaly R., Garcia C. A., Halaby G., Jackson C. E. Multiple independent molecular etiology for limb-girdle muscular dystrophy type 2A patients from various geographical origins. Am J Hum Genet. 1997 May;60(5):1128–1138. [PMC free article] [PubMed] [Google Scholar]
  15. Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995 Apr 7;81(1):27–40. doi: 10.1016/0092-8674(95)90368-2. [DOI] [PubMed] [Google Scholar]
  16. Richard I., Roudaut C., Saenz A., Pogue R., Grimbergen J. E., Anderson L. V., Beley C., Cobo A. M., de Diego C., Eymard B. Calpainopathy-a survey of mutations and polymorphisms. Am J Hum Genet. 1999 Jun;64(6):1524–1540. doi: 10.1086/302426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sorimachi H., Ishiura S., Suzuki K. Structure and physiological function of calpains. Biochem J. 1997 Dec 15;328(Pt 3):721–732. doi: 10.1042/bj3280721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sorimachi H., Toyama-Sorimachi N., Saido T. C., Kawasaki H., Sugita H., Miyasaka M., Arahata K., Ishiura S., Suzuki K. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J Biol Chem. 1993 May 15;268(14):10593–10605. [PubMed] [Google Scholar]
  19. Strobl S., Fernandez-Catalan C., Braun M., Huber R., Masumoto H., Nakagawa K., Irie A., Sorimachi H., Bourenkow G., Bartunik H. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):588–592. doi: 10.1073/pnas.97.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES