Abstract
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by selective atrophy of the proximal limb muscles. Its occurrence is correlated, in a large number of patients, with defects in the human CAPN3 gene, a gene that encodes the skeletal muscle-specific member of the calpain family, calpain 3 (or p94). Because calpain 3 is difficult to study due to its rapid autolysis, we have developed a molecular model of calpain 3 based on the recently reported crystal structures of m-calpain and on the high-sequence homology between p94 and m-calpain (47% sequence identity). On the basis of this model, it was possible to explain many LGMD2A point mutations in terms of calpain 3 inactivation, supporting the idea that loss of calpain 3 activity is responsible for the disease. The majority of the LGMD2A mutations appear to affect domain/domain interaction, which may be critical in the assembly and the activation of the multi-domain calpain 3. In particular, we suggest that the flexibility of protease domain I in calpain 3 may play a critical role in the functionality of calpain 3. In support of the model, some clinically observed calpain 3 mutations were generated and analyzed in recombinant m-calpain. Mutations of residues forming intramolecular domain contacts caused the expected loss of activity, but mutations of some surface residues had no effect on activity, implying that these residues in calpain 3 may interact in vivo with other target molecules. These results contribute to an understanding of structure-function relationships and of pathogenesis in calpain 3.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur J. S., Gauthier S., Elce J. S. Active site residues in m-calpain: identification by site-directed mutagenesis. FEBS Lett. 1995 Jul 24;368(3):397–400. doi: 10.1016/0014-5793(95)00691-2. [DOI] [PubMed] [Google Scholar]
- Belcastro A. N., Shewchuk L. D., Raj D. A. Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem. 1998 Feb;179(1-2):135–145. doi: 10.1023/a:1006816123601. [DOI] [PubMed] [Google Scholar]
- Carafoli E., Molinari M. Calpain: a protease in search of a function? Biochem Biophys Res Commun. 1998 Jun 18;247(2):193–203. doi: 10.1006/bbrc.1998.8378. [DOI] [PubMed] [Google Scholar]
- Chou F. L., Angelini C., Daentl D., Garcia C., Greco C., Hausmanowa-Petrusewicz I., Fidzianska A., Wessel H., Hoffman E. P. Calpain III mutation analysis of a heterogeneous limb-girdle muscular dystrophy population. Neurology. 1999 Mar 23;52(5):1015–1020. doi: 10.1212/wnl.52.5.1015. [DOI] [PubMed] [Google Scholar]
- Dutt P., Arthur J. S., Grochulski P., Cygler M., Elce J. S. Roles of individual EF-hands in the activation of m-calpain by calcium. Biochem J. 2000 May 15;348(Pt 1):37–43. [PMC free article] [PubMed] [Google Scholar]
- Elce J. S., Hegadorn C., Gauthier S., Vince J. W., Davies P. L. Recombinant calpain II: improved expression systems and production of a C105A active-site mutant for crystallography. Protein Eng. 1995 Aug;8(8):843–848. doi: 10.1093/protein/8.8.843. [DOI] [PubMed] [Google Scholar]
- Fardeau M., Hillaire D., Mignard C., Feingold N., Feingold J., Mignard D., de Ubeda B., Collin H., Tome F. M., Richard I. Juvenile limb-girdle muscular dystrophy. Clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain. 1996 Feb;119(Pt 1):295–308. doi: 10.1093/brain/119.1.295. [DOI] [PubMed] [Google Scholar]
- Hosfield C. M., Elce J. S., Davies P. L., Jia Z. Crystal structure of calpain reveals the structural basis for Ca(2+)-dependent protease activity and a novel mode of enzyme activation. EMBO J. 1999 Dec 15;18(24):6880–6889. doi: 10.1093/emboj/18.24.6880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinbara K., Ishiura S., Tomioka S., Sorimachi H., Jeong S. Y., Amano S., Kawasaki H., Kolmerer B., Kimura S., Labeit S. Purification of native p94, a muscle-specific calpain, and characterization of its autolysis. Biochem J. 1998 Nov 1;335(Pt 3):589–596. doi: 10.1042/bj3350589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minami N., Nishino I., Kobayashi O., Ikezoe K., Goto Y., Nonaka I. Mutations of calpain 3 gene in patients with sporadic limb-girdle muscular dystrophy in Japan. J Neurol Sci. 1999 Dec 1;171(1):31–37. doi: 10.1016/s0022-510x(99)00245-2. [DOI] [PubMed] [Google Scholar]
- Ono Y., Shimada H., Sorimachi H., Richard I., Saido T. C., Beckmann J. S., Ishiura S., Suzuki K. Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem. 1998 Jul 3;273(27):17073–17078. doi: 10.1074/jbc.273.27.17073. [DOI] [PubMed] [Google Scholar]
- Ono Y., Sorimachi H., Suzuki K. New aspect of the research on limb-girdle muscular dystrophy 2A: a molecular biologic and biochemical approach to pathology. Trends Cardiovasc Med. 1999 Jul;9(5):114–118. doi: 10.1016/s1050-1738(99)00018-3. [DOI] [PubMed] [Google Scholar]
- Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
- Richard I., Brenguier L., Dinçer P., Roudaut C., Bady B., Burgunder J. M., Chemaly R., Garcia C. A., Halaby G., Jackson C. E. Multiple independent molecular etiology for limb-girdle muscular dystrophy type 2A patients from various geographical origins. Am J Hum Genet. 1997 May;60(5):1128–1138. [PMC free article] [PubMed] [Google Scholar]
- Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995 Apr 7;81(1):27–40. doi: 10.1016/0092-8674(95)90368-2. [DOI] [PubMed] [Google Scholar]
- Richard I., Roudaut C., Saenz A., Pogue R., Grimbergen J. E., Anderson L. V., Beley C., Cobo A. M., de Diego C., Eymard B. Calpainopathy-a survey of mutations and polymorphisms. Am J Hum Genet. 1999 Jun;64(6):1524–1540. doi: 10.1086/302426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorimachi H., Ishiura S., Suzuki K. Structure and physiological function of calpains. Biochem J. 1997 Dec 15;328(Pt 3):721–732. doi: 10.1042/bj3280721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorimachi H., Toyama-Sorimachi N., Saido T. C., Kawasaki H., Sugita H., Miyasaka M., Arahata K., Ishiura S., Suzuki K. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J Biol Chem. 1993 May 15;268(14):10593–10605. [PubMed] [Google Scholar]
- Strobl S., Fernandez-Catalan C., Braun M., Huber R., Masumoto H., Nakagawa K., Irie A., Sorimachi H., Bourenkow G., Bartunik H. The crystal structure of calcium-free human m-calpain suggests an electrostatic switch mechanism for activation by calcium. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):588–592. doi: 10.1073/pnas.97.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]