Abstract
Previous measurements of transmembrane potential using the electrochromic probe di-8-ANEPPS have used the excitation spectral shift response by alternating excitation between two wavelengths centered at voltage-sensitive portions of the excitation spectrum and recording at a single wavelength near the peak of the emission spectrum. Recently, the emission spectral shift associated with the change in transmembrane potential has been used for continuous membrane potential monitoring. To characterize this form of the electrochromic response from di-8-ANEPPS, we have obtained fluorescence signals from single cells in response to step changes in transmembrane potentials set with a patch electrode, using single wavelength excitation near the peak of the dye absorption spectrum. Fluorescence changes at two wavelengths near voltage-sensitive portions of the emission spectrum and shifts in the complete emission spectrum were determined for emission from plasma membrane and internal membrane. We found that the fluorescence ratio from either dual-wavelength recordings, or from opposite sides of the emission spectrum, varied linearly with the amplitude of the transmembrane potential step between -80 and +60 mV. Voltage dependence of difference spectra exhibit a crossover point near the peak of the emission spectra with approximately equal gain and loss of fluorescence intensity on each side of the spectrum and equal response amplitude for depolarization and hyperpolarization. These results are consistent with an electrochromic mechanism of action and demonstrate how the emission spectral shift response can be used to measure the transmembrane potential in single cells.
Full Text
The Full Text of this article is available as a PDF (99.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beach J. M. A LED light calibration source for dual-wavelength microscopy. Cell Calcium. 1997 Jan;21(1):63–68. doi: 10.1016/s0143-4160(97)90097-x. [DOI] [PubMed] [Google Scholar]
- Beach J. M., Duling B. R. A light-emitting diode light standard for photo- and videomicroscopy. J Microsc. 1993 Oct;172(Pt 1):41–48. doi: 10.1111/j.1365-2818.1993.tb03391.x. [DOI] [PubMed] [Google Scholar]
- Beach J. M., McGahren E. D., Duling B. R. Capillaries and arterioles are electrically coupled in hamster cheek pouch. Am J Physiol. 1998 Oct;275(4 Pt 2):H1489–H1496. doi: 10.1152/ajpheart.1998.275.4.H1489. [DOI] [PubMed] [Google Scholar]
- Beach J. M., McGahren E. D., Xia J., Duling B. R. Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye. Am J Physiol. 1996 Jun;270(6 Pt 2):H2216–H2227. doi: 10.1152/ajpheart.1996.270.6.H2216. [DOI] [PubMed] [Google Scholar]
- Bullen A., Saggau P. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophys J. 1999 Apr;76(4):2272–2287. doi: 10.1016/S0006-3495(99)77383-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng D. K., Tung L., Sobie E. A. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol. 1999 Jul;277(1 Pt 2):H351–H362. doi: 10.1152/ajpheart.1999.277.1.H351. [DOI] [PubMed] [Google Scholar]
- Efimov I. R., Huang D. T., Rendt J. M., Salama G. Optical mapping of repolarization and refractoriness from intact hearts. Circulation. 1994 Sep;90(3):1469–1480. doi: 10.1161/01.cir.90.3.1469. [DOI] [PubMed] [Google Scholar]
- Fluhler E., Burnham V. G., Loew L. M. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry. 1985 Oct 8;24(21):5749–5755. doi: 10.1021/bi00342a010. [DOI] [PubMed] [Google Scholar]
- Gross D., Loew L. M., Webb W. W. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys J. 1986 Aug;50(2):339–348. doi: 10.1016/S0006-3495(86)83467-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Knisley S. B., Trayanova N., Aguel F. Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J. 1999 Sep;77(3):1404–1417. doi: 10.1016/S0006-3495(99)76989-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loew L. M., Cohen L. B., Dix J., Fluhler E. N., Montana V., Salama G., Wu J. Y. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol. 1992 Oct;130(1):1–10. doi: 10.1007/BF00233734. [DOI] [PubMed] [Google Scholar]
- Loew L. M., Cohen L. B., Salzberg B. M., Obaid A. L., Bezanilla F. Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon. Biophys J. 1985 Jan;47(1):71–77. doi: 10.1016/S0006-3495(85)83878-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loew L. M., Simpson L. L. Charge-shift probes of membrane potential: a probable electrochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer. Biophys J. 1981 Jun;34(3):353–365. doi: 10.1016/S0006-3495(81)84854-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- London J. A., Cohen L. B., Wu J. Y. Optical recordings of the cortical response to whisker stimulation before and after the addition of an epileptogenic agent. J Neurosci. 1989 Jun;9(6):2182–2190. doi: 10.1523/JNEUROSCI.09-06-02182.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGahren E. D., Beach J. M., Duling B. R. Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli. Am J Physiol. 1998 Jan;274(1 Pt 2):H60–H65. doi: 10.1152/ajpheart.1998.274.1.H60. [DOI] [PubMed] [Google Scholar]
- Montana V., Farkas D. L., Loew L. M. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry. 1989 May 30;28(11):4536–4539. doi: 10.1021/bi00437a003. [DOI] [PubMed] [Google Scholar]
- Orbach H. S., Cohen L. B., Grinvald A. Optical mapping of electrical activity in rat somatosensory and visual cortex. J Neurosci. 1985 Jul;5(7):1886–1895. doi: 10.1523/JNEUROSCI.05-07-01886.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rohr S., Salzberg B. M. Characterization of impulse propagation at the microscopic level across geometrically defined expansions of excitable tissue: multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures. J Gen Physiol. 1994 Aug;104(2):287–309. doi: 10.1085/jgp.104.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salama G., Lombardi R., Elson J. Maps of optical action potentials and NADH fluorescence in intact working hearts. Am J Physiol. 1987 Feb;252(2 Pt 2):H384–H394. doi: 10.1152/ajpheart.1987.252.2.H384. [DOI] [PubMed] [Google Scholar]
- Zhang J., Davidson R. M., Wei M. D., Loew L. M. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys J. 1998 Jan;74(1):48–53. doi: 10.1016/S0006-3495(98)77765-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
